1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 12 : Thyristors"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.1, Page No 278"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"L=2*(10**-7)*math.log(100/.75)\t\t#inductance per unit length\n",
"C=2*math.pi*(10**-9)/(36*math.pi*math.log(100.0/0.75))\t#Capacitance per phase per unit length (F/m)\n",
"Z1=math.sqrt(L/C)\n",
"E=11000.0\n",
"\n",
"#Calculations\n",
"print(\"(i)the natural impedence of line=%.0f ohms\" %Z1)\n",
"Il=E/(math.sqrt(3)*Z1) #line current(amps)\n",
"print(\"(ii)line current =%.1f amps\" %Il)\n",
"R=1000.0\n",
"Z2=R\n",
"E1=2*Z2*E/((Z1+Z2)*math.sqrt(3))\n",
"Pr=3*E1*E1/(R*1000) #Rate of power consumption\n",
"Vr=(Z2-Z1)*E/(math.sqrt(3)*(Z2+Z1)*1000)\t\t#Reflected voltage\n",
"Er=3*Vr*Vr*1000/Z1\t\t\t\t\t\t\t\t#rate of reflected voltage\n",
"print(\"(iii)rate of energy absorption =%.1f kW\" %Pr)\n",
"print(\"rate of reflected energy =%.1f kW\" %Er)\n",
"print(\"(iv)Terminating resistance should be equal to surge impedence of line =%.0f ohms\" %Z1)\n",
"L=.5*(10**-8)\n",
"C=10**-12\n",
"Z=math.sqrt(L/C)\t\t# surge impedence\n",
"VR=2*Z*11/((Z1+Z)*math.sqrt(3))\n",
"Vrl=(Z-Z1)*11/((Z1+Z)*math.sqrt(3))\n",
"PR1=3*VR*VR*1000/(Z)\n",
"d=Vrl\n",
"Prl=3*d*d*1000.0/Z1\n",
"\n",
"#Results\n",
"print(\"(v)Refracted power =%.1f kW\" %PR1)\n",
"print(\"Reflected power =%.1f kW\" %Prl)\n",
"##Answer don't match exactly due to difference in rounding off of digits i between calculations\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i)the natural impedence of line=294 ohms\n",
"(ii)line current =21.6 amps\n",
"(iii)rate of energy absorption =289.2 kW\n",
"rate of reflected energy =122.9 kW\n",
"(iv)Terminating resistance should be equal to surge impedence of line =294 ohms\n",
"(v)Refracted power =257.9 kW\n",
"Reflected power =154.3 kW\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.2, Page No 280"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"Xlc=0.3*(10**-3)\t\t# inductance of cable(H)\n",
"Xcc=0.4*(10**-6)\t\t# capacitance of cable (F)\n",
"Xlo=1.5*(10**-3)\t\t#inductance of overhead line(H)\n",
"Xco=.012*(10**-6)\t\t# capacitance of overhead line (F)\n",
"\n",
"#Calculations\n",
"Znc=math.sqrt((Xlc/Xcc))\n",
"Znl=math.sqrt((Xlo/Xco))\n",
"\n",
"#Results\n",
"print(\"Natural impedence of cable=%.2f ohms \" %Znc)\n",
"print(\"Natural impedence of overhead line=%.1f ohms \" %Znl)\n",
"E=2*Znl*15/(353+27)\n",
"print(\"voltage rise at the junction due to surge =%.2f kV \" %E)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Natural impedence of cable=27.39 ohms \n",
"Natural impedence of overhead line=353.6 ohms \n",
"voltage rise at the junction due to surge =27.91 kV \n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.3, Page No 280"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"Z1=600.0\n",
"Z2=800.0\n",
"Z3=200.0\n",
"E=100.0\n",
"\n",
"#Calculations\n",
"E1=2*E/(Z1*((1/Z1)+(1/Z2)+(1/Z3)))\n",
"Iz2=E1*1000.0/Z2\n",
"Iz3=E1*1000.0/Z3\n",
"\n",
"#Results\n",
"print(\"Transmitted voltage =%.2f kV \" %E1)\n",
"print(\"The transmitted current in line Z2=%.2f amps \" %Iz2)\n",
"print(\"The transmitted current in line Z3=%.1f amps \" %Iz3)\n",
"\n",
"#Answer don't match exactly due to difference in rounding off of digits i between calculations"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Transmitted voltage =42.11 kV \n",
"The transmitted current in line Z2=52.63 amps \n",
"The transmitted current in line Z3=210.5 amps \n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.4 Page No 283"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"Z=350.0 \t#surge impedencr (ohms)\n",
"\n",
"#Calculations\n",
"C=3000.0*(10**-12)\t# earth capacitance(F) \n",
"t=2.0*(10**-6)\n",
"E=500.0\n",
"E1=2*E*(1-math.exp((-1*t/(Z*C))))\n",
"\n",
"#Results\n",
"print(\"the maximum value of transmitted voltage=%.2f kV \" %E1)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the maximum value of transmitted voltage=851.14 kV \n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.5, Page No 283"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"Z=350.0 \t\t#surge impedencr (ohms)\n",
"L=800*(10**-6) \n",
"t=2*(10**-6)\n",
"E=500.0\n",
"\n",
"#Calculations\n",
"E1=E*(1-math.exp((-1*t*2*Z/L)))\n",
"\n",
"#Results\n",
"print(\"The maximum value of transmitted voltage=%.1f kV \" %E1)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum value of transmitted voltage=413.1 kV \n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.6, Page No 285"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"eo=50.0\n",
"x=50.0\n",
"R=6.0\n",
"Z=400.0\n",
"G=0\n",
"v=3*(10**5)\n",
"e=2.68\n",
"\n",
"#Calculations\n",
"e1=(eo*(e**((-1/2)*R*x/Z)))\n",
"# answess does not match due to the difference in rounding off of digits. \n",
"print(\"(i)the value of the Voltage wave when it has travelled through a distance 50 Km=%.1f kV \" %e1)\n",
"Pl=e1*e1*1000.0/400\n",
"io=eo*1000.0/Z\n",
"t=x/v\n",
"H=-(50*125*400*((e**-0.75)-1))/(6.0*3*10**5)\n",
"\n",
"#Results\n",
"print(\"(ii)Power loss=%.3fkW \\n heat loss=%.3f kJ\" %(Pl,H))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i)the value of the Voltage wave when it has travelled through a distance 50 Km=23.9 kV \n",
"(ii)Power loss=1424.550kW \n",
" heat loss=0.726 kJ\n"
]
}
],
"prompt_number": 6
}
],
"metadata": {}
}
]
}
|