1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 07 : Mechanical Design of Transmission Lines"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.1, Page No 161"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"sf=5.0\t #Factor of safety\n",
"d=0.95\t # conductor dia(cm)\n",
"\n",
"#Calculations\n",
"Ws=4250.0/sf # working stress(kg/cm_2)\n",
"A=math.pi*(d**2)/4.0 # area (cm_2)\n",
"Wp=40.0*d*(10**-2) #wind pressure (kg/cm)\n",
"W=math.sqrt((.65**2)+(0.38**2)) # Total effective weight(kg/m)\n",
"T=850.0*A # working tension (kg)\n",
"c=T/W\n",
"l=160.0\n",
"d=l**2/(8*800)\n",
"\n",
"#Results\n",
"print(\"sag, d=%.0f metres \" %d)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"sag, d=4 metres \n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.2, Page No 161"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"D=1.95 + 2.6\t\t\t# overall diameter(cm)\n",
"A=4.55*(10**-2)\t\t\t# area(m_2)\n",
"d=19.5\t\t\t\t\t#diameter of conductor(mm)\n",
"r=d/2.0\t\t\t\t\t#radius of conductor(mm)\n",
"\n",
"#Calculations\n",
"Wp=A*39 #wind pressure(kg/m_2)\n",
"t=13 #ice coating(mm)\n",
"US=8000.0 # ultimate strength(kg)\n",
"Aice=math.pi*(10**-6)*((r+t)**2 - r**2)#area section of ice (m_2)\n",
"Wice=Aice*910\n",
"W=(math.sqrt((.85+Wice)**2 + Wp**2))# total weight of ice (kg/m)\n",
"T=US/2.0 # working teansion (kg)\n",
"c=T/W\n",
"l=275 #length of span(m)\n",
"Smax=l*l/(8*c)\n",
"\n",
"#Results\n",
"print(\"Maximum sag=%.1f metres\\n\" %Smax)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum sag=6.4 metres\n",
"\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.3, Page No 162"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import numpy\n",
"#initialisation of variables\n",
"A=13.2\t\t\t\t# cross section of conductor (mm_2)\n",
"Ar=4.1*(10**-3)\t\t# projected area\n",
"Wp=Ar*48.82\t\t\t# wind loadind /m(kg/m)\n",
"w=0.115\n",
"\n",
"#Calculations\n",
"W=math.sqrt((.1157**2)+(Wp**2))# effective loading per metre(kg)\n",
"q1=W/0.115\n",
"b=w/A\n",
"f1=21.0\t\t#working stress\n",
"T1=f1*A\n",
"c=T1/W\n",
"l=45.7\n",
"S=l*l/(8*c)\n",
"dT=32.2-4.5# difference in temperature\n",
"E=1.26*(10000)\n",
"a=16.6*(10**-6)\n",
"d=8.765*(10**-3)\n",
"K=f1-((l*d*q1)**2)*E/(24*f1*f1)\n",
"p=numpy.polynomial.polynomial.polyval3d(-84.23,0,-14.44,1)\n",
"r=numpy.roots(p)\n",
"f2= 14.823332# accepted value of f2\n",
"T=f2*A\n",
"c=T/w\n",
"d1=l*l/(8*c)\n",
"\n",
"#Results\n",
"print(\"sag at 32.2 Celsius , d=%.4f metres\" %d1)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"sag at 32.2 Celsius , d=0.1534 metres\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.4 Page No 165"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"T=2000.0 # working tension (kg)\n",
"w=1.0 \n",
"c=T/w \n",
"h=90-30 \n",
"l=300.0 #span(m)\n",
"\n",
"#Calculations\n",
"a=(l/2)-(c*h/l) \n",
"b=550.0 \n",
"d1=a*a/(2*c) \n",
"d2=(400**2)/(2*c) # sag at 400 metres(m)\n",
"Hm=d2-d1 #height of mid point with respect to A\n",
"Cl=30+Hm\n",
"\n",
"#Results \n",
"print(\"The clearance between the conductor and water level midway between the towers= %.3f metres \" %Cl) "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The clearance between the conductor and water level midway between the towers= 54.375 metres \n"
]
}
],
"prompt_number": 8
}
],
"metadata": {}
}
]
}
|