1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 06 : Corona"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.1, Page No 142"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"t=21.0 # air temperature\n",
"b=73.6 # air pressure\n",
"do=3.92*73.6/(273+t)\n",
"m=0.85\n",
"r=0.52\n",
"d=250.0\n",
"\n",
"#Calculations\n",
"Vd=21.1*m *do*r*math.log(250/.52)\n",
"vd=math.sqrt(3)*Vd\n",
"m=0.7\n",
"vv=21.1*m*do*r*(1+(0.3/math.sqrt(r*do)))*math.log(250/0.52)\n",
"Vv=vv*math.sqrt(3)\n",
"Vvg=Vv*0.8/0.7\n",
"\n",
"#Results\n",
"print(\"critical disruptive line to line voltage=%.2f kV \" %vd)\n",
"print(\"visual critical voltage for local corona=%.2f kV \" %vv)\n",
"print(\"visual critical voltage for general corona=%.2f kV \" %Vvg)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"critical disruptive line to line voltage=97.89 kV \n",
"visual critical voltage for local corona=66.09 kV \n",
"visual critical voltage for general corona=130.83 kV \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.2, Page No 142"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables \n",
"d=2.5 \n",
"di=3.0 # internal diameter\n",
"do=9.0 # external diameter\n",
"ri=di/2.0 # internal radius\n",
"ro=do/2.0 # external diameter\n",
"\n",
"#Calculations\n",
"g1max=20/(1.25*math.log(ri/(d/2))+0.208*1.5*math.log(ro/ri)) \n",
"\n",
"#Results\n",
"print(\"g1max=%.0f kV/cm\" %g1max) \n",
"print(\"Since the gradient exceeds 21.1/kV/cm , corona will be present.\")"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"g1max=35 kV/cm\n",
"Since the gradient exceeds 21.1/kV/cm , corona will be present.\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.3, Page No 143"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"m=1.07\n",
"r=0.625\n",
"\n",
"#Calculations\n",
"V=21*m *r*math.log(305.0/0.625)\n",
"Vl=V*math.sqrt(3.0)\n",
"\n",
"#Results\n",
"print(\"critical disruptive voltage=%.0f kV \" %V)\n",
"print(\"since operating voltage is 110 kV , corona loss= 0 \")"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"critical disruptive voltage=87 kV \n",
"since operating voltage is 110 kV , corona loss= 0 \n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.4 Page No 143"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"r=0.5\n",
"\n",
"#Calculations\n",
"V=21*r*math.log(100.0/0.5)\n",
"\n",
"#Results\n",
"print(\"critical disruptive voltage=%.1f kV\" %V)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"critical disruptive voltage=55.6 kV\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6.5, Page No 146"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"D=1.036 \t # conductor diameter(cm)\n",
"d=2.44\t #delta spacing(m)\n",
"r=D/2 \t #radius(cm)\n",
"\n",
"#Calculations\n",
"Ratio=d*100.0/r \n",
"j=r/(d*100.0) \n",
"Rat2=math.sqrt(j) \n",
"t=26.67 \t #temperature\n",
"b=73.15 # barometric pressure\n",
"mv=0.72 \n",
"V=63.5 \n",
"f=50.0\t #frequency\n",
"do=3.92*b/(273+t) #do=dell\n",
"vd=21.1*.85*do*r*math.log(Ratio) \n",
"print(\"critical disruptive voltage=%.2f kV\" %vd) \n",
"Vv=21.1*mv*do*r*(1+(0.3/math.sqrt(r*do)))*math.log(Ratio) \n",
"Pl=241*(10**-5)*(f+25)*Rat2*((V-vd)**2)/do #power loss\n",
"Vd=0.8*vd \n",
"Pl2=241*(10**-5)*(f+25)*Rat2*((V-Vd)**2)*160/do #loss per phase /km\n",
"Total=3.0*Pl2\n",
"\n",
"#Results \n",
"print(\"visual critical voltage=%.0f kV\" %Vv) \n",
"print(\"Power loss=%.3f kW/phase/km\" %Pl) \n",
"print(\"under foul weather condition ,\") \n",
"print(\"critical disruptive voltage=%.2f kV\" %Vd) \n",
"print(\"Total loss=%.0f kW\\n\"%Total) \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"critical disruptive voltage=54.72 kV\n",
"visual critical voltage=66 kV\n",
"Power loss=0.672 kW/phase/km\n",
"under foul weather condition ,\n",
"critical disruptive voltage=43.77 kV\n",
"Total loss=1626 kW\n",
"\n"
]
}
],
"prompt_number": 5
}
],
"metadata": {}
}
]
}
|