1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 4 : Performance of Lines"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.1, Page No 65"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"R=0.496\t\t# resistance\n",
"X=1.536\n",
"Vr=2000.0\n",
"\n",
"#Calculations\n",
"Z=(10*2*2/(11*11)) + complex(30)*2*2/(11*11)\n",
"Zt=(.04+(1.3*2*2/(11*11))) + complex(0.125,(4.5*2*2/(11*11)))#Transformer impedence\n",
"Il=250*1000.0/2000\t# line current(amps.)\n",
"Pl=Il*Il*R\t\t\t#line loss(kW)\n",
"Po=250*0.8\t\t\t# output(kW)\n",
"cosr=0.8\t\t\t# power factor\n",
"sinr=0.6\n",
"n=200*100.0/(200+7.7)\n",
"Vs=(Vr*cosr+Il*R)+complex(Vr*sinr+Il*X)\n",
"V=math.sqrt((1662**2)+ (1392**2))\n",
"\n",
"#Results\n",
"print(\"efficiency= %.1f percent \" %n)\n",
"print(\"Sending end voltage,|Vs|=%.0f volts\" %V)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"efficiency= 96.3 percent \n",
"Sending end voltage,|Vs|=2168 volts\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.2, Page No 66"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"print(\"when load is star connected\")\n",
"Vln=400/math.sqrt(3.0)\t\t# Line to neutral voltage(V)\n",
"Z=complex(7,11)\t\t\t\t\t#Impedence per phase\n",
"Il=231/Z\t\t\t\t\t\t# line current(amp.)\n",
"I=abs(231/Z)\n",
"Pi=3*I*I*7\n",
"Po=3*I*I*6\n",
"\n",
"#Calculations\n",
"print(\"power input =%.0f watts\\n\" %Pi)\t\t#Answers don't match due to difference in rounding off of digits\n",
"print(\"power output=%.0f watts\\n\" %Po)\t#Answers don't match due to difference in rounding off of digits\n",
"print(\"when load is delta connected\\n\")\n",
"Ze=complex(2,3)\t\t# equivalent impedence(ohm)\n",
"Zp=complex(3,5)\t\t# impedence per phase\n",
"il=231/Zp\t\t\t#Line current(amps.)\n",
"IL=abs(il)\n",
"pi=3*IL*IL*3\n",
"po=3*IL*IL*2\n",
"\n",
"#Results\n",
"print(\"power input=%.1f watts\" %pi)\t\t\t#Answers don't match due to difference in rounding off of digits\n",
"print(\"power output = %.0f watts \" %po)\t\t#Answers don't match due to difference in rounding off of digits"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"when load is star connected\n",
"power input =6592 watts\n",
"\n",
"power output=5650 watts\n",
"\n",
"when load is delta connected\n",
"\n",
"power input=14125.0 watts\n",
"power output = 9417 watts \n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.3, Page No 66"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"a=100/.5\n",
"Xl=2*(10**-7)*math.log(100/.5)\t\t#inductance(H/meter)\n",
"XL=20*(1000)*Xl\t\t\t\t\t\t# inductance of 20 km length \n",
"R=6.65\t\t\t\t\t\t\t\t# resistance(ohm)\n",
"Rc=20*1000/(58.0*90)\t\t\t\t# resistance of copper(ohm)\n",
"I=10*1000/(33*.8*math.sqrt(3))\t\t# the current(amps.)\n",
"\n",
"#Calculations\n",
"Pl=3*I*I*Rc/(10**6)\t\t\t\t\t#loss (MW)\n",
"n=10.0/(10+Pl)\n",
"print(\"Efficiency=%.4f percent \" %n)\n",
"Vr=19052\n",
"cosr=.8\t\t\t\t#power factor\n",
"sinr=.6\n",
"Vs=abs(((Vr*cosr+I*Rc) +complex(Vr*sinr+ I*R)))\n",
"\n",
"#Results\n",
"print(\"Vs =%.0f volts\\n\" %Vs)\t#Answer don't match due to difference in rounding off of digits\n",
"Reg=(Vs-Vr)*100/Vr\n",
"print(\"Regulation =%.2f percent\" %Reg)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Efficiency=0.9479 percent \n",
"Vs =28965 volts\n",
"\n",
"Regulation =52.03 percent\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.4 Page No 67"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"IR=(400)/((math.sqrt(3)*complex(6.3,9)))\n",
"\n",
"#Calculations\n",
"IY=231*complex(math.cos(math.radians(-120)),math.sin(math.radians(-120)))/8.3\n",
"IB=231*complex(math.cos(math.radians(120)),math.sin(math.radians(120)))/complex(6.3,-8)\n",
"In=abs((IR +IY +IB))\t\t#Neutral current\n",
"print(\"Neutral current =%.2f amps\\n\" %In)\n",
"VR=abs(IR*complex(6,9))\n",
"VY=abs(IY*(8))\n",
"VB=abs(IB*complex(6,-8))\n",
"\n",
"#Results\n",
"print(\"Voltage across Phase R =%.1f volts \\n\" %VR)\n",
"print(\"Voltage across Phase Y =%.2f volts \\n\" %VY)\n",
"print(\"Voltage across Phase B =%.0f volts \\n\" %VB)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Neutral current =45.18 amps\n",
"\n",
"Voltage across Phase R =227.4 volts \n",
"\n",
"Voltage across Phase Y =222.65 volts \n",
"\n",
"Voltage across Phase B =227 volts \n",
"\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.5, Page No 73"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"R=100*.1\t\t#Resistance of line (ohm)\n",
"Xl=2*(10**-7)*100*1000*math.log(200/.75)\t#inductance of line\n",
"X2=Xl*314\t\t\t\t\t\t\t\t\t#inductive reactance\n",
"C=2*(math.pi*100)*8.854*(10**-12)*100*1000*(10**6)/(math.log(200/.75))\t# capacitance per phase (micro farad)\n",
"\n",
"#Calculations\n",
"print(\"Using Nominal-T method\\n\")\n",
"Ir=20*1000.0/(math.sqrt(3)*66*.8)\n",
"Vr=66*1000/math.sqrt(3)\n",
"Vc=complex((38104*.8+ Ir*5),(38104*.6+ Ir*17.55))\t# voltage across condenser\n",
"Ic=complex(314*(Vc)*.9954*(10**-6))\n",
"ise=Ir+Ic\n",
"Is=abs(Ir+Ic)\n",
"Vs=abs(Vc + (ise*complex(5,17.53)))\n",
"VR=abs(Vs*complex(-3199)/complex(5,-3181))# no load recieving end voltage\n",
"Reg=(VR-Vr)*100.0/Vr\n",
"Pl=3*(Ir*Ir*5 + Is*Is*5)/1000000\n",
"n=20*100/(20+Pl)\n",
"print(\"percent regulation=%.1f \" %Reg)\n",
"print(\"percent efficiency=%.1f \\n\" %n)\n",
"print(\"Using Nominal-pi method\\n\")\n",
"Ir1=218.68*complex(.8,-.6)\n",
"Ic1=complex(314*.4977*(10**-6)*Vr)\n",
"Il=Ir1+Ic1\n",
"vs1=Vr+Il*complex(10,35.1)\n",
"Vs1=abs(vs1)\n",
"Vr1=Vs1*complex(-6398)/complex(10,-6363)\n",
"VR1=abs(Vr1)\t\t\t# no load recieving end voltage\n",
"Reg2=(VR1-Vr)*100/Vr\n",
"IL=abs(Ir1+Ic1)\n",
"Loss=3*IL*IL*10\n",
"n=20*100/21.388\n",
"\n",
"#Results\n",
"print(\"percent regulation=%.2f \" %Reg2)\n",
"print(\"percent efficiency=%.1f \" %n)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Using Nominal-T method\n",
"\n",
"percent regulation=18.2 \n",
"percent efficiency=93.0 \n",
"\n",
"Using Nominal-pi method\n",
"\n",
"percent regulation=18.23 \n",
"percent efficiency=93.5 \n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.6, Page No 78"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import cmath\n",
"#initialisation of variables\n",
"R=0.2\n",
"L=1.3\n",
"C=0.01*(10**-6)\n",
"\n",
"#Calculations\n",
"z=complex(R,(L*314.0*(10**-3)))\t\t# serie impedence\n",
"y=complex(314.0*C)\t\t# shunt admittance\n",
"Zc=cmath.sqrt(z/y)\t\t# characterstic impedence\n",
"Y=cmath.sqrt(y*z)\n",
"Vr=132*1000/math.sqrt(3.0)\n",
"Ir=0\n",
"Vin=(Vr + Ir*Zc)/2\t\t\t# incident voltage to neutral at the recieving end\n",
"\n",
"#Results\n",
"print(\"Vr =%.3f volts \\n\" %Vr)\t\t#Answer don't match due to difference in rounding off of digits\n",
"print(\"(i)The incident voltage to neutral at the recieving end {0:.5f}+{1:.5f}i\".format(Vin.real, Vin.imag))\t#Answer don't match due to difference in rounding off of digits\n",
"Vin2=(Vr - Ir*Zc)/2\t\t\t\t\t\t# The reflected voltage to neutral at the recieving end\n",
"print(\"(ii)The reflected voltage to neutral at the recieving end{0:.5f}+{1:.5f}i\".format(Vin2.real, Vin2.imag))\t\t#Answer don't match due to difference inrounding off of digits\n",
"Vrp=Vr*cmath.exp(.2714*120*(10**-3))*cmath.exp(complex(1.169*120*(10**-3))/1000.0)#Taking Vrp=Vr+\n",
"Vrm=Vr*cmath.exp(-0.0325)*cmath.exp(complex(-.140))/1000\t\t\t#Taking Vrm=Vr-\n",
"v1=Vrm/2\t\t\t\t # reflected voltage to neutral at 120 km from the recieving end\n",
"phase_v1=math.degrees(math.atan(v1.imag/v1.real))\n",
"v2=Vrp/2\t\t\t #incident voltage to neutral at 120 km from the recieving end\n",
"phase_v2=math.degrees(math.atan(v2.imag/v2.real))#Phase angle of v2\n",
"print(\"(iii) reflected voltage to neutral at 120 km from the recieving end =%.2f at angle of %.2f\" %(abs(v1),phase_v1))\n",
"print(\"incident voltage to neutral at 120 km from the recieving end = %.2f at angle of %.2f\" %(abs(v2),phase_v2))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Vr =76210.236 volts \n",
"\n",
"(i)The incident voltage to neutral at the recieving end 38105.11777+0.00000i\n",
"(ii)The reflected voltage to neutral at the recieving end38105.11777+0.00000i\n",
"(iii) reflected voltage to neutral at 120 km from the recieving end =32.07 at angle of 0.00\n",
"incident voltage to neutral at 120 km from the recieving end = 39372.08 at angle of 0.00\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.7 Page No 79"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"Ir=40.0*1000/(math.sqrt(3)*132*.8)\n",
"Vr=132.0*1000/math.sqrt(3)\n",
"\n",
"#Calculations\n",
"Zc=380*complex(math.cos(math.radians(-13.06)),math.sin(math.radians(-13.06)))\n",
"IR=Ir*complex(math.cos(math.radians(-38.8)),math.sin(math.radians(-38.8)))\n",
"Vsp=(Vr+IR*Zc)*(1.033*complex(math.cos(math.radians(8.02)),math.sin(math.radians(8.02))))/2\n",
"Vsm=(Vr-IR*Zc)*(0.968*complex(math.cos(math.radians(8.02)),math.sin(math.radians(8.02))))/2\n",
"vs=Vsp+ Vsm\n",
"Vs=abs(vs)\n",
"ise=(Vsp-Vsm)/Zc\n",
"Is=abs(ise)\n",
"P=3*Vs*Is*math.cos(math.radians(33.72))/10**6\n",
"n=40*100/P\n",
"\n",
"#Results\n",
"print(\"efficiency=%.1f\" %n)\t\t#Answer don't match due to difference in rounding off of digits"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"efficiency=92.3\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.8, Page No 80"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import cmath\n",
"#initialisation of variables\n",
"yl=complex(0.2714,1.169)*120*(10**-3)\n",
"Ir=40*1000/(math.sqrt(3)*132*.8)\n",
"A=cmath.cosh(yl)\n",
"\n",
"#Calculations\n",
"phase_A=math.degrees(math.atan(A.imag/A.real)) #Phase angle of A\n",
"IR=Ir*complex(math.cos(math.radians(-38.8)),math.sin(math.radians(-38.8)))\n",
"Vr=132*1000/math.sqrt(3)\n",
"Zc=380*complex(math.cos(math.radians(-13.06)),math.sin(math.radians(-13.06)))\n",
"B=Zc*cmath.sinh(yl)\n",
"phase_B=math.degrees(math.atan(B.imag/B.real)) #Phase angle of B\n",
"Vs=(A*Vr+B*IR)\n",
"f=abs(B)\n",
"d=abs(Vs)\n",
"C=cmath.sinh(yl)/Zc\n",
"phase_C=math.degrees(math.atan(C.imag/C.real)) #Phase angle of C\n",
"D=cmath.cosh(yl)\n",
"phase_D=math.degrees(math.atan(D.imag/D.real))\t\t#Phase angle of D\n",
"\n",
"#Results\n",
"print(\"A=%.2f at an angle of %.2f \" %(abs(A),phase_A))\n",
"print(\"B=%.1f at an angle of %.0f \" %(abs(B),phase_B))\n",
"print(\"C=%.2f at an angle of %.2f \" %(abs(C),phase_C))\n",
"print(\"D=%.2f at an angle of %.2f \" %(abs(D),phase_D))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A=0.99 at an angle of 0.26 \n",
"B=54.6 at an angle of 64 \n",
"C=0.00 at an angle of -89.92 \n",
"D=0.99 at an angle of 0.26 \n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.9 Page No 81"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#initialisation of variables\n",
"Ir=218.7*complex(0.8,-0.6)\n",
"Ic1=complex(314)*0.6*(10**-6)*76200\n",
"Il=Ic1+Ir\n",
"Vs=76200 + Il*complex(24,48.38)\n",
"\n",
"#Calculations\n",
"phase_Vs=math.degrees(math.atan(Vs.imag/Vs.real))\n",
"Pl=3*24*abs(Il)*abs(Il)/1000000.0 #The Loss(MW)\n",
"n=40*100/(40+Pl)\n",
"print(\"Using Nominal- pi method\")\n",
"print(\"Vs=%.0f volts at an angle of %.2f \\n\" %(abs(Vs),phase_Vs))\n",
"print(\"efficiency=%.2f percent\" %n)\n",
"print(\"\\nUsing Nominal-T method\")\n",
"Vc=76200*complex(0.8,0.6)+218.7*complex(12,24.49)\n",
"Ic=complex(314)*1.2*(10**-6)*complex(63584,51076.0)\n",
"Is=complex(199.46,23.95)\n",
"Vs=(Vc + Is*complex(12,24.49))/1000.0\n",
"phase_Vs=math.degrees(math.atan(Vs.imag/Vs.real))\t#Phase angle of Vs\n",
"Pl1=3*12*((200.89**2)+ 218.7**2)/1000000 #The loss(MW)\n",
"n1=40*100/(40+Pl1)\n",
"\n",
"#Results\n",
"print(\"Vs=%.2f at an angle of %.2f \" %(abs(Vs),phase_Vs))\n",
"print(\"efficiency=%.2f percent\\n\" %n1)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Using Nominal- pi method\n",
"Vs=87299 volts at an angle of 3.95 \n",
"\n",
"efficiency=91.28 percent\n",
"\n",
"Using Nominal-T method\n",
"Vs=86.25 at an angle of 40.70 \n",
"efficiency=92.65 percent\n",
"\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4.10 Page No 92"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import cmath\n",
"#initialisation of variables\n",
"R=0.1557*160\n",
"GMD=(3.7*6.475*7.4)**(1.0/3)\n",
"Z1=2*(10**-7)*math.log(560/0.978)*160*1000\n",
"XL=63.8\n",
"\n",
"#Calculations\n",
"C=(10**-9)*2*(10**6)*math.pi*160*1000.0/(36*math.pi*math.log(560/.978))\n",
"Z=math.sqrt((0.1557**2)+.39875**2)*complex(math.cos(math.radians(68.67)),math.sin(math.radians(68.67)))\n",
"jwC=complex(314)*1.399*(10**-6)/160.0\n",
"Zc=cmath.sqrt(Z/jwC)\n",
"y=cmath.sqrt(Z*jwC)\n",
"yl=y*160\n",
"A=cmath.cosh(yl)\n",
"B=Zc*cmath.sinh(yl)\n",
"C=cmath.sinh(yl)/Zc\n",
"Ir=50000/(math.sqrt(3)*132)\n",
"Vs=(A*76.208) +(B*(10**-3)*Ir*complex(math.cos(math.radians(-36.87)),math.sin(math.radians(-36.87))))\n",
"VS=152.34\n",
"Is=C*76.208*(10**3) +(A*Ir*complex(math.cos(math.radians(-36.87)),math.sin(math.radians(-36.87))))\n",
"Ps=3*abs(Vs)*abs(Is)*math.cos(math.radians(33.96))\n",
"pf=math.cos(math.radians(33.96))\n",
"Vnl=abs(Vs)/abs(A)\n",
"reg=(Vnl-76.208)*100/76.208\n",
"n=50000*.8*100/abs(Ps)\n",
"\n",
"#Results\n",
"print(\"Vs line to line =%.2f kV\\n\" %VS)\n",
"print(\"sending end current Is(A){0:.5f}+{1:.5f}i\".format(Is.real, Is.imag)) #Answer don't match due to difference in rounding off of digits\n",
"print(\"sending end power=%.0f kW\" %Ps)\n",
"print(\"sending end p.f =%.3f\" %pf)\n",
"print(\"percent regulation=%.1f \" %reg)\n",
"print(\"percent efficency=%.1f \" %n)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Vs line to line =152.34 kV\n",
"\n",
"sending end current Is(A)211.28696+-129.31797i\n",
"sending end power=55350 kW\n",
"sending end p.f =0.829\n",
"percent regulation=17.2 \n",
"percent efficency=72.3 \n"
]
}
],
"prompt_number": 10
}
],
"metadata": {}
}
]
}
|