1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
|
{
"metadata": {
"name": "",
"signature": "sha256:f7ea291c8e2293a8fc339d930ac29424b99d2f3c6350ea4ec55a2d06cfae4c2d"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 3 : Transformers"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.1 Page No : 196"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Given Data\n",
"kVA = 500.; #rating\n",
"V1 = 11000.; #primary voltage in volts\n",
"V2 = 400.; #secondary voltage in volts\n",
"N2 = 100.; #number of turns in secondary winding\n",
"f = 50.; #frequency in hertz\n",
"\n",
"# Calculations and Results\n",
"N1 = (V1*N2)/V2; #number of turns in primary winding\n",
"print \"number of turns in primary winding, N1 = %dturns\"%(N1)\n",
"I1 = (kVA*1000)/V1;\n",
"I2 = (kVA*1000)/V2\n",
"print \"primary current, I1 = %fA\"%(I1)\n",
"print \"secondary current, I2 = %fA\"%(I2)\n",
"E1 = V1;\n",
"phi = E1/(4.44*f*N1)\n",
"print \"maximium flux in the core = %fWb\"%(phi)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"number of turns in primary winding, N1 = 2750turns\n",
"primary current, I1 = 45.454545A\n",
"secondary current, I2 = 1250.000000A\n",
"maximium flux in the core = 0.018018Wb\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.2 Page No : 196"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Given Data\n",
"V1 = 6600.; #primary voltage in volts\n",
"V2 = 230.; #secondary voltage in volts\n",
"f = 50.; #frequency in hertz\n",
"Bm = 1.1; #flux density in Wb/m**2\n",
"\n",
"# Calculations and Results\n",
"A = (25*25*10**(-4)); #area of the core in m**2\n",
"phi = Bm*A\n",
"print \"flux = %fWb\"%(phi)\n",
"E1 = V1;\n",
"E2 = V2;\n",
"N1 = E1/(4.44*f*phi);\n",
"N2 = E2/(4.44*f*phi);\n",
"print \"number of turns in primary winding, N1 = %dturns\"%(N1)\n",
"print \"number of turns in secondary winding, N2 = %dturns\"%(N2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"flux = 0.068750Wb\n",
"number of turns in primary winding, N1 = 432turns\n",
"number of turns in secondary winding, N2 = 15turns\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.3 Page No : 197"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Given Data\n",
"V1 = 230.; #primary voltage in volts\n",
"f = 50.; #frequency in hertz\n",
"N1 = 100.; #number of primary turns\n",
"N2 = 400.; #number of secondary turns\n",
"\n",
"# Calculations and Results\n",
"A = 250.*10**(-4); #cross section area of core in m**2\n",
"print (\"since at no-load E2 = V2\")\n",
"E2 = (V1*N2)/N1;\n",
"print \"induced secondary winding, E2 = %dV\"%(E2);\n",
"phi = E2/(4.44*f*N2);\n",
"Bm = phi/A;\n",
"print \"Maximium flux density in the core = %fWb/m**2\"%(Bm)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"since at no-load E2 = V2\n",
"induced secondary winding, E2 = 920V\n",
"Maximium flux density in the core = 0.414414Wb/m**2\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.4 Page No : 197"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Given Data\n",
"kVA = 40.; #rating of the transformer\n",
"V1 = 2000.; #primary side voltage in volts\n",
"V2 = 250.; #secondary side voltage in volts\n",
"R1 = 1.15; #primary resistance in ohms\n",
"R2 = 0.0155; #secondary resistance in ohms\n",
"\n",
"# Calculations and Results\n",
"R = R2+(((V2/V1)**2)*R1)\n",
"print \"Total resistance of the transformer in terms of the secondary winding = %fohms\"%(R)\n",
"I2 = (kVA*1000)/V2;\n",
"print \"Full load secondary current = %dA\"%(I2)\n",
"print \"Total resistance load on full load = %fVolts\"%(I2*R)\n",
"print \"Total copper loss on full load = %fWatts\"%((I2)**2*R)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Total resistance of the transformer in terms of the secondary winding = 0.033469ohms\n",
"Full load secondary current = 160A\n",
"Total resistance load on full load = 5.355000Volts\n",
"Total copper loss on full load = 856.800000Watts\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.5 Page No : 206"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"# Given Data\n",
"I2 = 300.; #Secondary current in amperes\n",
"N1 = 1200.; #number of primary turns\n",
"N2 = 300.; #number of secondary turns\n",
"I0 = 2.5; #load current in amperes\n",
"\n",
"# Calculations\n",
"I1 = (I2*N2)/N1;\n",
"phi0 = math.degrees(math.acos(0.2));\n",
"phi2 = math.degrees(math.acos(0.8));\n",
"I1c = (I1*math.cos(math.radians(phi2)))+(I0*math.cos(math.radians(phi0)));\n",
"I1s = (I1*math.sin(math.radians(phi2)))+(I0*math.sin(math.radians(phi0)));\n",
"I = math.sqrt(I1c**2+I1s**2);\n",
"phi = math.radians(math.atan(I1s/I1c))\n",
"\n",
"# Results\n",
"print \"primary power factor = %fdegrees\"%(math.cos(math.radians(phi)));"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"primary power factor = 1.000000degrees\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.6 Page No : 207"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"# Given Data\n",
"I0 = 1.5; #no-load current\n",
"phi0 = math.degrees(math.acos(0.2))\n",
"I2 = 40; #secondary current in amperes\n",
"phi2 = math.degrees(math.acos(0.8))\n",
"r = 3; #ratio of primary and secondary turns\n",
"I1 = I2/r; \n",
"\n",
"# Calculations\n",
"I1c = (I1*math.cos(math.radians(phi2)))+(I0*math.cos(math.radians(phi0)));\n",
"I1s = (I1*math.sin(math.radians(phi2)))+(I0*math.sin(math.radians(phi0)));\n",
"I = math.sqrt(I1c**2+I1s**2);\n",
"\n",
"# Results\n",
"print \"I1 = %fA\"%(I)\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"I1 = 14.156879A\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.7 Page No : 208"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Given Data\n",
"V1 = 230.; #voltage in volts\n",
"f = 50.; #frequency of supply in hertz\n",
"N1 = 250.; #number of primary turns\n",
"I0 = 4.5; #no-load current in amperes\n",
"\n",
"# Calculations and Results\n",
"phi0 = math.degrees(math.acos(0.25));\n",
"Im = I0*math.sin(math.radians(phi0))\n",
"print \"magnetimath.sing current, Im = %fA\"%(Im);\n",
"\n",
"Pc = V1*I0*math.cos(math.radians(phi0));\n",
"print \"Core loss = %dW\"%(Pc)\n",
"print (\"neglecting I**2R loss in primary winding at no-load\")\n",
"E1 = V1;\n",
"phi = E1/(4.44*f*N1);\n",
"print \"Maximium value of flux in the core = %fWb\"%(phi)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"magnetimath.sing current, Im = 4.357106A\n",
"Core loss = 258W\n",
"neglecting I**2R loss in primary winding at no-load\n",
"Maximium value of flux in the core = 0.004144Wb\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.8 Page No : 209"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Given Data\n",
"I2 = 30.; #Secondary current in amperes\n",
"I0 = 2.; #load current in amperes\n",
"V1 = 660.; #primary voltage in volts\n",
"V2 = 220.; #secondary voltage in volts\n",
"\n",
"# Calculations\n",
"I1 = (I2*V2)/V1;\n",
"phi0 = math.degrees(math.acos(0.225));\n",
"phi2 = math.degrees(math.acos(0.9));\n",
"I1c = (I1*math.cos(math.radians(phi2)))+(I0*math.cos(math.radians(phi0)));\n",
"I1s = (I1*math.sin(math.radians(phi2)))+(I0*math.sin(math.radians(phi0)));\n",
"I = math.sqrt(I1c**2+I1s**2);\n",
"phi = math.degrees(math.atan(I1s/I1c))\n",
"\n",
"# Results\n",
"print \"I1 = %fA\"%(I)\n",
"print \"primary power factor = %fdegrees\"%(math.cos(math.radians(phi)));\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"I1 = 11.361713A\n",
"primary power factor = 0.831741degrees\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.9 Page No : 210"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Given Data\n",
"phi_m = 7.5*10**(-3); #maximium flux\n",
"f = 50.; #frequecy in hertz\n",
"N1 = 144.; #number of primary turns\n",
"N2 = 432.; #number of secondary turns\n",
"kVA = 0.24; #rating of transformer\n",
"\n",
"# Calculations and Results\n",
"E1 = (4.44*phi_m*f*N1)\n",
"V1 = E1;\n",
"print \"V1 = %dV\"%(V1)\n",
"I0 = (kVA*1000)/V1;\n",
"phi0 = math.degrees(math.acos(0.26));\n",
"Im = I0*math.sin(math.radians(phi0));\n",
"print \"Im = %fA\"%(Im);\n",
"V2 = (E1*N2)/N1\n",
"print \"V2 = %fV\"%(V2)\n",
"print (\"At a load of 1.2kVA and power factor of 0.8 lagging\")\n",
"kVA = 1.2;\n",
"phi2 = math.degrees(math.acos(0.8));\n",
"I2 = (kVA*1000)/V2;\n",
"I = (I2*N2)/N1;\n",
"I1c = (I*math.cos(math.radians(phi2)))+(I0*math.cos(math.radians(phi0)));\n",
"I1s = (I*math.sin(math.radians(phi2)))+(I0*math.sin(math.radians(phi0)));\n",
"I = math.sqrt(I1c**2+I1s**2);\n",
"print \"I1 = %fA\"%(I);\n",
"phi = math.degrees(math.acos(((I*math.cos(math.radians(phi2)))+(I0*math.cos(math.radians(phi0))))/I));\n",
"print \"primary power factor = %flagging\"%(math.cos(math.radians(phi)))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"V1 = 239V\n",
"Im = 0.966575A\n",
"V2 = 719.280000V\n",
"At a load of 1.2kVA and power factor of 0.8 lagging\n",
"I1 = 5.825933A\n",
"primary power factor = 0.844673lagging\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.10 Page No : 211"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"# Given Data\n",
"V1 = 6600.; #primary voltage in volts\n",
"V2 = 240.; #secondary voltage in volts\n",
"kW1 = 10.; #power\n",
"phi1 = math.degrees(math.acos(0.8));\n",
"I2 = 50.; #current in amperes\n",
"kW3 = 5.; #power\n",
"phi2 = math.degrees(math.acos(0.7))\n",
"kVA = 8; #rating\n",
"phi4 = math.degrees(math.acos(0.6)) \n",
"\n",
"# Calculations and Results\n",
"I1 = (kW1*1000)/(math.cos(math.radians(phi1))*V2);\n",
"I3 = (kW3*1000)/(1*V2);\n",
"I4 = (kVA*1000)/V2;\n",
"Ih = ((I1*math.cos(math.radians(phi1)))+(I2*math.cos(math.radians(phi2)))+I3+(I4*math.cos(math.radians(phi4))));\n",
"Iv = ((I1*math.sin(math.radians(phi1)))+(I2*math.sin(math.radians(phi2)))-(I4*math.sin(math.radians(phi4))));\n",
"I5 = math.sqrt((Ih**2)+(Iv**2))\n",
"print \"I5 = %dA\"%(I5)\n",
"Ip = (I5*V2)/V1;\n",
"print \"The current drawn by the primary from 6600Vmains is equal to, Ip = %fA\"%(Ip);\n",
"phi = math.degrees(math.atan(Iv/Ih));\n",
"print \"power factor = %flagging\"%math.cos(math.radians(phi))\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"I5 = 124A\n",
"The current drawn by the primary from 6600Vmains is equal to, Ip = 4.516939A\n",
"power factor = 0.945934lagging\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.11 Page No : 212"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Given Data\n",
"kVA = 100.; #rating of the tronsfromer\n",
"N1 = 400.; #number of primary turns\n",
"N2 = 80.; #number of secondary turns\n",
"R1 = 0.3; #primary resistance in ohms\n",
"R2 = 0.01; #secondary resistance in ohms\n",
"X1 = 1.1; #primary leakage reactance in ohs\n",
"X2 = 0.035; #secondary leakage reactance in ohms\n",
"\n",
"# Calculations and Results\n",
"Rr2 = (((N1/N2)**2)*R2)\n",
"print \"R2 = %f ohms\"%(Rr2);\n",
"Xx2 = (((N1/N2)**2)*X2);\n",
"print \"X2 = %f ohms\"%(Xx2);\n",
"Ze = math.sqrt((R1+Rr2)**2+(X1+Xx2)**2);\n",
"print \"Equivqlent impedence = %f\"%(Ze);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"R2 = 0.250000 ohms\n",
"X2 = 0.875000 ohms\n",
"Equivqlent impedence = 2.050152\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.12 Page No : 216"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Given Data\n",
"f = 50.; #frequency in hertz\n",
"r = 6.; #turns ratio\n",
"R1 = 0.90; #primary resistance in ohms\n",
"R2 = 0.03; #secondary resistance in ohms\n",
"X1 = 5.; #primary reactance in ohms\n",
"X2 = 0.13; #secondary reactance in ohms\n",
"I2 = 200.; #full-load current\n",
"\n",
"# Calculations and Results\n",
"Re = (R1+(R2*r**2));\n",
"print \"equivalent resistance reffered to primary, Re = %fohms\"%(Re);\n",
"Xe = (X1+(X2*r**2));\n",
"print \"equivalent reactance reffered to primary, Xe = %fohms\"%(Xe);\n",
"Ze = math.sqrt(Re**2+Xe**2);\n",
"print \"equivalent impedance reffered to primary, Ze = %fohms\"%(Ze);\n",
"Ii2 = r*I2;\n",
"print \"secondary current reffered to primary side = %fA\"%(Ii2);\n",
"print \"a)Voltage to be applied to the high voltage side = %dvolts\"%(Ii2*Ze);\n",
"print \"b)Power factor = %f\"%(Re/Ze);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"equivalent resistance reffered to primary, Re = 1.980000ohms\n",
"equivalent reactance reffered to primary, Xe = 9.680000ohms\n",
"equivalent impedance reffered to primary, Ze = 9.880425ohms\n",
"secondary current reffered to primary side = 1200.000000A\n",
"a)Voltage to be applied to the high voltage side = 11856volts\n",
"b)Power factor = 0.200396\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.13 Page No : 216"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Given Data\n",
"R1 = 0.21; #primary resistance in ohms\n",
"X1 = 1.; #primary reactance in ohms\n",
"R2 = 2.72*10**(-4); #secondary resistance in ohms\n",
"X2 = 1.3*10**(-3); #secondary reactanced in ohms\n",
"V1 = 6600.; #primary voltage in volts\n",
"V2 = 250.; #secondary voltage in volts\n",
"\n",
"# Calculations and Results\n",
"r = V1/V2; #turns ratio\n",
"Re = R1+(r**2*R2);\n",
"print \"Equivalent resistance referred to primary side = %fohms\"%(Re);\n",
"Xe = X1+(r**2*X2);\n",
"print \"Equivalent reactance referred to primary side = %fohms\"%(Xe);\n",
"Ze = math.sqrt(Re**2+Xe**2);\n",
"print \"equivalent impedance reffered to primary, Ze = %fohms\"%(Ze);\n",
"V = 400.; #voltage in volts\n",
"I1 = V/Ze;\n",
"print \"I1 = %f\"%(I1);\n",
"print \"Power input = %fW\"%(I1**2*Re);\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Equivalent resistance referred to primary side = 0.399573ohms\n",
"Equivalent reactance referred to primary side = 1.906048ohms\n",
"equivalent impedance reffered to primary, Ze = 1.947480ohms\n",
"I1 = 205.393656\n",
"Power input = 16856.612924W\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.14 Page No : 217"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Given Data\n",
"N1 = 90.; #number of primary turns\n",
"N2 = 180.; #number of secondary turns\n",
"R1 = 0.067; #primary resistance in ohms\n",
"R2 = 0.233; #secondary resistance in ohms\n",
"\n",
"# Calculations and Results\n",
"print \"Primary winding resistance referred to secondary side = %fohms\"%((R1*N2/N1)**2)\n",
"print \"secondary winding resistance referred to primary side = %fohms\"%((R2*N1/N2)**2)\n",
"print \"Total resistance of the transformer refferred to primary side = %fohms\"%((((R1*N2/N1)**2)+R2*N2/N1)**2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Primary winding resistance referred to secondary side = 0.017956ohms\n",
"secondary winding resistance referred to primary side = 0.013572ohms\n",
"Total resistance of the transformer refferred to primary side = 0.234213ohms\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.15 Page No : 217"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Given Data\n",
"kVA = 30.; #rating of the transformer\n",
"V1 = 6000.; #primary voltage in volts\n",
"V2 = 230.; #secondary voltage in volts\n",
"R1 = 10.; #primary resistance in ohms\n",
"R2 = 0.016; #secondary resistance in ohms\n",
"Xe = 23.; #total reactance reffered to the primary\n",
"\n",
"# Calculations and Results\n",
"phi = math.degrees(math.acos(0.8)); #lagging\n",
"Re = (R1+((V1/V2)**2*R2))\n",
"print \"equivalent resistance, Re = %fohms\"%(Re)\n",
"I2dash = (kVA*1000)/V1;\n",
"V2dash = 5847;\n",
"Reg = ((I2dash*((Re*math.cos(math.radians(phi)))+(Xe*math.sin(math.radians(phi)))))*100)/V2dash;\n",
"print \"percentage regulation = %fpercent\"%(Reg)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"equivalent resistance, Re = 20.888469ohms\n",
"percentage regulation = 2.609097percent\n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.16 Page No : 218"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Given Data\n",
"kVA = 10.; #rating of the transformer\n",
"V1 = 2000.; #primary voltage in volts\n",
"V2 = 400.; #secondary voltage in volts\n",
"R1 = 5.5; #primary voltage in ohms\n",
"R2 = 0.2; #secondary voltage in ohms\n",
"X1 = 12.; #primary reactance in ohms\n",
"X2 = 0.45; #secondary reactance in ohms\n",
"\n",
"# Calculations and Results\n",
"#assuming (V1/V2) = (N1/N2)\n",
"Re = R2+(R1*(V2/V1)**2);\n",
"print \"equivalent resistance referred to the secondary = %fohms\"%(Re);\n",
"Xe = X2+(X1*(V2/V1)**2);\n",
"print \"equivalent reactance referred to the secondary = %fohms\"%(Xe);\n",
"Ze = math.sqrt(Re**2+Xe**2);\n",
"print \"equivalent impedance referred to the secondary = %fohms\"%(Ze);\n",
"phi = math.degrees(math.acos(0.8));\n",
"Vl = 374.5;\n",
"print \"Voltage across the full load and 0.8 p.f lagging = %fV\"%(Vl);\n",
"reg = ((V2-Vl)*100)/Vl;\n",
"print \"percentage voltage regulation = %f percent\"%(reg);\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"equivalent resistance referred to the secondary = 0.420000ohms\n",
"equivalent reactance referred to the secondary = 0.930000ohms\n",
"equivalent impedance referred to the secondary = 1.020441ohms\n",
"Voltage across the full load and 0.8 p.f lagging = 374.500000V\n",
"percentage voltage regulation = 6.809079 percent\n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.17 Page No : 219"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Given Data\n",
"kVA = 80.; #rating of the transformer\n",
"V1 = 2000.; #primary voltage in volts\n",
"V2 = 200.; #secondary voltage in volts\n",
"f = 50.; #frequency in hertz\n",
"Id = 8.; #impedence drop\n",
"Rd = 4.; #resistance drop\n",
"\n",
"# Calculations and Results\n",
"phi = math.degrees(math.acos(0.8))\n",
"I2Ze = (V2*Id)/100;\n",
"I2Re = (V2*Rd)/100;\n",
"I2Xe = math.sqrt(I2Ze**2-I2Re**2)\n",
"reg = ((I2Re*math.cos(math.radians(phi)))+(I2Xe*math.sin(math.radians(phi))))*(100/V2)\n",
"print \"percentage regulation = %fpercent\"%(reg)\n",
"pf = I2Xe/math.sqrt(I2Re**2+I2Xe**2)\n",
"print \"Power factor for zero regulation = %fleading)\"%(pf)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"percentage regulation = 7.356922percent\n",
"Power factor for zero regulation = 0.866025leading)\n"
]
}
],
"prompt_number": 21
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.19 Page No : 225"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Given Data\n",
"kVA = 50.; #rating of the transformer\n",
"V1 = 3300.; #open circuit primary voltage\n",
"Culoss = 540.; #copper loss from short circuit test\n",
"coreloss = 460.; #core loss from open circuit test\n",
"V1sc = 124.; #short circuit primary voltage in volts\n",
"I1sc = 15.4; #short circuit primary current in amperes\n",
"Psc = 540. #short circuit primary power in watts \n",
"\n",
"# Calculations and Results\n",
"phi = math.degrees(math.acos(0.8))\n",
"effi = (kVA*1000*math.cos(math.radians(phi))*100)/((kVA*1000*math.cos(math.radians(phi)))+Culoss+coreloss)\n",
"print \"From the open-circuit test, core-loss = %dW\"%(coreloss);\n",
"print \"From short circuit test, copper loss = %dW\"%(Culoss);\n",
"print \"The efficiency at full-load and 0.8 lagging power factor = %f\"%(effi);\n",
"Ze = V1sc/I1sc;\n",
"Re = Psc/I1sc**2;\n",
"Xe = math.sqrt(Ze**2-Re**2);\n",
"V2 = 3203;\n",
"phi2 = math.degrees(math.acos(0.8));\n",
"phie = math.degrees(math.acos(Culoss/(V1sc*I1sc)));\n",
"reg = (V1sc*math.cos(math.radians(phie-phi2))*100)/V1;\n",
"print \"Voltage regulation = %dpercent\"%(reg)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"From the open-circuit test, core-loss = 460W\n",
"From short circuit test, copper loss = 540W\n",
"The efficiency at full-load and 0.8 lagging power factor = 97.560976\n",
"Voltage regulation = 3percent\n"
]
}
],
"prompt_number": 22
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.20 Page No : 226"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Given Data\n",
"kVA = 100.;\n",
"V1 = 6600.; #primary voltage in volts\n",
"V2 = 330.; #secondary voltage in volts\n",
"f = 50.; #frequency in hertz\n",
"V1sc = 100.; #short circuit primary voltage in volts\n",
"I1sc = 10.; #short circuit primary current in amperes\n",
"Psc = 436.; #short circuit primary power in watts \n",
"\n",
"# Calculations and Results\n",
"Ze = V1sc/I1sc;\n",
"Re = Psc/I1sc**2;\n",
"phi = math.degrees(math.acos(0.8));\n",
"Xe = math.sqrt(Ze**2-Re**2);\n",
"print \"Total resistance = %fohms\"%(Re);\n",
"print \"Total impedence = %fohms\"%(Ze)\n",
"Il = (kVA*1000)/V1;\n",
"V1dash = (math.sqrt(((V1*math.cos(math.radians(phi)))+(Il*Re))**2+((V1*math.sin(math.radians(phi)))+(Il*Xe))**2));\n",
"print \"full voltage current, V1 = %dV\"%(V1dash)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Total resistance = 4.360000ohms\n",
"Total impedence = 10.000000ohms\n",
"full voltage current, V1 = 6735V\n"
]
}
],
"prompt_number": 23
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.21 Page No : 227"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Given Data\n",
"V2 = 500.; #secondary voltage in volts\n",
"V1 = 250.; #primary voltage in short circuit test in volts\n",
"I0 = 1.; #current in short circuit test in amperes\n",
"P = 80.; #core loss in watt\n",
"Psc = 100.; #power in short circuit test in watts\n",
"Vsc = 20.; #short circuit voltage in volts \n",
"Isc = 12.; #short circuit current in amperes\n",
"\n",
"# Calculations and Results\n",
"phi0 = math.degrees(math.acos(P/(V1*I0)));\n",
"print \"From open circuit test , math.cos(phi0) = %f\"%(math.cos(phi0));\n",
"Ic = I0*math.cos(math.radians(phi0));\n",
"print \"Loss component of no-load current, Ic = %fA\"%(Ic)\n",
"Im = math.sqrt(I0**2-Ic**2);\n",
"print \"Magnetising current, Im = %fA\"%(Im);\n",
"Rm = V1/Ic;\n",
"Xm = V1/Im;\n",
"Re = Psc/(Isc**2);\n",
"Ze = Vsc/Isc;\n",
"Xe = math.sqrt(Ze**2-Re**2);\n",
"print \"Equvalent resistance referred to secondary = %fohms\"%(Re);\n",
"print \"Equvalent reactance referred to secondary = %fohms\"%(Xe);\n",
"print \"Equvalent impedance referred to secondary = %fohms\"%(Ze);\n",
"K = V2/V1; #turns ratio\n",
"print \"Equvalent resistance referred to primary = %fohms\"%(Re/K**2);\n",
"print \"Equvalent reactance referred to primary = %fohms\"%(Xe/K**2);\n",
"print \"Equvalent impedance referred to primary = %fohms\"%(Ze/K**2);\n",
"V = 500; #output in volts\n",
"I = 10; #output current in amperes\n",
"phi = math.degrees(math.acos(0.80));\n",
"effi = (V*I*math.cos(math.radians(phi))*100)/((V*I*math.cos(math.radians(phi)))+P+((I)**2*Re));\n",
"print \"Effiency = %fpercent\"%(effi);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"From open circuit test , math.cos(phi0) = -0.606173\n",
"Loss component of no-load current, Ic = 0.320000A\n",
"Magnetising current, Im = 0.947418A\n",
"Equvalent resistance referred to secondary = 0.694444ohms\n",
"Equvalent reactance referred to secondary = 1.515099ohms\n",
"Equvalent impedance referred to secondary = 1.666667ohms\n",
"Equvalent resistance referred to primary = 0.173611ohms\n",
"Equvalent reactance referred to primary = 0.378775ohms\n",
"Equvalent impedance referred to primary = 0.416667ohms\n",
"Effiency = 96.398447percent\n"
]
}
],
"prompt_number": 26
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.22 Page No : 231"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Given Data\n",
"kVA = 200.; #Rating of the transformer\n",
"Pin = 3.4; #power input to two transformer in watt\n",
"Pin2 = 5.2;\n",
"coreloss = Pin; #core loss of two transformers\n",
"\n",
"# Calculations and Results\n",
"phi = math.degrees(math.acos(0.8));\n",
"print \"Core loss of two transformer = %fkW\"%(Pin)\n",
"print \"Core loss of each transformer = %fkW\"%(Pin/2)\n",
"print \"Full load copper loss of the two transformer = %fkW\"%(Pin2)\n",
"print \"Therefore, full load copper loss of each transformer = %fkW\"%(Pin2/2);\n",
"effi = (kVA*math.cos(math.radians(phi))*100)/((kVA*math.cos(math.radians(phi)))+(Pin/2)+(Pin2/2))\n",
"print \"Full load efficiency at 0.8 p.f. lagging = %fpercent\"%(effi);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Core loss of two transformer = 3.400000kW\n",
"Core loss of each transformer = 1.700000kW\n",
"Full load copper loss of the two transformer = 5.200000kW\n",
"Therefore, full load copper loss of each transformer = 2.600000kW\n",
"Full load efficiency at 0.8 p.f. lagging = 97.382836percent\n"
]
}
],
"prompt_number": 30
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.24 Page No : 233"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Given Data\n",
"kVA = 50.; #rating of the transformer\n",
"V1 = 6360.; #primary voltage rating\n",
"V2 = 240.; #secondary voltage rating\n",
"pf = 0.8\n",
"coreloss = 2; #core loss in kilo watt from open circuit test\n",
"Culoss = 2; #copper loss at secondary current of 175A\n",
"I = 175.; #current in amperes\n",
"\n",
"# Calculations and Results\n",
"I2 = (kVA*1000)/V2;\n",
"print \"Full load secondary current, I2 = %fA\"%(I2);\n",
"effi = (kVA*pf*100)/((kVA*pf)+coreloss+(Culoss*(I2/I)**2))\n",
"print \"Efficiency = %fpercent\"%(effi)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Full load secondary current, I2 = 208.333333A\n",
"Efficiency = 89.217075percent\n"
]
}
],
"prompt_number": 31
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.25 Page No : 234"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Given Data\n",
"kVA = 500.; #rating of the transformer\n",
"R1 = 0.4; #resistance in primary winding inohms\n",
"R2 = 0.001; #resistance in secondary winding in ohms\n",
"V1 = 6600.; #primary voltahe in volts\n",
"V2 = 400.; #secondary voltage in volts\n",
"ironloss = 3.; #iron loss in kilowatt\n",
"pf = 0.8; #power factor lagging\n",
"\n",
"# Calculations and Results\n",
"I1 = (kVA*1000)/V1; \n",
"print \"Primary winding current = %fA\"%(I1);\n",
"I2 = (I1*V1)/V2;\n",
"print \"Secondary winding current = %fA\"%(I2);\n",
"Culoss = ((I1**2*R1)+(I2**2*R2));\n",
"print \"Copper losses in the two winding = %fWatts\"%(Culoss);\n",
"effi = (kVA*pf*100)/((kVA*pf)+ironloss+(Culoss/1000));\n",
"print \"Efficiency at 0.8 p.f = %fpercent\"%(effi);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Primary winding current = 75.757576A\n",
"Secondary winding current = 1250.000000A\n",
"Copper losses in the two winding = 3858.184114Watts\n",
"Efficiency at 0.8 p.f = 98.314355percent\n"
]
}
],
"prompt_number": 32
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.26 Page No : 234"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Given Data\n",
"kVA = 400.; #rating of the transformer\n",
"ironloss = 2.; #iron loss in kilowatt\n",
"pf = 0.8; #power factor\n",
"kW = 240.; #load in kilowatt\n",
"\n",
"# Calculations and Results\n",
"kVA1 = kW/pf;\n",
"print (\"Efficiency is maximium when,core-loss = copper-loss\")\n",
"coreloss = ironloss;\n",
"print (\"Maximium efficiency occurs at 240kw,0.8 power factor,i.e., at 300kVA load\")\n",
"Cl300 = coreloss;\n",
"Cl400 = (Cl300*(kVA/kVA1)**2);\n",
"pf1 = 0.71; #power factor for full load\n",
"effi = (kVA*pf1*100)/((kVA*pf1)+coreloss+Cl400);\n",
"print \"Efficiency at full-load and 071 power factor = %dpercent\"%(effi);\n",
"pf2 = 1 #maximium efficiency occurs at unity power factor\n",
"MAXeffi = (kVA1*pf2*100)/((kVA1*pf2)+coreloss+Cl300)\n",
"print \"Maximium efficiency at 300kVA and unity power factor = %fpercent\"%(MAXeffi);\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Efficiency is maximium when,core-loss = copper-loss\n",
"Maximium efficiency occurs at 240kw,0.8 power factor,i.e., at 300kVA load\n",
"Efficiency at full-load and 071 power factor = 98percent\n",
"Maximium efficiency at 300kVA and unity power factor = 98.684211percent\n"
]
}
],
"prompt_number": 33
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.27 Page No : 235"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Given Data\n",
"kVA = 40.; #rating of the transformer\n",
"coreloss = 450.; #core-loss in watts\n",
"Culoss = 800.; #copper loss in watt\n",
"pf = 0.8; #power factor of the load\n",
"\n",
"# Calculations and Results\n",
"FLeffi = (kVA*pf*100)/((kVA*pf)+((coreloss+Culoss)/1000));\n",
"print \"Full-load efficiency = %fpercent\"%(FLeffi);\n",
"print (\"For maximium efficiency, Core loss = copper loss\")\n",
"Culoss2 = coreloss; #for maximium efficiency\n",
"n = math.sqrt(Culoss2/Culoss);\n",
"kVA2 = n*kVA; #load for maximium efficiency\n",
"MAXeffi = (kVA2*pf*100)/((kVA2*pf)+((coreloss+Culoss2)/1000));\n",
"print \"Value of maximium efficiency = %fpercent\"%(MAXeffi);\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Full-load efficiency = 96.240602percent\n",
"For maximium efficiency, Core loss = copper loss\n",
"Value of maximium efficiency = 96.385542percent\n"
]
}
],
"prompt_number": 34
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.28 Page No : 236"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Given Data\n",
"kVA = 50.; #rating of the transformers\n",
"I1 = 250.; #primary current in amperes\n",
"Re = 0.006; #total resistance referred to the primary side\n",
"ironloss = 200.; #iron loss in watt\n",
"\n",
"# Calculations and Results\n",
"Culoss = (I1**2*Re); #copper loss in watt\n",
"pf = 0.8; #power factor lagging\n",
"print \"Full-load copper loss = %fW\"%(Culoss);\n",
"TL1 = ((Culoss+ironloss)/1000); \n",
"print \"Total loss on full load = %fkW\"%(TL1);\n",
"TL2 = ((((Culoss*(1/2)**2))+ironloss)/1000)\n",
"print \"Total loss on half load = %fkW\"%(TL2);\n",
"effi1 = (kVA*pf*100)/((kVA*pf)+TL1);\n",
"print \"Efficiency at full load, 0.8 power factor lagging = %f percent\"%(effi1)\n",
"effi2 = ((kVA/2)*pf*100)/(((kVA/2)*pf)+TL2);\n",
"print \"Efficiency at half load, 0.8 power factor lagging = %f percent\"%(effi2)\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Full-load copper loss = 375.000000W\n",
"Total loss on full load = 0.575000kW\n",
"Total loss on half load = 0.200000kW\n",
"Efficiency at full load, 0.8 power factor lagging = 98.582871 percent\n",
"Efficiency at half load, 0.8 power factor lagging = 99.009901 percent\n"
]
}
],
"prompt_number": 35
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.29 Page No : 237"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Given Data\n",
"kVA = 10.; #rating of the transformers\n",
"V1 = 400.; #primary voltage in volts\n",
"V2 = 200.; #secondary voltage in volts\n",
"f = 50.; #frequency in hertz\n",
"\n",
"# Calculations and Results\n",
"MAXeffi = 0.96; #maximium efficiency\n",
"output1 = (kVA*0.75); #output at 75% of full load\n",
"input1 = (output1/MAXeffi);\n",
"print \"Input at 75percent of full load = %fkW\"%(input1);\n",
"TL = input1-output1;\n",
"print \"Total losses = %fkW\"%(TL);\n",
"Pi = TL/2;\n",
"Pc = TL/2;\n",
"print (\"Maximiunm efficiency occurs at 3/4th of full load\")\n",
"Pc = Pi/(3./4)**2;\n",
"print \"Thus, total losses on full load = %fW\"%((Pc+Pi)*1000);\n",
"pf = 0.8; #power factor lagging\n",
"effi = (kVA*pf*100)/((kVA*pf)+(Pc+Pi));\n",
"print \"Efficiency on full load. 0.8 power factor lagging = %fpercent\"%(effi)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Input at 75percent of full load = 7.812500kW\n",
"Total losses = 0.312500kW\n",
"Maximiunm efficiency occurs at 3/4th of full load\n",
"Thus, total losses on full load = 434.027778W\n",
"Efficiency on full load. 0.8 power factor lagging = 94.853849percent\n"
]
}
],
"prompt_number": 38
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.30 Page No : 237"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Given Data\n",
"kVA = 500.; #rating of the transformers\n",
"V1 = 3300.; #primary voltage in volts\n",
"V2 = 500.; #secondary voltage in volts\n",
"f = 50.; #frequency in hertz\n",
"MAXeffi = 0.97; \n",
"x = 0.75; #fraction of full load for maximium efficiency\n",
"pf1 = 1.;\n",
"\n",
"# Calculations and Results\n",
"output1 = (kVA*x*pf1*1000);\n",
"print \"Output at maximium efficiency = %dwatts\"%(output1);\n",
"losses = ((1/MAXeffi)-1)*output1;\n",
"print \"Thus, at maximium efficiency, lossses = %fW\"%(losses)\n",
"Culoss = losses/2;\n",
"print \"Copper losses at 75percent of full load = %dW\"%(Culoss);\n",
"CulossFL = Culoss/x**2;\n",
"print \"Copper losses at full load = %dW\"%(CulossFL);\n",
"Re = CulossFL/(kVA*1000);\n",
"Ze = 0.1; #equivalent impedence per unit\n",
"Xe = math.sqrt(Ze**2-Re**2);\n",
"phi = math.degrees(math.acos(0.8));\n",
"reg = ((Re*math.cos(math.radians(phi)))+(Xe*math.sin(math.radians(phi))))*100;\n",
"print \"percentage regulation = %f percent\"%(reg);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Output at maximium efficiency = 375000watts\n",
"Thus, at maximium efficiency, lossses = 11597.938144W\n",
"Copper losses at 75percent of full load = 5798W\n",
"Copper losses at full load = 10309W\n",
"percentage regulation = 7.520562 percent\n"
]
}
],
"prompt_number": 39
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.32 Page No : 240"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Given Data\n",
"V1 = 230.; #primary voltage of auto-transformer\n",
"V2 = 75.; #secondary voltage of auto-transformer\n",
"\n",
"# Calculations\n",
"r = (V1/V2); #ratio of primary to secondary turns\n",
"I2 = 200.; #load current in amperes\n",
"I1 = I2/r;\n",
"\n",
"# Results\n",
"print \"Primary current, I1 = %fA\"%(I1);\n",
"print \"Load current, I1 = %fA\"%(I2);\n",
"print \"cirrent flowing through the common portion of winding = %fA\"%(I2-I1);\n",
"print \"Economy in saving in copper in percentage = %fpercent\"%(100/r);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Primary current, I1 = 65.217391A\n",
"Load current, I1 = 200.000000A\n",
"cirrent flowing through the common portion of winding = 134.782609A\n",
"Economy in saving in copper in percentage = 32.608696percent\n"
]
}
],
"prompt_number": 40
}
],
"metadata": {}
}
]
}
|