1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
|
{
"metadata": {
"name": "",
"signature": "sha256:dbe4ae4abbcc34db307e5801136e4ecd6dbefd3be4e18a630c646e9dd4af11df"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 7 : Special Motors and Introduction to Generalized Machines Theory"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.1 Page No : 395"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# GIVEN DATA\n",
"\n",
"D = 35*10**-2; # Outer diameter of the conducting disk in Meter\n",
"d = 10*10**-2; # Inner diameter of the conducting disk in Meter\n",
"B = 1.0; # Axial magnetic field in Telsa\n",
"N = 900; # Rotating shaft running in RPM\n",
"\n",
"\n",
"# ,S\n",
"\n",
"Wr = (2*math.pi*N)/60; # Rotational angular speed in radians/s\n",
"Er = ((D**2-d**2)*B*Wr)/8; # EMF induced in Volts\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"\n",
"print (\"EXAMPLE : 7.1: SOLUTION :-\");\n",
"print \" a) Induced EMF in the outer and inner rims of the disk, Er = %.4f V \"%(Er)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 7.1: SOLUTION :-\n",
" a) Induced EMF in the outer and inner rims of the disk, Er = 1.3254 V \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.2 Page No : 398"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# GIVEN DATA\n",
"\n",
"D = 0.120; # Outer Radius of the Printed Circuit Motor in meter\n",
"d = 0.060; # Inner Radius of the Printed Circuit Motor in meter\n",
"B = 0.7; # Axial Flux Density in Telsa\n",
"V = 12; # Volage Supplied to the Motor in Volts\n",
"R = 2700; # Motor Speed in RPM\n",
"n = 0.65; # Efficiency of Motor\n",
"p = 94; # Output Power of Motor in Watts\n",
"I = 12; # Motor current in Ampheres\n",
"\n",
"\n",
"# ,S\n",
"\n",
"w = ((2*(math.pi))*R)/60; # The Angular Velocity in Radians/second\n",
"T = p/w; # Torque in Newton-Meter\n",
"N = (8*T)/((D**2-d**2)*B*I) # Total Number of Conductors\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"\n",
"print (\"EXAMPLE : 7.2 : SOLUTION :-\") ;\n",
"print \" a) Torque, T = %.2f N-m \"%(T);\n",
"print \" b) Total Number of Conductors, N = %.2f nearly 30 \"%(N);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 7.2 : SOLUTION :-\n",
" a) Torque, T = 0.33 N-m \n",
" b) Total Number of Conductors, N = 29.32 nearly 30 \n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.3 Page No : 399"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\n",
"# GIVEN DATA\n",
"\n",
"m = 2; # Total number of phase in servo Motor\n",
"f = 50; # Frequency in Hertz\n",
"V = 220; # Operating Voltage of the servo Motor in Volts\n",
"R1 = 250; # Circuit Parameter in Ohms\n",
"R2 = 750; # Circuit Parameter in Ohms\n",
"X1 = 50; # Circuit Parameter in Ohms\n",
"X2 = 50; # Circuit Parameter in Ohms\n",
"Xm = 1000; # Circuit Parameter in Ohms\n",
"s = 0.6; # Slip\n",
"Va = 220; # Unbalanced Voltage in Volts\n",
"Vb = 150 * (1j * (-60) * math.pi/180)**2; # Unbalanced Voltage in Volts\n",
"\n",
"\n",
"# ,S\n",
"\n",
"Va1 = (Va + 1j*Vb)/2; # Positive sequence voltage in Volts\n",
"Va2 = (Va - 1j*Vb)/2; # Negative sequence voltage in Volts\n",
"Z11 = (R1+1j*X1);\n",
"Z12 = (((1j*Xm)*(R2/s+1j*X2))/(1j*Xm+R2/s+1j*X2));\n",
"Z1 = Z11 + Z12 ; # Positive sequence impedance in Ohms\n",
"Z2 = (R1+1j*X1) + (((1j*Xm)*(R2/(2-s)+1j*X2))/(1j*Xm+R2/(2-s)+1j*X2)); # Negative sequence impedance in Ohms\n",
"Ia1 = Va1/Z1; # Positive sequence current in Amphere\n",
"I12 = (Ia1*Z12)/(R2/s); # Positive sequence current in Amphere\n",
"Ia2 = Va2/Z2; # Negative sequence current in Amphere\n",
"I22 = (Ia2*Z2)/(R2/(2-s)); # Negative sequence current in Amphere\n",
"T1 = 2*(abs(I12)**2)*R2/s; # Positive sequence torque in Newton-meter\n",
"T2 = 2*(abs(I22)**2)*R2/(2-s); # Negative sequence torque in Newton-meter\n",
"T = T1 - T2; # resultant torque in Newton-meter\n",
"Ia = Ia1 + Ia2; # Line current in Amphere\n",
"Ib = (-1j*Ia1) + (1j*Ia2); # Line current in Amphere\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"\n",
"print (\"EXAMPLE : 7.3: SOLUTION :-\");\n",
"print \" a) resultant torque, T = %.2f N-m \"%(T)\n",
"print \" b) Phase currents line currents), Ia = %.2f < %.2f A Ib = %.2f < %.2f \"%(abs(Ia), math.atan2(Ia.imag,Ia.real), abs(Ib), math.degrees(math.atan2(Ib.imag,Ib.real)))\n",
"print \" IN THE ABOVE PROBLEM ALL THE VALUES PRINTED IN THE TEXT BOOK ARE NOT ACCURATE%( SO VALUE OF THE TORQUE AND LINE CURRENTS ARE DIFFERING, WHEN WE COMPARED TO THE TEXT BOOK ANSWERS FOR THE SAME. \"\n",
"print \" IN EVERY CALCULATED PARAMETER IN THE TEXT BOOK SLIGHT VARIATION IS THERE AS WE COMPARED TO MANUAL , ITS FROM POSITIVE SEQUENCE VOLTAGE Va1 \"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 7.3: SOLUTION :-\n",
" a) resultant torque, T = -51.72 N-m \n",
" b) Phase currents line currents), Ia = 0.24 < -0.42 A Ib = 0.24 < 137.30 \n",
" IN THE ABOVE PROBLEM ALL THE VALUES PRINTED IN THE TEXT BOOK ARE NOT ACCURATE%( SO VALUE OF THE TORQUE AND LINE CURRENTS ARE DIFFERING, WHEN WE COMPARED TO THE TEXT BOOK ANSWERS FOR THE SAME. \n",
" IN EVERY CALCULATED PARAMETER IN THE TEXT BOOK SLIGHT VARIATION IS THERE AS WE COMPARED TO MANUAL , ITS FROM POSITIVE SEQUENCE VOLTAGE Va1 \n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.4 Page No : 404"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# GIVEN DATA\n",
"\n",
"m = 2; # Total number of phase in AC drag-cup servo Motor\n",
"p = 2; # Number of poles\n",
"Va = 220; # Operating Voltage of the servo Motor in Volts\n",
"R1 = 350; # Circuit Parameter in Ohms\n",
"R2 = 250; # Circuit Parameter in Ohms\n",
"X1 = 60; # Circuit Parameter in Ohms\n",
"X2 = 50; # Circuit Parameter in Ohms\n",
"Xm = 900; # Circuit Parameter in Ohms\n",
"s = 0.3; # Slip\n",
"p = 0.8; # Ratio of the control winding and main winding voltage\n",
"\n",
"\n",
"# ,S\n",
"\n",
"Va1 = (Va*(1+p))/2; # Positive sequence voltage in Volts\n",
"Va2 = (Va*(1-p))/2; # Negative sequence voltage in Volts\n",
"Z11 = (R1+1j*X1);\n",
"Z12 = (((1j*Xm)*(R2/s+1j*X2))/(1j*Xm+R2/s+1j*X2));\n",
"Z1 = Z11 + Z12 ; # Positive sequence impedance in Ohms\n",
"Z2 = (R1+1j*X1) + (((1j*Xm)*(R2/(2-s)+1j*X2))/(1j*Xm+R2/(2-s)+1j*X2)); # Negative sequence impedance in Ohms\n",
"Ia1 = Va1/Z1; # Positive sequence current in Amphere\n",
"I12 = (Ia1*Z12)/(R2/s); # Positive sequence current in Amphere\n",
"Ia2 = Va2/Z2; # Negative sequence current in Amphere\n",
"I22 = (Ia2*Z2)/(R2/(2-s)); # Negative sequence current in Amphere\n",
"T1 = 2*(abs(I12)**2)*R2/s; # Positive sequence torque in Newton-meter\n",
"T2 = 2*(abs(I22)**2)*R2/(2-s); # Negative sequence torque in Newton-meter\n",
"T = T1 - T2; # resultant torque in Newton-meter\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"\n",
"print (\"EXAMPLE : 7.4: SOLUTION :-\");\n",
"print \" a) resultant torque, T = %.2f N-m \"%(T)\n",
"print \" IN THE ABOVE PROBLEM ALL THE VALUES PRINTED IN THE TEXT BOOK ARE NOT ACCURATE, SO VALUE OF THE TORQUE AND LINE CURRENTS ARE DIFFERING WHEN WE COMPARED TO THE TEXT BOOK ANSWERS FOR THE SAME. \"\n",
"print \" IN EVERY CALCULATED PARAMETER IN THE TEXT BOOK SLIGHT VARIATION IS THERE AS WE COMPARED TO MANUAL , ITS FROM POSITIVE SEQUENCE IMPEDANCE Z1 \"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 7.4: SOLUTION :-\n",
" a) resultant torque, T = 33.70 N-m \n",
" IN THE ABOVE PROBLEM ALL THE VALUES PRINTED IN THE TEXT BOOK ARE NOT ACCURATE, SO VALUE OF THE TORQUE AND LINE CURRENTS ARE DIFFERING WHEN WE COMPARED TO THE TEXT BOOK ANSWERS FOR THE SAME. \n",
" IN EVERY CALCULATED PARAMETER IN THE TEXT BOOK SLIGHT VARIATION IS THERE AS WE COMPARED TO MANUAL , ITS FROM POSITIVE SEQUENCE IMPEDANCE Z1 \n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.5 Page No : 409"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# GIVEN DATA\n",
"\n",
"R = 15; # resistance of the fractional horse power AC series motor in Ohms\n",
"V = 230; # AC supply voltage in Volts\n",
"f = 50; # Frequency in Hertz\n",
"I = 1.2; # Motor current in Amphere\n",
"NDC = 2500; # Rotating speed of the Motor during DC Operation in RPM\n",
"L = 0.5; # Total inducmath.tance in Henry\n",
"\n",
"\n",
"# CALCUALTIONS\n",
"\n",
"X = 2*math.pi*f*L; # reactance in Ohms\n",
"NAC = NDC * (math.sqrt(V**2-(I*X)**2)-(I*R)) / (V-(I*R)); # Rotating speed of the Motor during AC Operation in RPM\n",
"pf = math.sqrt(1-((I*X)/V)**2); # Power factor lagging\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"\n",
"print (\"EXAMPLE : 7.5: SOLUTION :-\");\n",
"print \" When the Motor operting at AC 230V, 50 Hz a) NAC = %.f RPM \"%(NAC)\n",
"print \" b) Power factor = %.4f lagging \"%(pf)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 7.5: SOLUTION :-\n",
" When the Motor operting at AC 230V, 50 Hz a) NAC = 1342 RPM \n",
" b) Power factor = 0.5730 lagging \n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.6 Page No : 413"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"from numpy import roots\n",
"from numpy import poly\n",
"\n",
"# GIVEN DATA\n",
"\n",
"R = 1.4; # Total resistance of the AC series motor in Ohms\n",
"V = 115.; # supply voltage in Volts\n",
"f = 50.; # Frequency in Hertz\n",
"N = 5000.; # Rotating speed in RPM\n",
"X = 12.; # Total reactance in Ohms\n",
"P = 250.; # Electrical power output in Watts\n",
"loss = 18.; # Rotational losses in Watts\n",
"\n",
"\n",
"# ,S\n",
"\n",
"Pd = P + loss; # Mechanical power developed in Watts\n",
"# We know that Er = Pd/I and from phasor diagram in figure 7.11 page no. 501 V**2 = (Er+I*R)**2+(I*X)**2, 115**2 = (268/I-1.4*I)**2+(12*I)**2, 13225*I**2 = 71824+2.036*I**4-750.4*I**2+144*I**2, solving this we get 2.036*I**4-13831.4*I**2+71824 = 0, I**4-6793.42*I**2+3577 = 0 this gives I = 2.28A or 82.38A (The above , part is wrong )\n",
"i = poly([3577,0,-6793.42,0,1]); # Expression for the Current in Quadratic form\n",
"a = roots (i); # 4-Value of the current in Amphere \n",
"print a;\n",
"print i;\n",
"I = a[4]; # Curent in Amphere neglecting higher value and negative value\n",
"\n",
"pf_a = math.sqrt(1-((I*X)/V)**2); # Power factor lagging\n",
"Er_a = math.sqrt(V**2-(I*X)**2)-(I*R); # Rotational Voltage in Volts\n",
"T_a = (Er_a*I)/(2*math.pi*N/60); # Developed torque in Newton-meter\n",
"Ih = I/2; # Current halved in Amphere\n",
"pf_b = math.sqrt(1-((Ih*X)/V)**2); # Power factor lagging when load current halved\n",
"Er_b = math.sqrt(V**2-(Ih*X)**2)-(Ih*R); # Rotational Voltage in Volts when load current halved\n",
"N2 = (N*Er_b*I)/(Er_a*Ih); # New speed in RPM when load current halved\n",
"T_b = (Er_b*Ih)/(2*math.pi*N2/60); # Developed torque in Newton-meter when load current halved\n",
"eta = 100*(Er_b*Ih)/(V*Ih*pf_b); # Efficiency when load current halved\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"\n",
"print (\"EXAMPLE : 7.6: SOLUTION :-\");\n",
"print \" At rated condition, \\n\\n (a.1) Current, I = %.2f A \"%(I)\n",
"print \" a.2) Power factor = %.3f lagging \"%(pf_a)\n",
"print \" a.3) Developed torque = %.2f N-m \"%(T_a)\n",
"print \" When load current halved (reduced to half), \\n\\n (b.1) Speed, N2 = %.f RPM \"%(N2)\n",
"print \" b.2) Power factor = %.4f lagging \"%(pf_b)\n",
"print \" b.3) Developed torque = %.2f N-m \"%(T_b)\n",
"print \" b.4) Efficiency = %.1f percenatge \"%(eta)\n",
"print \" From , of the Current(I), rest all the Calculated values in the TEXT BOOK is WRONG because of the Current equation and its value both are WRONGLY calculated and the same used for the further , part, so all the values are in the TEXT BOOK IS WRONG \";\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"[ -6.79342000e+03 3.57700000e+03 1.00000000e+00 0.00000000e+00\n",
" 0.00000000e+00]\n",
"[ 1.00000000e+00 3.21542000e+03 -2.43032798e+07 2.43000633e+07\n",
" 0.00000000e+00 0.00000000e+00]\n",
"EXAMPLE : 7.6: SOLUTION :-\n",
" At rated condition, \n",
"\n",
" (a.1) Current, I = 0.00 A \n",
" a.2) Power factor = 1.000 lagging \n",
" a.3) Developed torque = 0.00 N-m \n",
" When load current halved (reduced to half), \n",
"\n",
" (b.1) Speed, N2 = nan RPM \n",
" b.2) Power factor = 1.0000 lagging \n",
" b.3) Developed torque = nan N-m \n",
" b.4) Efficiency = nan percenatge \n",
" From , of the Current(I), rest all the Calculated values in the TEXT BOOK is WRONG because of the Current equation and its value both are WRONGLY calculated and the same used for the further , part, so all the values are in the TEXT BOOK IS WRONG \n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.7 Page No : 418"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\n",
"# GIVEN DATA\n",
"\n",
"V = 220; # supply voltage in Volts\n",
"f = 50; # Frequency in Hertz\n",
"p = 4; # Number of poles\n",
"Xm = 50; # Mutual reactance in Ohms\n",
"Rs = 0.4; # resistance of stator windings in Ohms\n",
"Xs = 2.5; # Leakage reactance of stator windings in Ohms\n",
"Ra = 2.2; # resistance of Armature windings in Ohms\n",
"Xa = 3.1; # Leakage reactance of armature windings in Ohms\n",
"loss = 30; # Rotational losses in Watts\n",
"N = 2000; # Motor running speed in RPM\n",
"\n",
"\n",
"# ,S\n",
"\n",
"Ns = (120*f)/p; # Synchronous speed in RPM\n",
"s = N/Ns; # Speed ratio\n",
"I1 = V/(2*Rs + 2*1j*Xs + 2*1j*Xm + (1j*Xm**2)*((s-1j)/(Ra+1j*Xa+1j*Xm)));# line current in Amphere\n",
"pf = math.degrees(math.cos(math.radians(math.degrees(math.atan2(I1.imag,I1.real))))); # Power factor lagging\n",
"I2 = (s-1j)*(1j*Xm*I1)/(Ra+1j*Xa+1j*Xm); # line current in Amphere\n",
"P1 = V*abs(I1)*math.degrees(math.cos(math.radians(math.degrees(math.atan2(I1.imag,I1.real))))); # Input power in Watts\n",
"Pm = P1 - 2*(abs(I1)**2)*Rs - (abs(I2)**2)*Ra; # Mechanical power developed in Watts\n",
"Po = Pm - loss; # output power in Watts\n",
"eta = 100*(Po/P1); # Efficiency \n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"\n",
"print (\"EXAMPLE : 7.7: SOLUTION :-\");\n",
"print \" a) Line currents, I1 = %.2f < %.2f A and I2 = %.2f < %.2f A \"%(abs(I1),math.degrees(math.atan2(I1.imag,I1.real)),abs(I2),math.degrees(math.atan2(I2.imag,I2.real)))\n",
"print \" b) Power factor = %.2f lagging \"%(pf)\n",
"print \" c) Efficiency = %.2f percentage \"%(eta)\n",
"print \" [ TEXT BOOK SOLUTION IS PRINTED WRONGLY I verified by manual , ]\" ;\n",
"print \" WRONGLY PRINTED ANSWERS ARE :- a) I1 = 3.37 < -42.78 A instead of %.2f < j%.2f) A \"%(abs(I1),math.degrees(math.atan2(I1.imag,I1.real)));\n",
"print \" b) I2 = 5.26 < -77.34 A instead of %.2f < j%.2f) A \"%(abs(I2),math.degrees(math.atan2(I2.imag,I2.real)));\n",
"print \" b) eta = 81.53 percent instead of %.2f percent \"%(eta)\n",
"print \" From , of the I1, rest all the Calculated values in the TEXT BOOK is WRONG because of the I1 value is WRONGLY calculated and the same used for the further , part \"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 7.7: SOLUTION :-\n",
" a) Line currents, I1 = 2.82 < -50.31 A and I2 = 3.76 < -92.94 A \n",
" b) Power factor = 36.59 lagging \n",
" c) Efficiency = 99.70 percentage \n",
" [ TEXT BOOK SOLUTION IS PRINTED WRONGLY I verified by manual , ]\n",
" WRONGLY PRINTED ANSWERS ARE :- a) I1 = 3.37 < -42.78 A instead of 2.82 < j-50.31) A \n",
" b) I2 = 5.26 < -77.34 A instead of 3.76 < j-92.94) A \n",
" b) eta = 81.53 percent instead of 99.70 percent \n",
" From , of the I1, rest all the Calculated values in the TEXT BOOK is WRONG because of the I1 value is WRONGLY calculated and the same used for the further , part \n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.8 Page No : 421"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# GIVEN DATA\n",
"\n",
"V = 220.; # supply voltage in Volts\n",
"f = 50.; # Frequency in Hertz\n",
"p = 4.; # Number of poles\n",
"Xm = 60.; # Mutual reactance in Ohms\n",
"Rs = 1.0; # resistance of stator windings in Ohms\n",
"Xs = 6.0; # Leakage reactance of stator windings in Ohms\n",
"Ra = 2.5; # resistance of Armature windings in Ohms\n",
"Xa = 6.0; # Leakage reactance of armature windings in Ohms\n",
"P_hp = 1.; # Output power in HP\n",
"N = 1400.; # Motor running speed in RPM\n",
"alpha = 15.; # Brush print lacement from the low-impedance position in degree \n",
"\n",
"# CALCULATIONS\n",
"\n",
"Ns = (120*f)/p; # Synchronous speed in RPM\n",
"s = N/Ns; # Speed ratio\n",
"I = V / (Rs + 1j*(Xs+Xm) + (1j*Xm**2*((math.cos(math.radians(alpha)))))*(s*(math.sin(math.radians(alpha)))-(1j*((math.cos(math.radians(alpha))))))/(Ra+1j*(Xa+Xm))); # Curent in Amphere\n",
"# I = V / (Rs + %i*(Xs+Xm) + (%i*Xm^2*cosd(alpha))*(s*sind(alpha)-(%i*cosd(alpha)))/(Ra+%i*(Xa+Xm))); // Curent in Amphere\n",
"pf = math.degrees(math.cos(math.radians(math.degrees(math.atan2(I.imag,I.real))))); # Power factor lagging\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"\n",
"print (\"EXAMPLE : 7.8: SOLUTION :-\");\n",
"print \" a) Currents, I = %.2f < %.2f A \"%(abs(I), math.degrees(math.atan(I.imag))%(I.real))\n",
"print \" b) Power factor = %.4f lagging \"%(pf)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 7.8: SOLUTION :-\n",
" a) Currents, I = 9.94 < 2.37 A \n",
" b) Power factor = 40.4770 lagging \n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.9 Page No : 426"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\n",
"# GIVEN DATA\n",
"\n",
"E2 = 100.; # Per phase smath.degrees(math.atanstill EMF in Volts\n",
"Z2s = 0.025 + 1j*0.08; # Rotor circuit impedance at smath.degrees(math.atanstill\n",
"E = 50.; # Injected EMF in Volts\n",
"\n",
"\n",
"# ,S\n",
"\n",
"I2 = 0; # Assuming Current is zero\n",
"s1 = (E/E2)+(I2*Z2s)/E2; # Slip when injected EMF is opposite to the E2 \n",
"s2 = (-E/E2)+(I2*Z2s)/E2; # Slip when injected EMF is phase with E2 \n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"\n",
"print (\"EXAMPLE : 7.9: SOLUTION :-\");\n",
"print \" a) Slip when injected EMF is opposite to the E2, s = %.1f \"%(s1.real)\n",
"print \" b) Slip when injected EMF is phase with E2, s = %.1f \"%(s2.real)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 7.9: SOLUTION :-\n",
" a) Slip when injected EMF is opposite to the E2, s = 0.5 \n",
" b) Slip when injected EMF is phase with E2, s = -0.5 \n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.10 Page No : 427"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# GIVEN DATA\n",
"\n",
"L = 1.0; # Length in Meter\n",
"S = 60; # Number of slots\n",
"f = 50; # Frequency in Hertz\n",
"v = 440; # Operating Volage of the Motor in Volts\n",
"V = 11.5; # Running speed of the motor in Meter/second\n",
"m = 3; # Number of phases\n",
"p = 8; # Total number of Poles\n",
"\n",
"\n",
"# ,S\n",
"\n",
"Vs = (2*L*f)/p; # Synchronous linear speed in Meter/second\n",
"s = (Vs-V)/Vs; # Linear slip\n",
"Vph = v/math.sqrt(3); # Phase Voltage in Volts\n",
"Z1 = 6.0 + 1j*5; # Impedance in Ohms refer figure and page no. 526\n",
"Z2 = ((100*1j)*(5*1j+8.2/s))/(100*1j+5*1j+8.2/s); # Impedance in Ohms refer figure and page no. 526\n",
"Z = Z1 + Z2; # Total Impedance in Ohms\n",
"I = Vph/Z; # Per phase Current when Machine is running at 11.5 m/s in Amphere\n",
"pf = math.degrees(math.cos(math.radians(math.degrees(math.atan2(I.imag,I.real))))); # Power factor lagging\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"\n",
"print (\"EXAMPLE : 7.10 : SOLUTION :-\") ;\n",
"print \" a) Synchronous linear speed, Vs = %.1f m/s \"%(Vs);\n",
"print \" b) Per phase current when Machine is running at 11.5 m/s, I = %.2f < %.2f A \"%(abs(I),math.degrees(math.atan2(I.imag,I.real)))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 7.10 : SOLUTION :-\n",
" a) Synchronous linear speed, Vs = 12.5 m/s \n",
" b) Per phase current when Machine is running at 11.5 m/s, I = 3.27 < -46.37 A \n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.11 Page No : 428"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# GIVEN DATA\n",
"\n",
"s = 9.; # Degree per step of the stepper motor\n",
"N = 200.; # Rotation Speed of the Stepper motor in RPM\n",
"\n",
"\n",
"# ,S\n",
"\n",
"spr = 360/s; # Steps Per Revolution (360 is full revolution)\n",
"pps = (N*spr)/60; # Input pulse rate in pulses per second\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"\n",
"print (\"EXAMPLE : 7.11: SOLUTION :-\");\n",
"print \" a) Input pulse rate is %.2f pulses per second \"%(pps)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 7.11: SOLUTION :-\n",
" a) Input pulse rate is 133.33 pulses per second \n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.13 Page No : 430"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
" \n",
"\n",
"# GIVEN DATA\n",
"\n",
"L1 = 1.1; # Inducmath.tance in Henry\n",
"L2 = 1.07; # Inducmath.tance in Henry\n",
"dtheta = 1; # Rotor rotation in Mechanical degree\n",
"r = 0.10; # Radius of the rotor in Meter\n",
"I = 20; # Coil Current in Amphere\n",
"\n",
"\n",
"# ,S\n",
"\n",
"dl = L1-L2; # Change in Inducmath.tance of one of its stator coils in Henry\n",
"F = (I**2*dl)/(2*dtheta); # Force on the math.single rotor pole in Newton\n",
"T = F*r; # Insmath.tanmath.taneous Torque in Newton-meter\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"\n",
"print (\"EXAMPLE : 7.13: SOLUTION :-\");\n",
"print \" a) Insmath.tanmath.taneous Torque, T = %.1f N-m \"%(T)\n",
"print \"The force is a motoring force math.since inducmath.tance of the coil is rimath.sing\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 7.13: SOLUTION :-\n",
" a) Insmath.tanmath.taneous Torque, T = 0.6 N-m \n",
"The force is a motoring force math.since inducmath.tance of the coil is rimath.sing\n"
]
}
],
"prompt_number": 21
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.14 Page No : 435"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# GIVEN DATA\n",
"\n",
"Va = 220 * ( 1j * 0 * math.pi/180)**2; # Three phase in Volts\n",
"Vb = 230 * ( 1j * (-115) * math.pi/180)**2; # Three phase in Volts\n",
"Vc = 250 * ( 1j * (-245) * math.pi/180)**2; # Three phase in Volts\n",
"\n",
"\n",
"# CALCUALTIONS\n",
"# We know that operator :-\n",
"\n",
"alpha = 1 * ( 1j * 120 * math.pi/180)**2;\n",
"alpha2 = 1 * ( 1j * (-120) * math.pi/180)**2;\n",
"Va0 = (Va+Vb+Vc)/3 # Zero sequence Voltage in Volts\n",
"Va1 = (Va+alpha*Vb+alpha2*Vc)/3 # Positive sequence Voltage in Volts\n",
"Va2 = (Va+alpha2*Vb+alpha*Vc)/3 # Negative sequence Voltage in Volts\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"\n",
"print (\"EXAMPLE : 7.14 : SOLUTION :-\") ;\n",
"print \" a) Zero sequence Voltage, Va0 = %.2f < %.2f V \"%(abs(Va0),math.degrees(math.atan2(Va0.imag,Va0.real)));\n",
"print \" b) Positive sequence Voltage, Va1 = %.3f < %.2f V \"%(abs(Va1),math.degrees(math.atan2(Va1.imag,Va1.real)));\n",
"print \" c) Negative sequence Voltage, Va1 = %.2f < %.1f V \"%(abs(Va2),math.degrees(math.atan2(Va2.imag,Va2.real)));\n",
" \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 7.14 : SOLUTION :-\n",
" a) Zero sequence Voltage, Va0 = 1832.58 < 180.00 V \n",
" b) Positive sequence Voltage, Va1 = 8038.588 < 0.00 V \n",
" c) Negative sequence Voltage, Va1 = 8038.59 < 0.0 V \n"
]
}
],
"prompt_number": 22
}
],
"metadata": {}
}
]
}
|