summaryrefslogtreecommitdiff
path: root/Electrical_Machines_by_R._K._Srivastava/ch5.ipynb
blob: 0e815d11e15d66d9ee8f6ad70715e07364486e06 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
{
 "metadata": {
  "name": "",
  "signature": "sha256:089ff648fbdb8af7f4f6a1404eb482e8189978dc2c47f0a03d442fd2b9195a5b"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 5 : Induction Machines"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.1  Page No : 198"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "# For Case (a)\n",
      "\n",
      "S_a = 30;               # Total number of Slots\n",
      "m_a = 3;                # Total number of Poles\n",
      "p_a = 2;                # Total number of Phases\n",
      "\n",
      "# For Case (b)\n",
      "\n",
      "S_b = 60;               # Total number of Slots\n",
      "m_b = 3;                # Total number of Poles\n",
      "p_b = 4;                # Total number of Phases\n",
      "\n",
      "# For Case (c)\n",
      "\n",
      "S_c = 24;              # Total number of Slots\n",
      "m_c = 3;               # Total number of Poles\n",
      "p_c = 4;               # Total number of Phases\n",
      "\n",
      "# For Case (d)\n",
      "\n",
      "S_d = 12;              # Total number of Slots\n",
      "m_d = 3;               # Total number of Poles\n",
      "p_d = 2;               # Total number of Phases\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "# For Case (a)\n",
      "\n",
      "spp_a = S_a/(p_a*m_a);              # Slot per poles per phase \n",
      "\n",
      "# For Case (b)\n",
      "\n",
      "spp_b = S_b/(p_b*m_b);              # Slot per poles per phase \n",
      "\n",
      "# For Case (c)\n",
      "\n",
      "spp_c = S_c/(p_c*m_c);              # Slot per poles per phase \n",
      "\n",
      "# For Case (d)\n",
      "\n",
      "spp_d = S_d/(p_d*m_d);              # Slot per poles per phase \n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 5.1 : SOLUTION :-\") ;\n",
      "print \" For case a) Slot per poles per phase, spp = %.f   \"%(spp_a);\n",
      "print \" For case b) Slot per poles per phase, spp = %.f   \"%(spp_b);\n",
      "print \" For case c) Slot per poles per phase, spp = %.f   \"%(spp_c);\n",
      "print \" For case d) Slot per poles per phase, spp = %.f   \"%(spp_d);"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 5.1 : SOLUTION :-\n",
        " For case a) Slot per poles per phase, spp = 5   \n",
        " For case b) Slot per poles per phase, spp = 5   \n",
        " For case c) Slot per poles per phase, spp = 2   \n",
        " For case d) Slot per poles per phase, spp = 2   \n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.2  Page No : 201"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "\n",
      "# GIVEN DATA\n",
      "# For Case (a)\n",
      "\n",
      "S_a = 54;               # Total number of Slots\n",
      "m_a = 3;                # Total number of Poles\n",
      "p_a = 8;                # Total number of Phases\n",
      "\n",
      "# For Case (b)\n",
      "\n",
      "S_b = 32;               # Total number of Slots\n",
      "m_b = 3;                # Total number of Poles\n",
      "p_b = 4;                # Total number of Phases\n",
      "\n",
      "# For Case (c)\n",
      "\n",
      "S_c = 30;              # Total number of Slots\n",
      "m_c = 3;               # Total number of Poles\n",
      "p_c = 4;               # Total number of Phases\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "# For Case (a)\n",
      "\n",
      "spp_a = S_a/(p_a*m_a);                # Slot per poles per phase \n",
      "l_a = 0 * spp_a;                      # Phase allociation Series\n",
      "m_a = 1 * spp_a;                      # Phase allociation Series\n",
      "n_a = 2 * spp_a;                      # Phase allociation Series\n",
      "o_a = 3 * spp_a;                      # Phase allociation Series\n",
      "p_a = 4 * spp_a;                      # Phase allociation Series\n",
      "d_a = 0;                              # d_a = l_a (Rounding off)\n",
      "e_a = 2;                              # e_a = m_a (Rounding off)\n",
      "f_a = 4;                              # f_a = n_a (Rounding off)\n",
      "g_a = 6;                              # g_a = o_a (Rounding off)\n",
      "h_a = 9;                              # h_a = p_a (Rounding off)\n",
      "R_a = e_a - d_a;                      # Phase allociation\n",
      "Y_a = f_a - e_a;                      # Phase allociation\n",
      "B_a = g_a - f_a;                      # Phase allociation\n",
      "R1_a = h_a - g_a;                     # Phase allociation\n",
      "\n",
      "# For Case (b)\n",
      "\n",
      "spp_b = S_b/(p_b*m_b);                # Slot per poles per phase \n",
      "l_b = 0 * spp_b;                      # Phase allociation Series\n",
      "m_b = 1 * spp_b;                      # Phase allociation Series\n",
      "n_b = 2 * spp_b;                      # Phase allociation Series\n",
      "o_b = 3 * spp_b;                      # Phase allociation Series\n",
      "d_b = 0;                              # d_b = l_b (Rounding off)\n",
      "e_b = 2;                              # e_b = m_b (Rounding off)\n",
      "f_b = 5;                              # f_b = n_b (Rounding off)\n",
      "g_b = 8;                              # g_b = o_b (Rounding off)\n",
      "R_b = e_b - d_b;                      # Phase allociation\n",
      "Y_b = f_b - e_b;                      # Phase allociation\n",
      "B_b = g_b - f_b;                      # Phase allociation\n",
      "\n",
      "# For Case (c)\n",
      "\n",
      "spp_c = S_c/(p_c*m_c);                # Slot per poles per phase \n",
      "l_c = 0 * spp_c;                      # Phase allociation Series\n",
      "m_c = 1 * spp_c;                      # Phase allociation Series\n",
      "n_c = 2 * spp_c;                      # Phase allociation Series\n",
      "d_c = 0;                              # d_b = l_b (Rounding off)\n",
      "e_c = 2;                              # e_b = m_b (Rounding off)\n",
      "f_c = 5;                              # f_b = n_b (Rounding off)\n",
      "R_c = e_c - d_c;                      # Phase allociation\n",
      "Y_c = f_c - e_c;                      # Phase allociation\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 5.2 : SOLUTION :-\") ;\n",
      "print \"  For Case a) Slot per poles per phase  , spp = %.3f  \"%(spp_a);\n",
      "print \"               Phase allociation series is %.f, %.f, %.f, %.f, %.f, %.f, %.f, %.f, %.f, slots are allocated respectively\\\n",
      " to R, Y, B, R, Y, B, R, Y, B....... phase in Sequence \"%(R_a,Y_a,B_a,R1_a,R_a,Y_a,B_a,R1_a,R_a);\n",
      "print \"               By seeing Sequence its Slot per pole per phase is an Integer and such, balanced winding may be possible \"\n",
      "print \"  For Case b) Slot per poles per phase  , spp = %.3f  \"%(spp_b);\n",
      "print \"               Phase allociation series is %.f, %.f, %.f \"%(R_b,Y_b,B_b);\n",
      "print \"               By seeing Sequence its Slot per pole per phase are not Integer therefore R-phase will have 8 slots\\\n",
      " whereas Y-phase and B-phase will have 12 slots \";\n",
      "print \"  For Case c) Slot per poles per phase  , spp = %.1f  \"%(spp_c);\n",
      "print \"               Phase allociation series is %.f, %.f, %.f, %.f, %.f, %.f, %.f, %.f, %.f, %.f, %.f, %.f slots\\\n",
      " are allocated respectively to R, Y, B, R, Y, B, R, Y, B, R, Y, B....... phase in Sequence \"%(R_c,Y_c,R_c,Y_c,R_c,Y_c,R_c,Y_c,R_c,Y_c,R_c,Y_c);\n",
      "print \"               By seeing Sequence its Slot per pole per phase is an Integer and such, balanced winding may be possible \"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 5.2 : SOLUTION :-\n",
        "  For Case a) Slot per poles per phase  , spp = 2.000  \n",
        "               Phase allociation series is 2, 2, 2, 3, 2, 2, 2, 3, 2, slots are allocated respectively to R, Y, B, R, Y, B, R, Y, B....... phase in Sequence \n",
        "               By seeing Sequence its Slot per pole per phase is an Integer and such, balanced winding may be possible \n",
        "  For Case b) Slot per poles per phase  , spp = 2.000  \n",
        "               Phase allociation series is 2, 3, 3 \n",
        "               By seeing Sequence its Slot per pole per phase are not Integer therefore R-phase will have 8 slots whereas Y-phase and B-phase will have 12 slots \n",
        "  For Case c) Slot per poles per phase  , spp = 2.0  \n",
        "               Phase allociation series is 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3 slots are allocated respectively to R, Y, B, R, Y, B, R, Y, B, R, Y, B....... phase in Sequence \n",
        "               By seeing Sequence its Slot per pole per phase is an Integer and such, balanced winding may be possible \n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.3  Page No : 205"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "s = 24.;                     # Total number of the pole\n",
      "p = 4.;                      # Total number of the poles in the Alternator\n",
      "\n",
      "\n",
      "# CALCULATIONS \n",
      "# For Case (a) Short pitching by one Slots\n",
      "\n",
      "spp = s/p;                     # Slot per pole \n",
      "E_a = ((180*2)/24.)*(4/2);      # Slot angle in Electrical\n",
      "kp_a = math.cos(math.radians(E_a/2));            # Pitch Factor\n",
      "kp5_a = math.cos(math.radians((5*E_a)/2));       # Pitch Factor\n",
      "kp7_a = math.cos(math.radians((7*E_a)/2));       # Pitch Factor\n",
      "\n",
      "# For Case(b) Short pitching by two Slots\n",
      "\n",
      "E_b = 2*((180*2)/24)*(4/2);    # Slot angle in Electrical\n",
      "kp_b = math.cos(math.radians(E_b/2));            # Pitch Factor\n",
      "kp5_b = math.cos(math.radians((5*E_b)/2))        # Pitch Factor\n",
      "kp7_b = math.cos(math.radians((7*E_b)/2));       # Pitch Factor\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 5.3 : SOLUTION :-\") ;\n",
      "print \" For Case a) Short pitching by one Slots:- Pitch Facor , kp = %.4f  \"%(kp_a);\n",
      "print \"                                                          kp5 = %.4f  \"%(kp5_a);\n",
      "print \"                                                          kp7 = %.4f  \"%(kp7_a);\n",
      "print \" For Case a) Short pitching by Two Slots:- Pitch Facor , kp = %.4f  \"%(kp_b);\n",
      "print \"                                                          kp5 = %.4f  \"%(kp5_b);\n",
      "print \"                                                          kp7 = %.4f  \"%(kp7_b);\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 5.3 : SOLUTION :-\n",
        " For Case a) Short pitching by one Slots:- Pitch Facor , kp = 0.9659  \n",
        "                                                          kp5 = 0.2588  \n",
        "                                                          kp7 = -0.2588  \n",
        " For Case a) Short pitching by Two Slots:- Pitch Facor , kp = 0.8660  \n",
        "                                                          kp5 = -0.8660  \n",
        "                                                          kp7 = -0.8660  \n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.4  Page No : 208"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "s = 60.;                     # Total number of Slot\n",
      "m = 3.;                      # Total number of Phase\n",
      "p = 4.;                      # Total number of Pole\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "M = s/(m*p);                                 # Slot per pole per Phase\n",
      "sigma = 180/m;                               # Phase Spread in angle (deg)\n",
      "Ka = math.sin(math.radians((M*sigma)/2))/(M*math.sin(math.radians(sigma/2)));    # Distribution Factor\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 5.4 : SOLUTION :-\");\n",
      "print \" a) Distribution Factor, Ka = %.1f \"%(Ka)\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 5.4 : SOLUTION :-\n",
        " a) Distribution Factor, Ka = 0.2 \n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.7  Page No : 210"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "f = 50.;                     # Frequency of the 2-pole Induction Motor\n",
      "p = 2.;                      # Total Number of Poles\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "Ns = (120*f)/p;                 # Synchronous Speed in RPM\n",
      "Ns5 = -(120*f)/(5*p);           # Synchronous Speed of 5th order space harmonic in RPM\n",
      "N5 = -(120*5*f)/p;              # Synchronous Speed of 5th order time harmonic in RPM\n",
      "Ns7 = (120*f)/(7*p);           # Synchronous Speed of 7th order space harmonic in RPM\n",
      "N7 = (120*7*f)/p;              # Synchronous Speed of 7th order time harmonic in RPM\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 5.7 : SOLUTION :-\");\n",
      "print \" a.1) Synchronous Speed of 5th order space harmonic, Ns5 = %.f RPM \"%(Ns5)\n",
      "print \" a.2) Synchronous Speed of 5th order time harmonic, N5 = %.f RPM \"%(N5)\n",
      "print \" b.1) Synchronous Speed of 7th order space harmonic, Ns7 = %.2f RPM \"%(Ns7)\n",
      "print \" b.2) Synchronous Speed of 7th order time harmonic,  N7 = %.f RPM \"%(N7)\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 5.7 : SOLUTION :-\n",
        " a.1) Synchronous Speed of 5th order space harmonic, Ns5 = -600 RPM \n",
        " a.2) Synchronous Speed of 5th order time harmonic, N5 = -15000 RPM \n",
        " b.1) Synchronous Speed of 7th order space harmonic, Ns7 = 428.57 RPM \n",
        " b.2) Synchronous Speed of 7th order time harmonic,  N7 = 21000 RPM \n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.8  Page No : 215"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "p_a = 6;                        # Total number of Poles in the Alternator\n",
      "p_m = 4;                        # Total number of Poles of Induction Motor\n",
      "N_a = 900;                      # Running Speed of the Alternator in RPM\n",
      "N_m = 1250;                     # Running Speed of the Induction Motor in RPM\n",
      "m = 3;                          # Total Number of phase in Induction Motor\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "f = (N_a*p_a)/120;                  # Frequency of the 6-pole Alternator running at 900 RPM in Hertz\n",
      "Ns = (120*f)/p_m;                   # Synchronous Speed of 4-pole Induction Motor in RPM\n",
      "s = (Ns-N_m)/Ns;                    # Slip \n",
      "fr = s*f;                           # Frequency of the Rotor Current in Hertz \n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 5.8 : SOLUTION :-\");\n",
      "print \" a) Frequency of the Rotor Current , fr = %.2f Hz \"%(fr)\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 5.8 : SOLUTION :-\n",
        " a) Frequency of the Rotor Current , fr = 0.00 Hz \n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.9  Page No : 220"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "p = 2;                        # Total number of Poles of Induction Motor\n",
      "f = 50;                       # Frequency in Hertz\n",
      "Nr = 2800;                    # Running Speed of the Induction Motor in RPM\n",
      "m = 3;                        # Total Number of phase in Induction Motor\n",
      "V = 400;                      # Operating Voltage of Induction Motor in Volts\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "Ns = (120.*f)/p;                   # Synchronous Speed in RPM\n",
      "s = 100*((Ns-Nr)/Ns);             # Slip in Percentage\n",
      "fr = (s/100)*f;                   # Frequency of the Rotor Current in Hertz \n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 5.9 : SOLUTION :-\");\n",
      "print \" a) Slip, s = %.2f percent \"%(s);\n",
      "print \" b) Frequency of the Rotor Current, fr = %.2f Hz \"%(fr)\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 5.9 : SOLUTION :-\n",
        " a) Slip, s = 6.67 percent \n",
        " b) Frequency of the Rotor Current, fr = 3.33 Hz \n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.10  Page No : 223"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# GIVEN DATA\n",
      "m = 3;                          # Total Number of phase in Induction Motor\n",
      "p = 4;                          # Total number of Poles in Induction Motor\n",
      "f = 50;                         # Frequency in Hertz\n",
      "s = 0.03;                       # Slip\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "Ns = (120*f)/p;                     # Synchronous Speed in RPM\n",
      "Nr = (1-s)*Ns;                      # Rotor Speed in RPM\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 5.10 : SOLUTION :-\");\n",
      "print \" a) Rotor Speed , Nr = %.f RPM \"%(Nr)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 5.10 : SOLUTION :-\n",
        " a) Rotor Speed , Nr = 1455 RPM \n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.11  Page No : 225"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# GIVEN DATA\n",
      "\n",
      "\n",
      "m = 3;                          # Total Number of phase in Induction Motor\n",
      "p = 6;                          # Total number of Poles of Induction Motor\n",
      "f = 50;                         # Frequency in Hertz\n",
      "s = 0.03;                       # Slip\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "Ns = (120*f)/p;                     # Synchronous Speed in RPM\n",
      "Nr = (1-s)*Ns;                      # Rotor Speed in RPM\n",
      "Nf = Ns - Nr;                       # Speed of Forward Rotating magnetic fields with respect to stator and rotor in RPM\n",
      "Nb = Ns + Nr;                       # Speed of Backward Rotating magnetic fields with respect to stator and rotor in RPM\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 5.11 : SOLUTION :-\");\n",
      "print \" a) Speed of Forward Rotating magnetic fields with respect to stator and rotor is equal to + %.f RPM \"%(Nf)\n",
      "print \" b) Speed of Backward Rotating magnetic fields with respect to stator and rotor is equal to + %.f RPM \"%(Nb)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 5.11 : SOLUTION :-\n",
        " a) Speed of Forward Rotating magnetic fields with respect to stator and rotor is equal to + 30 RPM \n",
        " b) Speed of Backward Rotating magnetic fields with respect to stator and rotor is equal to + 1970 RPM \n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.12  Page No : 230"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# GIVEN DATA\n",
      "\n",
      "m = 3;                          # Total Number of phase in Induction Motor\n",
      "p = 2;                          # Total number of Poles of Induction Motor\n",
      "f = 50;                         # Frequency in Hertz\n",
      "s = 0.05;                       # Slip\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "Ns = (120*f)/p;                     # Synchronous Speed in RPM\n",
      "Nr = (1-s)*Ns;                      # Rotor Speed in RPM\n",
      "Nf = s*Ns;                          # Speed of Forward Rotating magnetic fields with respect to stator and rotor in RPM\n",
      "Nb = (p-s)*Ns;                      # Speed of Backward Rotating magnetic fields with respect to stator and rotor in RPM\n",
      "fr = (p-s)*f;                       # Backward rotating magnetic field induces a current of frequency in Hertz\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 5.12 : SOLUTION :-\");\n",
      "print \" a) Speed of Forward Rotating magnetic fields with respect to stator and rotor is equal to + %.f RPM \"%(Nf)\n",
      "print \" b) Speed of Backward Rotating magnetic fields with respect to stator and rotor is equal to + %.f RPM \"%(Nb)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 5.12 : SOLUTION :-\n",
        " a) Speed of Forward Rotating magnetic fields with respect to stator and rotor is equal to + 150 RPM \n",
        " b) Speed of Backward Rotating magnetic fields with respect to stator and rotor is equal to + 5850 RPM \n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.13  Page No : 234"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# GIVEN DATA\n",
      "m = 3;                          # Total Number of phase in Induction Motor\n",
      "p = 4;                          # Total number of Poles of Induction Motor\n",
      "f = 50;                         # Frequency in Hertz\n",
      "s = 0.05;                       # Slip\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "Ns = (120*f)/p;                     # Synchronous Speed in RPM\n",
      "fr = s*f;                           # Rotor-induced Frequency of forward field in Hertz\n",
      "Nfr = s*Ns;                         # Speed of Forward Rotating magnetic fields with respect to rotor surface in RPM\n",
      "f2r = s*f;                           # Rotor-induced Frequency of Backward field in Hertz\n",
      "Nbr = -(s*Ns);                       # Speed of Backward Rotating magnetic fields with respect to rotor surface in RPM\n",
      "Nr = (1-s)*Ns;                       # Rotor running in Forward direction in RPM\n",
      "Nfs = Nr+(s*Ns);                     # Speed of Forward Rotating magnetic fields with respect to stator surface in RPM\n",
      "Nbs = Nr-(s*Ns);                     # Speed of Backward Rotating magnetic fields with respect to stator surface in RPM\n",
      "Nbs_new = -(0.5*Ns)+(1-0.5)*Nr;      # Speed of Backward Rotating magnetic fields with respect to stator for 50% of slip in RPM\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 5.13 : SOLUTION :-\");\n",
      "print \" a.1) Speed of Forward Rotating magnetic fields with respect to rotor surface is equal to + %.f RPM \"%(Nfr)\n",
      "print \" a.2) Speed of Backward Rotating magnetic fields with respect to rotor surface is equal to + %.f RPM \"%(Nbr)\n",
      "print \" b.1) Speed of Forward Rotating magnetic fields with respect to stator surface is equal to + %.f RPM \"%(Nfs)\n",
      "print \" b.2) Speed of Backward Rotating magnetic fields with respect to stator surface is equal to + %.f RPM \"%(Nbs)\n",
      "print \"  c)  Speed of Backward Rotating magnetic fields with respect to stator for 50 percenatge slip is equal to  %.1f RPM \"%(Nbs_new)\n",
      "print \"    [ TEXT BOOK SOLUTION IS PRINTED WRONGLY  I verified by manual calculation ]\" ;\n",
      "print \"      WRONGLY PRINTED ANSWERS ARE :- a) Speed of Backward Rotating magnetic fields with respect to stator for 50 percenatge slip is equal to 0 RPM instead of %.1f RPM   \"%(Nbs_new);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 5.13 : SOLUTION :-\n",
        " a.1) Speed of Forward Rotating magnetic fields with respect to rotor surface is equal to + 75 RPM \n",
        " a.2) Speed of Backward Rotating magnetic fields with respect to rotor surface is equal to + -75 RPM \n",
        " b.1) Speed of Forward Rotating magnetic fields with respect to stator surface is equal to + 1500 RPM \n",
        " b.2) Speed of Backward Rotating magnetic fields with respect to stator surface is equal to + 1350 RPM \n",
        "  c)  Speed of Backward Rotating magnetic fields with respect to stator for 50 percenatge slip is equal to  -37.5 RPM \n",
        "    [ TEXT BOOK SOLUTION IS PRINTED WRONGLY  I verified by manual calculation ]\n",
        "      WRONGLY PRINTED ANSWERS ARE :- a) Speed of Backward Rotating magnetic fields with respect to stator for 50 percenatge slip is equal to 0 RPM instead of -37.5 RPM   \n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.14  Page No : 235"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# GIVEN DATA\n",
      "\n",
      "f = 50;             # Stator Frequency of Inductor Motor in Hertz\n",
      "fr = 10;            # Rotor Frequency of Inductor Motor in Hertz\n",
      "p = 2;              # Number of poles\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "Ns = (120*f)/p;      # Synchronous Speed of Induction Motor in RPM\n",
      "s = fr/f;            # Slip of the Induction Motor\n",
      "Nr = (1-s)*Ns;       # Rotor Speed of the Induction Motor\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 5.14 : SOLUTION :-\");\n",
      "print \" a) Rotor Speed of Induction Motor, Nr = %.f RPM \"%(Nr)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 5.14 : SOLUTION :-\n",
        " a) Rotor Speed of Induction Motor, Nr = 3000 RPM \n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.15  Page No : 237"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "print \" EXAMPLE : 5.15 :           Given Data No-load test : 440V, 30A, 4.5KW \";\n",
      "print \"          Blocked rotor test :      90V%(50Hz, 120A, 16KW \";\n",
      "m = 3;                          # Total Number of phase in Induction Motor\n",
      "p = 6;                          # Total number of Poles of Induction Motor\n",
      "V = 440;                        # Operating voltage of the Induction motor in Volts\n",
      "out_hp = 100;                   # Output of the Induction motor in Horse-Power\n",
      "R = 0.15;                       # Average dc resistance in Ohms\n",
      "Wsc = 16000;                    # Power at Blocked Rotor test in Watts\n",
      "Vsc = 90;                       # Voltage at Blocked Rotor test in Volts\n",
      "Isc = 120;                      # Current at Blocked Rotor test in Amphere\n",
      "W0 = 4500;                      # Power at No-load test in Watts\n",
      "V0 = 440;                       # Voltage at No-load test in Volts\n",
      "I0 = 30;                        # Current at No-load test in Amphere \n",
      "s = 0.05;                       # Slip\n",
      "f = 50;                         # Frequency in Hertz\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "R1 = R/2;                                       # DC winding resistance per phase in Ohms\n",
      "Rac = Wsc/(3*Isc**2);                            # AC resistance referred to stator from locked rotor test at supply frequency in Ohms\n",
      "R_2 = Rac - R1;                                 # Per phase Rotor resistance to Stator in Ohms\n",
      "Zsc = Vsc/(math.sqrt(3)*Isc);                        # Per phase Impedance from locked rotor test in Ohms\n",
      "Xs = math.sqrt((Zsc**2)-(Rac**2));                     # Per phase leakage reactance referred to stator in Ohms\n",
      "theta_0 = math.acos(math.radians(W0/(V0*I0*math.sqrt(3))));            # No-load power factor angle in degree\n",
      "Im = I0*math.degrees(math.sin(math.radians(theta_0)));                          # Reactive component of no-load current in Amphere\n",
      "Xm = V0/(Im*math.sqrt(3));                           # Magnetizing reactance in Ohms\n",
      "Pc = W0 - 3*I0**2*R1;                            # Total Core loss in Watts\n",
      "Rc = (V0/math.sqrt(3))**2*(3/Pc);                     # Per phase core loss resistance in Watts\n",
      "Vph = V0/math.sqrt(3);                               # Per phase Voltage in Volts\n",
      "Ic = Vph/Rc;                                    # Core loss current in Amphere\n",
      "I_m = Vph/(1j * Xm);                            # Magnetizing Current in Amphere\n",
      "I_o = Ic + I_m;                                 # No-load current in Amphere\n",
      "I_2 = Vph/(R1+(R_2/s)+(1j*Xs));                 # Current in Amphere\n",
      "I1 = I_o + I_2;                                 # Input Current in Amphere\n",
      "Pf = math.cos(math.radians(math.degrees(math.atan(I1.imag/I1.real))));            # Power factor \n",
      "P1 = (3*(abs(I_2)**2*R_2)/s)/1000.;               # 3-phase air gap power or Rotor intake Power in Kilo-Watts\n",
      "Po = P1*(1-s);                                  # Output Power in Kilo-Watts\n",
      "Ws = 2*math.pi*((120*f/p)*(1./60.));                  # Angular Roatation in Radians per Seconds\n",
      "T = P1*1000/Ws;                                 # Torque in Newton-Meter\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 5.15 : SOLUTION :-\") ;\n",
      "print \" a.1)  DC winding resistance per phase, R1 = %.3f Ohms \"%(R1)\n",
      "print \" a.2)  AC resistance referred to stator from locked rotor test at supply frequency  = %.4f Ohms \"%(Rac)\n",
      "print \" a.3)  Per phase Rotor resistance to Stator, R2 = %.4f Ohms \"%(R_2)\n",
      "print \" a.4)  Per phase Impedance from locked rotor test, Zsc = %.3f Ohms \"%(Zsc)\n",
      "print \" a.5)  Per phase leakage reactance referred to stator, Xs = %.4f Ohms \"%(Xs)\n",
      "print \" a.6)  No-load power factor angle, theta_O = %.2f Degree \"%(theta_0)\n",
      "print \" a.7)  Reactive component of no-load current, Im = %.1f A \"%(Im)\n",
      "print \" a.8)  Magnetizing reactance, Xm = %.2f Ohms \"%(Xm)\n",
      "print \" a.9)  Total Core loss, Pc = %.1f W \"%(Pc)\n",
      "print \" a.10) Per phase core loss resistance, Pc = %.f Ohms \"%(Rc)\n",
      "print \" a.11) Per phase Voltage, Vph = %.f V \"%(Vph)\n",
      "print \" a.12) Core loss current, Ic = %.2f < %.f A \"%(abs(Ic),math.degrees(math.atan2(Ic.imag,Ic.real)))\n",
      "print \" a.13) Magnetizing Current, Im = %.1f < %.f A \"%(abs(I_m),math.degrees(math.atan2(I_m.imag,I_m.real)))\n",
      "print \" a.14) No-load current, I0 = %.2f < %.2f A \"%(abs(I_o),math.degrees(math.atan2(I_o.imag,I_o.real)))\n",
      "print \" a.15) Current, I2 = %.2f < %.2f A \"%(abs(I_2),math.degrees(math.atan2(I_2.imag,I_2.real)))\n",
      "print \"   b)  Input current, I1 = %.2f < %.2f A \"%(abs(I1),math.degrees(math.atan2(I1.imag,I1.real)))\n",
      "print \"   c)  Power Factor, Pf = %.4f Lagging \"%(Pf)\n",
      "print \"   d)  Output Power, P0 = %.1f kW \"%(Po)\n",
      "print \"   e)  Torque, T = %.2f NM \"%(T)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " EXAMPLE : 5.15 :           Given Data No-load test : 440V, 30A, 4.5KW \n",
        "          Blocked rotor test :      90V%(50Hz, 120A, 16KW \n",
        "EXAMPLE : 5.15 : SOLUTION :-\n",
        " a.1)  DC winding resistance per phase, R1 = 0.075 Ohms \n",
        " a.2)  AC resistance referred to stator from locked rotor test at supply frequency  = 0.0000 Ohms \n",
        " a.3)  Per phase Rotor resistance to Stator, R2 = -0.0750 Ohms \n",
        " a.4)  Per phase Impedance from locked rotor test, Zsc = 0.433 Ohms \n",
        " a.5)  Per phase leakage reactance referred to stator, Xs = 0.4330 Ohms \n",
        " a.6)  No-load power factor angle, theta_O = 1.57 Degree \n",
        " a.7)  Reactive component of no-load current, Im = 47.0 A \n",
        " a.8)  Magnetizing reactance, Xm = 5.40 Ohms \n",
        " a.9)  Total Core loss, Pc = 4297.5 W \n",
        " a.10) Per phase core loss resistance, Pc = 45 Ohms \n",
        " a.11) Per phase Voltage, Vph = 254 V \n",
        " a.12) Core loss current, Ic = 5.64 < 0 A \n",
        " a.13) Magnetizing Current, Im = 47.0 < -90 A \n",
        " a.14) No-load current, I0 = 47.35 < -83.16 A \n",
        " a.15) Current, I2 = 170.57 < -163.10 A \n",
        "   b)  Input current, I1 = 184.82 < -148.49 A \n",
        "   c)  Power Factor, Pf = 0.8525 Lagging \n",
        "   d)  Output Power, P0 = -124.4 kW \n",
        "   e)  Torque, T = -1250.21 NM \n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.17  Page No : 239"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "print \" EXAMPLE : 5.17 :           Given Data No-load test : 440V%( 3.0A, 500KW, 50Hz \";\n",
      "print \"          Blocked rotor test at rated frequency : 110V%( 18A, 2500W, 50Hz \";\n",
      "print \"          DC test on Stator per phase : 10V, 15A \";\n",
      "m = 3;                          # Total Number of phase in Induction Motor\n",
      "p = 4;                          # Total number of Poles of Induction Motor\n",
      "f = 50;                         # Frequency in Hertz\n",
      "V = 440;                        # Operating Voltage of the Inductuon Motor\n",
      "out_hp = 20;                    # Motor Power Rating in Horse-Power \n",
      "Vdc = 10;                       # DC Voltage in Volts\n",
      "Idc = 15;                       # DC Current in Amphere\n",
      "Wsc = 2500;                     # Power at Blocked Rotor test rated frequency in Watts\n",
      "Wsc_red = 2050;                 # Power at Blocked Rotor test reduced frequency in Watts\n",
      "Vsc = 110;                      # Voltage at Blocked Rotor test rated frequency in Volts\n",
      "Isc = 18;                       # Current at Blocked Rotor test rated frequency in Amphere\n",
      "Wo = 500;                       # Power at No-load test in Watts\n",
      "Vo = 440;                       # Voltage at No-load test in Volts\n",
      "Io = 4.0;                       # Current at No-load test in Amphere\n",
      "fsc = 50;                       # Rated Frequency at blocked rotor test in Hertz\n",
      "fo = 50;                        # Rated Frequency at no-load test in Hertz\n",
      "fsc1 = 15;                      # Reduced Frequency at blocked rotor in Hertz\n",
      "Pfw = 200;                      # Friction and Windage loss in Watts\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "R1dc = Vdc/Idc;                         # DC winding resistance per phase in Ohms\n",
      "Rac = Wsc/(3*Isc**2);                    # AC resistance from Locked rotor test at supply frequency\n",
      "Rac_red = Wsc_red/(3*Isc**2);            # AC resistance from Locked rotor test at reduced frequency\n",
      "R1ac = (Rac/Rac_red)*R1dc;              # Corrected Value of AC stator winding resistance in Ohms\n",
      "R2dc = Rac_red - R1dc;                  # Second rotor parameter, rotor resistance referred to stator is at low frequency in Ohms\n",
      "Zsc = Vsc/(math.sqrt(3)*Isc);                        # Per phase Impedance from locked rotor test at power frequency in Ohms\n",
      "Xs = math.sqrt((Zsc**2)-(Rac**2));                     # Per phase leakage reactance referred to stator in Ohms\n",
      "theta_0 = math.acos(math.radians(Wo/(Vo*Io*math.sqrt(3))));            # No-load power factor angle in degree\n",
      "Im = Io*math.degrees(math.sin(math.radians(theta_0)));                          # Reactive component of no-load current in Amphere\n",
      "Xm = Vo/(Im*math.sqrt(3));                           # Magnetizing reactance in Ohms\n",
      "Pc = Wo - 3*Io**2*R1ac-Pfw;                      # Total Core loss in Watts\n",
      "Rc = (Vo/math.sqrt(3))**2*(3/Pc);                     # Per phase core loss resistance in Watts\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 5.17 : SOLUTION :-\") ;\n",
      "print \" a)  Magnetizing reactance of Equivalent circuit, Xm = %.1f Ohms \"%(Xm)\n",
      "print \" b) Per phase core loss resistance, Pc = %.f Ohms \"%(Rc)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " EXAMPLE : 5.17 :           Given Data No-load test : 440V%( 3.0A, 500KW, 50Hz \n",
        "          Blocked rotor test at rated frequency : 110V%( 18A, 2500W, 50Hz \n",
        "          DC test on Stator per phase : 10V, 15A \n",
        "EXAMPLE : 5.17 : SOLUTION :-\n",
        " a)  Magnetizing reactance of Equivalent circuit, Xm = 40.5 Ohms \n",
        " b) Per phase core loss resistance, Pc = 645 Ohms \n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.18  Page No : 240"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "# From Previous problem data (Example 5.17)\n",
      "\n",
      "R1ac = 0.8127;                  # Corrected Value of AC stator winding resistance in Ohms\n",
      "R2dc = 1.4433;                  # Second rotor parameter, rotor resistance referred to stator is at low frequency in Ohms\n",
      "Xs = 2.42;                     # Per phase leakage reactance referred to stator in Ohms\n",
      "Xm = 64.4;                     # Magnetizing reactance in Ohms\n",
      "Rc = 742;                      # Per phase core loss resistance in Watts\n",
      "s = 0.035;                     # Slip\n",
      "m = 3;                         # Total Number of phase in Induction Motor\n",
      "p = 4;                         # Total number of Poles of Induction Motor\n",
      "f = 50;                        # Frequency in Hertz\n",
      "V = 440;                       # Operating Voltage of the Inductuon Motor\n",
      "out_hp = 20;                   # Motor Power Rating in Horse-Power\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "Vph = V/math.sqrt(3);                                # Per phase Voltage in Volts\n",
      "Ic = Vph/Rc;                                    # Core loss current in Amphere\n",
      "I_m = Vph/(1j * Xm);                            # Magnetizing Current in Amphere\n",
      "I_o = Ic + I_m;                                 # No-load current in Amphere\n",
      "I_2 = Vph/(R1ac+(R2dc/s)+(1j*Xs));              # Current in Amphere\n",
      "I1 = I_o + I_2;                                 # Input Current in Amphere\n",
      "Pf = math.cos(math.radians(math.degrees(math.atan(I1.imag/I1.real))));            # Power factor \n",
      "P1 = 3*(abs(I_2)**2*R2dc)/s;                    # 3-phase air gap power or Rotor intake Power in Watts\n",
      "Po = P1*(1-s);                                  # Output Power in Watts\n",
      "Ws = 2*math.pi*((120*f/p)*(1./60));                  # Angular Roatation in Radians per Seconds\n",
      "T = P1/Ws;                                      # Torque in Newton-Meter\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 5.18 : SOLUTION :-\");\n",
      "print \"   a)  Input current, I1 = %.2f < %.2f A \"%(abs(I1),math.degrees(math.atan2(I1.imag,I1.real)))\n",
      "print \"   b)  Power Factor, Pf = %.3f Lagging \"%(Pf)\n",
      "print \"   c)  Output Power, P0 = %.2f W \"%(Po)\n",
      "print \"   d)  Torque, T = %.2f NM \"%(T)\n",
      "print \"    [ TEXT BOOK SOLUTION IS PRINTED WRONGLY  I verified by manual calculation ]\" ;\n",
      "print \"      WRONGLY PRINTED ANSWERS ARE :- a) T = 4340.82 Nm instead of %.2f Nm  \"%(T);\n",
      "print \"       IN TEXT BOOK, CALCULATION OF TORQUE IS NOT DONE  \";\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 5.18 : SOLUTION :-\n",
        "   a)  Input current, I1 = 7.68 < -33.99 A \n",
        "   b)  Power Factor, Pf = 0.829 Lagging \n",
        "   c)  Output Power, P0 = 4342.67 W \n",
        "   d)  Torque, T = 28.65 NM \n",
        "    [ TEXT BOOK SOLUTION IS PRINTED WRONGLY  I verified by manual calculation ]\n",
        "      WRONGLY PRINTED ANSWERS ARE :- a) T = 4340.82 Nm instead of 28.65 Nm  \n",
        "       IN TEXT BOOK, CALCULATION OF TORQUE IS NOT DONE  \n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.19  Page No : 243"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "from numpy import imag,real\n",
      "\n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "s = 0.05;                       # Slip\n",
      "m = 3;                          # Total Number of phase in Induction Motor\n",
      "p = 4;                          # Total number of Poles of Induction Motor\n",
      "f = 50;                         # Frequency in Hertz\n",
      "V = 440;                        # Operrating Voltage of the Inductuon Motor\n",
      "R1 = 0.10;                      # Circuit Parameter in Ohms\n",
      "R2 = 0.11;                      # Circuit Parameter in Ohms\n",
      "X1 = 0.35;                      # Circuit Parameter in Ohms\n",
      "X2 = 0.40;                      # Circuit Parameter in Ohms\n",
      "pf = 0.2;                       # Power factor (Lagging)\n",
      "Pr = 900;                       # Rotational Loss in Watts\n",
      "Psc = 1000;                     # Stator core loss in Watts\n",
      "I = 15;                         # Line current draws by the motor in Amphere\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "Vph = V/math.sqrt(3);                                    # Per phase Voltage in Volts\n",
      "I_2 = Vph/(R1+(R2/s)+(1j*(X1+X2)));                 # Current in Amphere\n",
      "Io = I * (-(1j * math.degrees(math.acos(pf)) * math.pi/180.))**2;         # No-load current in Amphere\n",
      "I1 = Io + I_2;                                      # Input line Current in Amphere\n",
      "PF = math.cos(math.radians(math.degrees(math.atan(I1.imag/I1.real))));                # Power factor\n",
      "Ws = 2*math.pi*((120*f/p)*(1./60.));                      # Angular Roatation in Radians per Seconds\n",
      "Pg = (3*(abs(I1)**2*R2))/s;                          # 3-phase air gap power or Rotor intake Power in Watts\n",
      "T = Pg/Ws;                                          # Torque in Newton-Meter\n",
      "Po = Pg*(1-s)-Pr;                                   # Output Power in Watts\n",
      "Po_HP = Po/746;                                     # Output Power in Horse-Power\n",
      "eta = (Po/(Po+Psc+Pr))*100.;                         # Efficiency in Percentage\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 5.19 : SOLUTION :-\");\n",
      "print \"   a)  Input line current, I1 = %.1f < %.2f A \"%(abs(I1),math.degrees(math.atan2(I1.imag,I1.real)))\n",
      "print \"   b)  Power Factor, Pf = %.4f Lagging \"%(PF)\n",
      "print \"   c)  Output Power, P0 = %.1f HP \"%(Po_HP)\n",
      "print \"   d)  Torque, T = %.2f Nm \"%(T)\n",
      "print \"   e)  Efficiency, eta = %.1f Percenatge \"%(eta)\n",
      "print \"    [ TEXT BOOK SOLUTION IS PRINTED WRONGLY  I verified by manual calculation ]\" ;\n",
      "print \"      WRONGLY PRINTED ANSWERS ARE :- a) I1 = 114.2<-24.68 A instead of %.1f<%.2f A  \"%(abs(I1),math.degrees(math.atan2(I1.imag,I1.real)));\n",
      "print \"                                     b) T = 548.24 Nm instead of %.2f Nm  \"%(T);\n",
      "print \"                                     c) Po = 108.4 HP instead of %.1f HP  \"%(Po_HP);\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 5.19 : SOLUTION :-\n",
        "   a)  Input line current, I1 = 78.7 < -24.42 A \n",
        "   b)  Power Factor, Pf = 0.9105 Lagging \n",
        "   c)  Output Power, P0 = 50.9 HP \n",
        "   d)  Torque, T = 260.56 Nm \n",
        "   e)  Efficiency, eta = 95.2 Percenatge \n",
        "    [ TEXT BOOK SOLUTION IS PRINTED WRONGLY  I verified by manual calculation ]\n",
        "      WRONGLY PRINTED ANSWERS ARE :- a) I1 = 114.2<-24.68 A instead of 78.7<-24.42 A  \n",
        "                                     b) T = 548.24 Nm instead of 260.56 Nm  \n",
        "                                     c) Po = 108.4 HP instead of 50.9 HP  \n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.20  Page No : 246"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "from numpy import imag,real\n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "m = 3;                         # Total Number of phase in Induction Motor\n",
      "p = 6;                         # Total number of Poles of Induction Motor\n",
      "f = 50;                        # Frequency in Hertz\n",
      "V = 440;                       # Operating Voltage of the Inductuon Motor\n",
      "R1 = 0.25;                     # Circuit Parameter in Ohms\n",
      "R2 = 0.25;                     # Circuit Parameter in Ohms\n",
      "X1 = 0.75;                     # Circuit Parameter in Ohms\n",
      "X2 = 0.75;                     # Circuit Parameter in Ohms\n",
      "Xm = 1000;                     # Circuit Parameters in Ohms\n",
      "Rc = 100;                      # Circuit Parameters in Watts\n",
      "s = 0.025;                     # Slip\n",
      "Pr = 450;                      # Rotational Loss in Watts\n",
      "Psc = 800;                     # Stator core loss in Watts\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "Vph = V/math.sqrt(3);                                    # Per phase Voltage in Volts\n",
      "I_2 = Vph/(R1+(R2/s)+(1j*(X1+X2)));                 # Current in Amphere\n",
      "Ic = Vph/Rc;                                    # Core loss current in Amphere\n",
      "I_m = Vph/(1j * Xm);                            # Magnetizing Current in Amphere\n",
      "I_o = Ic + I_m;                                 # No-load current in Amphere\n",
      "I1 = I_o + I_2;                                 # Input Current in Amphere\n",
      "Pf = math.cos(math.radians(math.degrees(math.atan(I1.imag/I1.real))));            # Power factor \n",
      "Ns = (120*f)/p;                                 # Synronous Speed in RPM\n",
      "Pg = 3*(abs(I_2)**2*R2)/s;                       # 3-phase air gap power or Rotor intake Power in Watts\n",
      "Pm = Pg*(1-s);                                  # Output Power in Watts\n",
      "Ws = 2*math.pi*Ns*(1./60.);                           # Angular Roatation in Radians per Seconds\n",
      "T = Pg/Ws;                                      # Torque in Newton-Meter\n",
      "Po = Pm-Pr;                                     # Output Power in Watts\n",
      "Po_HP = Po/746;                                 # Output Power in Horse-Power\n",
      "eta = (Po/(Po+Psc+Pr))*100;                     # Efficiency in Percentage\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 5.20 : SOLUTION :-\");\n",
      "print \"   a)  Input line current, I1 = %.f < %.2f A \"%(abs(I1),math.degrees(math.atan(I1.imag%(I1.real))))\n",
      "print \"   b)  Power Factor, Pf = %.4f Lagging \"%(Pf)\n",
      "print \"   c)  Output Power, P0 = %.2f HP \"%(Po_HP)\n",
      "print \"   d)  Torque, T = %.1f Nm \"%(T)\n",
      "print \"   e)  Efficiency, eta = %.1f Percenatge \"%(eta)\n",
      "print \"    [ TEXT BOOK SOLUTION IS PRINTED WRONGLY  I verified by manual calculation ]\" ;\n",
      "print \"      WRONGLY PRINTED ANSWERS ARE :- a) I1 = 26.8-j3.584 {27<-7.62} A in instead of %.1f)+j%.3f) {%.f<%.2f} A  \"%(I1.real,I1.imag,abs(I1),math.degrees(math.atan2(I1.imag,I1.real)));\n",
      "print \"                                     b) pf = 0.9885 Lagging instead of %.4f Lagging  \"%(Pf);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 5.20 : SOLUTION :-\n",
        "   a)  Input line current, I1 = 27 < 87.51 A \n",
        "   b)  Power Factor, Pf = 0.9901 Lagging \n",
        "   c)  Output Power, P0 = 22.98 HP \n",
        "   d)  Torque, T = 172.3 Nm \n",
        "   e)  Efficiency, eta = 93.2 Percenatge \n",
        "    [ TEXT BOOK SOLUTION IS PRINTED WRONGLY  I verified by manual calculation ]\n",
        "      WRONGLY PRINTED ANSWERS ARE :- a) I1 = 26.8-j3.584 {27<-7.62} A in instead of 26.8)+j-3.805) {27<-8.08} A  \n",
        "                                     b) pf = 0.9885 Lagging instead of 0.9901 Lagging  \n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.21  Page No : 251"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "from numpy import roots\n",
      "\n",
      "# GIVEN DATA\n",
      "m = 3;                          # Total Number of phase in Induction Motor\n",
      "p = 4;                          # Total number of Poles of Induction Motor\n",
      "s = 0.05;                       # Slip\n",
      "f = 50;                         # Frequency in Hertz\n",
      "Tm = 500;                       # Maximum Torque in Newton-Meter\n",
      "Tst = 200;                      # Starting Torque in Newton-Meter\n",
      "sst = 1.0;                      # Starting Slip\n",
      "\n",
      "\n",
      "# CALCULATONS\n",
      "\n",
      "p1 = [1, -5, 1]           # Slip at Maximum Torque (obtained from Equation  Tst = (2*Tm)/((sst/sm)+(sm+sst))\n",
      "a = roots(p1);                  # Value of slip at Maximum Torque (obtained from Equation  Tst = (2*Tm)/((sst/sm)+(sm+sst)) \n",
      "sm = a[1]#(2,1);                    # Slip at Maximum Torque (obtained from Equation  Tst = (2*Tm)/((sst/sm)+(sm+sst)) { 1st root is 4.8 so its out of range because slip value is lies between 0-1 so its neglected and second root will be slip }\n",
      "T = (2*Tm)/((s/sm)+(sm/s));     # Torque at 0.05 slip\n",
      "Ns = (120*f)/p;                 # Synchronous Speed in RPM\n",
      "Wr = (2*math.pi)*(1-s)*(Ns/60);     # Angular Velocity in Radians-per-Second\n",
      "P = T * Wr;                     # Power Output in Watts\n",
      "P_HP = P/746;                   # Power Output in Horse-Power\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 5.21 : SOLUTION :-\");\n",
      "print \" a) Torque at 0.05 slip, T = %.2f Nm \"%(T)\n",
      "print \" b) Power Output at 0.05 slip, P = %.1f W = %.2f HP \"%(P,P_HP)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 5.21 : SOLUTION :-\n",
        " a) Torque at 0.05 slip, T = 226.56 Nm \n",
        " b) Power Output at 0.05 slip, P = 33808.8 W = 45.32 HP \n"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.22  Page No : 255"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "Wsc = 1000.;                    # Power at Blocked Rotor test in Watts\n",
      "Vsc = 56.;                      # Voltage at Blocked Rotor test in Volts\n",
      "Isc = 18.;                      # Current at Blocked Rotor test in Amphere\n",
      "Woc = 52.;                      # Power at No-load test in Watts\n",
      "Voc = 220.;                     # Voltage at No-load test in Volts\n",
      "Ioc = 2.6;                     # Current at No-load test in Amphere \n",
      "m = 3.;                         # Total Number of phase in Induction Motor\n",
      "p = 4.;                         # Total number of Poles of Induction Motor\n",
      "V = 220.;                       # Operating voltage of the Induction motor in Volts\n",
      "f = 50.;                        # Frequency in Hertz\n",
      "s = 0.05;                      # Slip\n",
      "R = 0.65;                      # Per phase stator resistance in Ohms\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "Vph = Voc/math.sqrt(3);                               # Per phase Voltage in Volts\n",
      "Wo = Woc/m;                                      # Per phase No-load loss in Watts\n",
      "theta_0 = math.acos(math.radians(Wo/(Voc*Ioc*math.sqrt(3))));           # No-load power factor angle in degree\n",
      "VSC = Vsc/math.sqrt(3);                               # Per phase locked rotor Voltage in Volts\n",
      "WSC = Wsc/m;                                     # Per phase locked rotor loss in Watts\n",
      "theta_sc = math.acos(math.radians(WSC/(VSC*Isc)));                 # No-load power factor angle in degree\n",
      "ISC = Isc*(Voc/Vsc);                             # locked rotor current at full Voltage in Amphere\n",
      "Re = WSC/Isc**2;                                  # resistance in Ohms\n",
      "R1 = R*1.1;                                      # Per phase AC stator resistance in Ohms\n",
      "R_2 = Re - R1;                                   # Per phase rotor resistance in Ohms\n",
      "Zsc = VSC/Isc;                                   # Per phase impedance in Ohms\n",
      "Xs = math.sqrt((Zsc**2)-(Re**2));                       # Leakage reactance in Ohms\n",
      "I_2 = (Voc/math.sqrt(3))/math.sqrt((R1+(R_2/s))**2+(Xs**2)); # Current in Amphere\n",
      "pf = math.cos(math.radians(math.degrees(math.atan(Xs/(R1+(R_2/s))))));               # Power Factor\n",
      "Ws = 2*math.pi*((120*f/p)*(1./60.));                   # Rotational Speed in Radians per Seconds\n",
      "Pg = (3*(abs(I_2)**2*R_2))/s;                     # 3-phase air gap power or Rotor intake Power in Watts\n",
      "T = Pg/Ws;                                       # Torque in Newton-Meter\n",
      "# CALCULATIONS OR DATA OBTAINED FROM CIRCLE DIAGRAM FIGURE 5.35 and PAGE NO:-303\n",
      "OA = 2.60;                                       # Correspounding Current in Amphere at 87' from Y-axis (from Circle diagram)\n",
      "OE = 70.70;                                      # Correspounding Current in Amphere at 55' from Y-axis (from Circle diagram)\n",
      "OP = 17.77;                                      # Current in Amphere (from Circle diagram)\n",
      "OV = Voc/math.sqrt(3);                                # Phase Voltage in No-load test or value obatined from circle diagram in Volts\n",
      "PK = 11.6;                                       # Correspounding Value from Circle diagram\n",
      "JK = 0.8;                                        # Correspounding Value from Circle diagram\n",
      "PJ = 10.8;                                       # Correspounding Value from Circle diagram\n",
      "PM = 11.6;                                       # Correspounding Value from Circle diagram\n",
      "Pir = 3*OV*PK;                                   # Total Rotor intake in Watts\n",
      "Plr = 3*OV*JK;                                   # Total Rotor loss in Watts\n",
      "Po = 3*OV*PJ;                                    # Total Mechanical power output in Watts\n",
      "T_c = (3*OV*PK)/Ws;                              # Total Torque in Newton-Meter\n",
      "s_c = JK/PK;                                     # Slip obtained from Circle diagram\n",
      "s_pc = 100*s_c;                                  # Slip in percentage\n",
      "eta = 100*(PJ/PM);                               # Eifficiency in Percentage\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 5.22 : SOLUTION :-\");\n",
      "print \"   a)  Input line current, I2 = %.2f A \"%(I_2)\n",
      "print \"   b)  Power Factor, Pf = %.3f \"%(pf)\n",
      "print \"   c)  Torque, T = %.2f Nm \"%(T)\n",
      "print \"  Verification Results from Circle Diagram :-\";\n",
      "print \"   a)  Efficency, eta = %.2f Percent \"%(eta)\n",
      "print \"   b)  slip, s = %.3f = %.f percent \"%(s_c,s_pc)\n",
      "print \"   c)  Torque, T = %.2f Nm \"%(T_c)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 5.22 : SOLUTION :-\n",
        "   a)  Input line current, I2 = 17.78 A \n",
        "   b)  Power Factor, Pf = 0.979 \n",
        "   c)  Torque, T = 37.89 Nm \n",
        "  Verification Results from Circle Diagram :-\n",
        "   a)  Efficency, eta = 93.10 Percent \n",
        "   b)  slip, s = 0.069 = 7 percent \n",
        "   c)  Torque, T = 28.14 Nm \n"
       ]
      }
     ],
     "prompt_number": 20
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.23  Page No : 259"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "from numpy import real,imag\n",
      "\n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "R1 = 0.2;                      # Circuit Parameter in Ohms\n",
      "R2 = 0.4;                      # Circuit Parameter in Ohms\n",
      "X1 = 1.0;                      # Circuit Parameter in Ohms\n",
      "X2 = 1.5;                      # Circuit Parameter in Ohms\n",
      "m = 3;                          # Total Number of phase in Induction Motor\n",
      "p = 2;                          # Total number of Poles of Induction Motor\n",
      "f = 50;                         # Frequency in Hertz\n",
      "V = 440;                        # Operating Voltage of the Inductuon Motor\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "Ws = 2*math.pi*f;                               # Synchronous angular speed in Radians per second\n",
      "Z = (R1+R2)+((1j)*(X1+X2));                 # At slip s=1, the impedance seen from the terminals in Ohms\n",
      "s = 1;                                      # Slip\n",
      "\n",
      "# For Case(a) Winding is connected in star\n",
      "\n",
      "Isy_a = V/(abs(Z)*math.sqrt(3));                   # Current in Amphere\n",
      "Tsy_a = (3*Isy_a**2*R2)/(s*Ws);                # Torque in Newton-Meter\n",
      "\n",
      "# Winding is connected in delta\n",
      "\n",
      "Isd_a = (V*math.sqrt(3))/abs(Z);                   # Current in Amphere\n",
      "Tsd_a = (3*(Isd_a/math.sqrt(3))**2*R2)/(s*Ws);      # Torque in Newton-Meter\n",
      "I_R = Isd_a/Isy_a;                            # Ratio of the line current\n",
      "T_R = Tsd_a/Tsy_a;                            # Ratio of the Torque\n",
      " \n",
      "# For Case(b) Machine is started umath.sing auto-transfromer and voltage is 50% reduced\n",
      "\n",
      "Isy_b = (0.5*V)/(abs(Z)*math.sqrt(3));                 # Current in Amphere when Winding is connected star\n",
      "Tsy_b = (3*Isy_b**2*R2)/(s*Ws);                    # Torque in Newton-Meter when Winding is connected star\n",
      "Isd_b = (0.5*V*math.sqrt(3))/abs(Z);                   # Current in Amphere when Winding is connected delta\n",
      "Tsd_b = (3*(Isd_b/math.sqrt(3))**2*R2)/(s*Ws);          # Torque in Newton-Meter when Winding is connected delta\n",
      "\n",
      "# For Case(c) Both Voltage and Frequency are reduced to 50%\n",
      "\n",
      "f_new = (10./100)*f;                               # New Frequency\n",
      "Ws_c = 2*math.pi*f_new;                               # Synchronous angular speed in Radians per second\n",
      "Z_c = ((R1+R2)+((1j)*(X1+X2))*(f_new/f));         # At slip s=1, the impedance seen from the terminals in Ohms\n",
      "Isy_c = (0.1*V)/(abs(Z_c)*math.sqrt(3));               # Current in Amphere when Winding is connected star\n",
      "Tsy_c = (3*Isy_c**2*R2)/(s*Ws_c);                  # Torque in Newton-Meter when Winding is connected star\n",
      "Isd_c = (0.1*V*math.sqrt(3))/abs(Z_c);                 # Current in Amphere when Winding is connected delta\n",
      "Tsd_c = (3*(Isd_c/math.sqrt(3))**2*R2)/(s*Ws_c);        # Torque in Newton-Meter when Winding is connected delta\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 5.23 : SOLUTION :-\");\n",
      "print \" For Case a.1 Winding is connected in star \";\n",
      "print \" a.1.1) Per phase impedance seen from the terminals in Ohms, Z = %.3f < %.1f Ohms \"%(abs(Z),math.degrees(math.atan2(Z.imag,Z.real)));\n",
      "print \" a.1.2) Initial Starting Current , Isy = %.2f A \"%(Isy_a)\n",
      "print \" a.1.3) Starting Torque , Tsy = %.1f Nm \"%(Tsy_a)\n",
      "print \" For Case a.2 Winding is connected in delta \" ;\n",
      "print \" a.2.1) Initial Starting Current , Isd = %.2f A \"%(Isd_a)\n",
      "print \" a.2.2) Starting Torque , Tsd = %.2f Nm \"%(Tsd_a)\n",
      "print \" For Case b Machine is started umath.sing auto-transfromer and voltage is 50 percentage reduced :- b.1 Winding is connected in star  \"\n",
      "print \" b.1.1) Per phase impedance seen from the terminals in Ohms, Z = %.3f<%.1f Ohms \"%(abs(Z),math.degrees(math.atan2(Z.imag,Z.real)));\n",
      "print \" b.1.2) Initial Starting Current , Isy = %.1f A \"%(Isy_b)\n",
      "print \" b.1.3) Starting Torque , Tsy = %.2f Nm \"%(Tsy_b)\n",
      "print \" For Case b.2 Winding is connected in delta \" ;\n",
      "print \" b.2.1) Initial Starting Current , Isd = %.2f A \"%(Isd_b)\n",
      "print \" b.2.2) Starting Torque , Tsd = %.f Nm \"%(Tsd_b)\n",
      "print \" For Case c Both Voltage and Frequency are reduced to 50 percentage :- c.1 Winding is connected in star  \";\n",
      "print \" c.1.1) Per phase impedance seen from the terminals in Ohms, Z =  %.2f<%.2f Ohms \"%(abs(Z_c),math.degrees(math.atan2(Z_c.imag,Z_c.real)));\n",
      "print \" c.1.2) Initial Starting Current , Isy = %.2f A \"%(Isy_c)\n",
      "print \" c.1.3) Starting Torque , Tsy = %.2f Nm \"%(Tsy_c)\n",
      "print \" For Case c.2 Winding is connected in delta \" ;\n",
      "print \" c.2.1) Initial Starting Current , Isd = %.2f A \"%(Isd_c)\n",
      "print \" c.2.2) Starting Torque , Tsd = %.2f Nm \"%(Tsd_c)\n",
      "print 'Comparing the Calculated values of starting current and torque eid rated frequency and rated voltage'\n",
      "print \"                            star                           delta\"\n",
      "print \"                   440V%(50Hz   44V%(5Hz             440V,50Hz   44V,5Hz \"\n",
      "print \" starting current     %.2f A     %.f A               %.f A       %.2f A \"%(Isy_a,Isy_c,Isd_a,Isd_c)\n",
      "print \" starting Torque      %.1f Nm   %.2f Nm             %.f Nm      %.2f Nm \"%(Tsy_a,Tsy_c,Tsd_a,Tsd_c)\n",
      "print \"    [ TEXT BOOK SOLUTION IS PRINTED WRONGLY  I verified by manual calculation ]\" ;\n",
      "print \"      WRONGLY PRINTED ANSWERS ARE :- For Case a.2) Winding is connected in delta :- a) Initial Starting Current Isy = 254.01 A instead of %.2f A  \"%(Isd_a); \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 5.23 : SOLUTION :-\n",
        " For Case a.1 Winding is connected in star \n",
        " a.1.1) Per phase impedance seen from the terminals in Ohms, Z = 2.571 < 76.5 Ohms \n",
        " a.1.2) Initial Starting Current , Isy = 98.81 A \n",
        " a.1.3) Starting Torque , Tsy = 37.3 Nm \n",
        " For Case a.2 Winding is connected in delta \n",
        " a.2.1) Initial Starting Current , Isd = 296.42 A \n",
        " a.2.2) Starting Torque , Tsd = 111.88 Nm \n",
        " For Case b Machine is started umath.sing auto-transfromer and voltage is 50 percentage reduced :- b.1 Winding is connected in star  \n",
        " b.1.1) Per phase impedance seen from the terminals in Ohms, Z = 2.571<76.5 Ohms \n",
        " b.1.2) Initial Starting Current , Isy = 49.4 A \n",
        " b.1.3) Starting Torque , Tsy = 9.32 Nm \n",
        " For Case b.2 Winding is connected in delta \n",
        " b.2.1) Initial Starting Current , Isd = 148.21 A \n",
        " b.2.2) Starting Torque , Tsd = 28 Nm \n",
        " For Case c Both Voltage and Frequency are reduced to 50 percentage :- c.1 Winding is connected in star  \n",
        " c.1.1) Per phase impedance seen from the terminals in Ohms, Z =  0.65<22.62 Ohms \n",
        " c.1.2) Initial Starting Current , Isy = 39.08 A \n",
        " c.1.3) Starting Torque , Tsy = 58.34 Nm \n",
        " For Case c.2 Winding is connected in delta \n",
        " c.2.1) Initial Starting Current , Isd = 117.25 A \n",
        " c.2.2) Starting Torque , Tsd = 175.03 Nm \n",
        "Comparing the Calculated values of starting current and torque eid rated frequency and rated voltage\n",
        "                            star                           delta\n",
        "                   440V%(50Hz   44V%(5Hz             440V,50Hz   44V,5Hz \n",
        " starting current     98.81 A     39 A               296 A       117.25 A \n",
        " starting Torque      37.3 Nm   58.34 Nm             112 Nm      175.03 Nm \n",
        "    [ TEXT BOOK SOLUTION IS PRINTED WRONGLY  I verified by manual calculation ]\n",
        "      WRONGLY PRINTED ANSWERS ARE :- For Case a.2) Winding is connected in delta :- a) Initial Starting Current Isy = 254.01 A instead of 296.42 A  \n"
       ]
      }
     ],
     "prompt_number": 21
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.24  Page No : 264"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "from numpy import imag,real\n",
      "\n",
      "# GIVEN DATA\n",
      "m = 3;                          # Total Number of phase in Induction Motor\n",
      "f = 50;                         # Frequency in Hertz\n",
      "V = 440;                        # Operating voltage of the Induction Motor in Volts\n",
      "R1 = 0.2;                      # Circuit Parameter in Ohms\n",
      "R2 = 0.4;                      # Circuit Parameter in Ohms\n",
      "X1 = 1.0;                      # Circuit Parameter in Ohms\n",
      "X2 = 1.5;                      # Circuit Parameter in Ohms\n",
      "Rc = 150;                      # Circuit Parameter in Ohms\n",
      "Xm = 30;                       # Circuit Parameter in Ohms\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "V1 = V/math.sqrt(3);                                     # Rated Voltage in Volts\n",
      "Zdol = (R1+1j*X1)+(Rc*1j*Xm*(R2+1j*X2))/(Rc*1j*Xm+Rc*(R2+1j*X2)+(1j*Xm)*(R2+1j*X2));                                           # Equivalent impedance per phase in DOL starter in Ohms\n",
      "I = V1/Zdol;                                        # Starting Current in DOL starter in Amphere\n",
      "\n",
      "# For Case(a) A per Phase resistance of 0.5 Ohms is added in Series with the stator circuit\n",
      "\n",
      "Zsr =  (0.5+R1+1j*X1)+((Rc*1j*Xm*(R2+1j*X2))/((Rc*1j*Xm+Rc*(R2+1j*X2)+(1j*Xm)*(R2+1j*X2))));                                     # Total impedance seen from the terminals in Ohms\n",
      "Isr = V1/Zsr;                                         # Starting Current in DOL starter in Amphere\n",
      "\n",
      "# For Case(b) A per Phase resistance of 0.5 Ohms is added in Series with the rotor circuit here assumed that stator to rotor turn ratio is 1.0\n",
      "\n",
      "Zrr =  (R1+1j*X1)+((Rc*1j*Xm*(0.5+R2+1j*X2))/(Rc*1j*Xm+Rc*(0.5+R2+1j*X2)+(1j*Xm)*(0.5+R2+1j*X2)));                            # Total impedance seen from the terminals in Ohms\n",
      "Irr = V1/Zrr;                                      # Starting Current in DOL starter in Amphere\n",
      "\n",
      "# For Case(c) When applied Voltage reduced to 50%\n",
      "\n",
      "I_c = (0.5*V1)/Zdol;                                # Starting Current in DOL starter in Amphere\n",
      "\n",
      "# For Case(d) When Motor is supplied by reduced Voltage of 44V ( Voltage is reduced by 10%) and the reduced frequency is 5Hz\n",
      "\n",
      "f_n = 5;                                          # Reduced Frequency in Hertz\n",
      "X1_n = (f_n/f)*X1;                                # Changed Circuit Parameter in Ohms\n",
      "X2_n = (f_n/f)*X2;                                # Changed Circuit Parameter in Ohms\n",
      "Xm_n = (f_n/f)*Xm;                                # Changed Circuit Parameter in Ohms\n",
      "Zdol_n = (R1+1j*X1_n)+((Rc*1j*Xm_n*(R2+1j*X2_n))/(Rc*1j*Xm_n+Rc*(R2+1j*X2_n)+(1j*Xm_n)*(R2+1j*X2_n)));                         # Equivalent impedance per phase in DOL starter in Ohms\n",
      "I_n = (V1*0.1)/Zdol_n;                            # Starting Current in DOL starter in Amphere\n",
      "Ratio = abs(I_n)/abs(I);                          # Ratio of the Starting Current witha the rated Voltage and frequency to the reduced Voltage and frequency\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 5.24 : SOLUTION :-\");\n",
      "print \" Normal Initial Starting Current in DOL starter, I = %.1f <%.1f A \"%(abs(I),math.degrees(math.atan2(I.imag,I.real)))\n",
      "print \" For Casea A per Phase resistance of 0.5 Ohms is added in Series with the stator circuit \"\n",
      "print \"              Initial Starting Current in DOL starter, I = %.1f <%.2f A \"%(abs(Isr),math.degrees(math.atan2(Isr.imag,Isr.real)))\n",
      "print \"  For Caseb A per Phase resistance of 0.5 Ohms is added in Series with the rotor circuit \"\n",
      "print \"              Initial Starting Current in DOL starter, I = %.2f <%.1f A \"%(abs(Irr),math.degrees(math.atan2(Irr.imag,Irr.real)))\n",
      "print \"  For Casec When applied Voltage reduced to 50 percentage \"\n",
      "print \"              Initial Starting Current in DOL starter, I = %.2f <%.1f A \"%(abs(I_c),math.degrees(math.atan2(I_c.imag,I_c.real)))\n",
      "print \"  For Cased When Motor is supplied by reduced Voltage of 44V  Voltage is reduced by 10 percenatge  and the reduced frequency is 5Hz \"\n",
      "print \"              Initial Starting Current in DOL starter, I = %.1f <%.1f A \"%(abs(I_n),math.degrees(math.atan2(I_n.imag,I_n.real)))\n",
      "print \" By reducing volatge as well as the frequency, the peak starting current at the insmath.tant os starting is reduced by a fector of %.4f of the starting current with the reted volatge and frequency \"%(Ratio)\n",
      "print \"    [ TEXT BOOK SOLUTION IS PRINTED WRONGLY  I verified by manual calculation ]\" ;\n",
      "print \"      WRONGLY PRINTED ANSWERS ARE :- For Cased) When Motor is supplied by reduced Voltage of 44V  Voltage is reduced by 10 percenatge ) and the reduced frequency is 5Hz,  I = 24.1 < 25.6 A instead of %.1f < %.2f) A  \"%(abs(I_n),math.degrees(math.atan2(I_n.imag,I_n.imag)));\n",
      "print \"  Ratio of the Starting Current with the rated Voltage and frequency to the reduced Voltage and frequency, Ratio = 0.2518 instead of %.4f  \"%(Ratio);\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 5.24 : SOLUTION :-\n",
        " Normal Initial Starting Current in DOL starter, I = 101.9 <-76.7 A \n",
        " For Casea A per Phase resistance of 0.5 Ohms is added in Series with the stator circuit \n",
        "              Initial Starting Current in DOL starter, I = 95.7 <-66.09 A \n",
        "  For Caseb A per Phase resistance of 0.5 Ohms is added in Series with the rotor circuit \n",
        "              Initial Starting Current in DOL starter, I = 96.12 <-67.2 A \n",
        "  For Casec When applied Voltage reduced to 50 percentage \n",
        "              Initial Starting Current in DOL starter, I = 50.94 <-76.7 A \n",
        "  For Cased When Motor is supplied by reduced Voltage of 44V  Voltage is reduced by 10 percenatge  and the reduced frequency is 5Hz \n",
        "              Initial Starting Current in DOL starter, I = 127.0 <0.0 A \n",
        " By reducing volatge as well as the frequency, the peak starting current at the insmath.tant os starting is reduced by a fector of 1.2467 of the starting current with the reted volatge and frequency \n",
        "    [ TEXT BOOK SOLUTION IS PRINTED WRONGLY  I verified by manual calculation ]\n",
        "      WRONGLY PRINTED ANSWERS ARE :- For Cased) When Motor is supplied by reduced Voltage of 44V  Voltage is reduced by 10 percenatge ) and the reduced frequency is 5Hz,  I = 24.1 < 25.6 A instead of 127.0 < 0.00) A  \n",
        "  Ratio of the Starting Current with the rated Voltage and frequency to the reduced Voltage and frequency, Ratio = 0.2518 instead of 1.2467  \n"
       ]
      }
     ],
     "prompt_number": 22
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.25  Page No : 267"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "m1 = 3;                          # Total Number of phase in 1st Induction Motor\n",
      "p1 = 6;                          # Total number of Poles of 1st Induction Motor\n",
      "f = 50;                          # Frequency in Hertz\n",
      "m2 = 3;                          # Total Number of phase in 2nd Induction Motor\n",
      "p2 = 10;                         # Total number of Poles of 2nd Induction Motor\n",
      "\n",
      "\n",
      "# CALCULATIONS \n",
      "\n",
      "Ns1 = (120*f)/p1;                           # Synchronous speed of 1st Induction Motor in RPM\n",
      "Ns2 = (120*f)/p2;                           # Synchronous speed of 2nd Induction Motor in RPM\n",
      "Nscu = (120*f)/(p1+p2);                     # Speed during cumalative casade in RPM\n",
      "Ndiff = (120*f)/(p2-p1);                    # Speed during cumalative casade in RPM\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 5.25 : SOLUTION :-\");\n",
      "print \" a)  Range of speed is %.f - %.f - %.f - %.f RPM \"%(Nscu,Ns2,Ns1,Ndiff)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 5.25 : SOLUTION :-\n",
        " a)  Range of speed is 375 - 600 - 1000 - 1500 RPM \n"
       ]
      }
     ],
     "prompt_number": 23
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.26  Page No : 271"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "from numpy import real,imag\n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "m = 3;                          # Total Number of phase in Induction Motor\n",
      "p = 4;                          # Total number of Poles of Induction Motor\n",
      "f = 50;                         # Frequency in Hertz\n",
      "V = 440;                        # Operating Voltage of the Inductuon Motor\n",
      "R1 = 0.25;                      # Circuit Parameter in Ohms\n",
      "R2 = 0.5;                       # Circuit Parameter in Ohms\n",
      "X1 = 1.5;                       # Circuit Parameter in Ohms\n",
      "X2 = 1.5;                       # Circuit Parameter in Ohms\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "Vph = V/math.sqrt(3);                                    # Per phase Voltage in Volts\n",
      "Ns = (120.*f)/p;                                     # Synchoronous Speed in RPM\n",
      "Ws = (2.*math.pi*Ns)/60.;                                 # Roatation Speed in Radians per Seconds\n",
      "\n",
      "# For Case (a) Machine running at, N = 1400 RPM\n",
      "\n",
      "N_a = 1400.;                                         # Machine running in RPM\n",
      "s_a = (Ns-N_a)/Ns;                                  # Slip\n",
      "I_2_a = Vph/(R1+(R2/s_a)+(1j*(X1+X2)));             # Rotor per phase Current referred to the stator side in Amphere\n",
      "Pg_a = 3*(abs(I_2_a)**2*R2)/s_a;                     # 3-phase air gap power or Rotor intake Power in Watts\n",
      "T_a = Pg_a/Ws;                                      # Torque in Newton-Meter\n",
      "\n",
      "# For Case (b) Machine running at, N = 1600 RPM\n",
      "\n",
      "N_b = 1600;                                         # Machine running in RPM\n",
      "s_b = (Ns-N_b)/Ns;                                  # Slip\n",
      "I_2_b = Vph/(R1+(R2/s_b)+(1j*(X1+X2)));             # Rotor per phase Current referred to the stator side in Amphere\n",
      "Pg_b = 3*(abs(I_2_b)**2*R2)/s_b;                     # 3-phase air gap power or Rotor intake Power in Watts\n",
      "T_b = Pg_b/Ws;                                      # Torque in Newton-Meter\n",
      "\n",
      "# For Case (b) Machine running at, N = -100 RPM\n",
      "\n",
      "N_c = -100;                                         # Machine running in RPM\n",
      "s_c = (Ns-N_c)/Ns;                                  # Slip\n",
      "I_2_c = Vph/(R1+(R2/s_c)+(1j*(X1+X2)));             # Rotor per phase Current referred to the stator side in Amphere\n",
      "Pg_c = 3*(abs(I_2_c)**2*R2)/s_c;                     # 3-phase air gap power or Rotor intake Power in Watts\n",
      "T_c = -Pg_c/Ws;                                      # Torque in Newton-Meter (minus sign because its counter oppomath.sing torque)\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 5.26 : SOLUTION :-\");\n",
      "print \" For Case a) Machine running at, N = 1400 RPM  \"\n",
      "print \" a.1) Rotor per phase Current referred to the stator side, I2 = %.2f < %.2f A \"%(abs(I_2_a),math.degrees(math.atan2(I_2_a.imag,real(I_2_a))))\n",
      "print \" a.2) Developed Torque, T = %.2f Nm \"%(T_a)\n",
      "print \" For Case b) Machine running at, N = 1600 RPM  \"\n",
      "print \" a.1) Rotor per phase Current referred to the stator side, I2 = %.2f < %.2f A \"%(abs(I_2_b),math.degrees(math.atan2(I_2_b.imag,real(I_2_b))))\n",
      "print \"   ( angle -157.52 + 180 = 22.48 ) \"\n",
      "print \" a.2) Developed Torque, T = %.2f Nm \"%(T_b)\n",
      "print \" For Case c) Machine running at, N = -100 RPM  \"\n",
      "print \" c.1) Rotor per phase Current referred to the stator side, I2 = %.2f < %.2f A \"%(abs(I_2_c),math.degrees(math.atan2(I_2_c.imag,real(I_2_c))))\n",
      "print \" c.2) Developed Torque, T = %.2f Nm \"%(T_c)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 5.26 : SOLUTION :-\n",
        " For Case a) Machine running at, N = 1400 RPM  \n",
        " a.1) Rotor per phase Current referred to the stator side, I2 = 30.57 < -21.16 A \n",
        " a.2) Developed Torque, T = 133.85 Nm \n",
        " For Case b) Machine running at, N = 1600 RPM  \n",
        " a.1) Rotor per phase Current referred to the stator side, I2 = 32.38 < -157.52 A \n",
        "   ( angle -157.52 + 180 = 22.48 ) \n",
        " a.2) Developed Torque, T = -150.15 Nm \n",
        " For Case c) Machine running at, N = -100 RPM  \n",
        " c.1) Rotor per phase Current referred to the stator side, I2 = 82.35 < -76.53 A \n",
        " c.2) Developed Torque, T = -60.71 Nm \n"
       ]
      }
     ],
     "prompt_number": 24
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.27  Page No : 275"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "m = 3.;                          # Total Number of phase in Induction Motor\n",
      "p = 2.;                          # Total number of Poles of Induction Motor\n",
      "f = 50.;                         # Frequency in Hertz\n",
      "V = 440.;                        # Operating Voltage of the Inductuon Motor\n",
      "R1 = 0.25;                      # Circuit Parameter in Ohms\n",
      "R2 = 0.25;                      # Circuit Parameter in Ohms\n",
      "X1 = 0.75;                      # Circuit Parameter in Ohms\n",
      "X2 = 0.75;                      # Circuit Parameter in Ohms\n",
      "out_hp = 50.;                    # Output of the induction motor in HP\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "V1 = V/math.sqrt(3);                                              # Phase Voltage in Volts\n",
      "I = (out_hp*746.)/(V*math.sqrt(3));                                # Rated Current in Amphere\n",
      "sm = R2/(math.sqrt(R1**2+(X1+X2)**2));                              # Slip at Maximum torque both its in Positive and negative sign\n",
      "Ws = 2*math.pi*((120.*f/p)*(1./60.));                               # Angular Roatation in Radians per Seconds\n",
      "Tm = (3*V1**2)/((2*Ws)*(R1+math.sqrt((R1**2)+(X1+X2)**2)));          # Maximum torque during motoring in Newton-Meter\n",
      "Tg = -(3*V1**2)/((2*Ws)*(-R1+math.sqrt((R1**2)+(X1+X2)**2)));        # Maximum torque during generating in Newton-Meter\n",
      "\n",
      "# For Case (a) slip = 0.05\n",
      "\n",
      "s_a = 0.05;                                                  # Slip\n",
      "T_a = (2*Tm)/((s_a/sm)+(sm/s_a));                            # Torque in Newton-Meter\n",
      "\n",
      "# For Case (b) slip = -0.05\n",
      "\n",
      "s_b = -0.05;                                                  # Slip\n",
      "T_b = (2*Tg)/((s_b/sm)+(sm/s_b));                             # Torque in Newton-Meter\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 5.27 : SOLUTION :-\");\n",
      "print \" Maximim Torque during Motoring Tm = %.f N-m \"%(Tm)\n",
      "print \" Maximim Torque during Generating Tm = %.2f N-m \"%(Tg)\n",
      "print \" For Case a slip = 0.05  \"\n",
      "print \" a.1) Torque, T = %.2f Nm \"%(T_a)\n",
      "print \" For Case b slip = -0.05  \"\n",
      "print \" b.1) Torque, T = %.2f Nm \"%(T_b)\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 5.27 : SOLUTION :-\n",
        " Maximim Torque during Motoring Tm = 174 N-m \n",
        " Maximim Torque during Generating Tm = -242.49 N-m \n",
        " For Case a slip = 0.05  \n",
        " a.1) Torque, T = 96.89 Nm \n",
        " For Case b slip = -0.05  \n",
        " b.1) Torque, T = 135.01 Nm \n"
       ]
      }
     ],
     "prompt_number": 25
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.28  Page No : 277"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "m = 3;                          # Total Number of phase in Induction Motor\n",
      "p = 2;                          # Total number of Poles of Induction Motor\n",
      "f = 50;                         # Frequency in Hertz\n",
      "V = 440;                        # Operating Voltage of the Inductuon Motor in Volts\n",
      "R0 = 0.5;                       # Circuit Parameter in Ohms\n",
      "Ri = 0.05;                      # Circuit Parameter in Ohms\n",
      "X0 = 0.2;                       # Circuit Parameter in Ohms\n",
      "Xi = 0.9;                       # Circuit Parameter in Ohms\n",
      "s = 0.07;                       # Slip\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "Ws = 2*math.pi*f;                                               # Synchronous speed in Radins per second\n",
      "v = V/math.sqrt(3);                                              # Phase Voltage in Volts\n",
      "Io = v/(R0+1j*X0);                                          # Starting Current in the outer cage in Amphere\n",
      "Ii = v/(Ri+1j*Xi);                                          # Starting Current in the inner cage in Amphere\n",
      "Tst = ((3*abs(Io)**2*R0)/Ws)+((3*abs(Ii)**2*Ri)/Ws);          # Starting torque i.e at smath.degrees(math.atanstill, s=1\n",
      "Ios = v/((R0/s)+(1j*X0));                                   # Current in the outer cage at slip = 0.07\n",
      "Iis = v/((Ri/s)+(1j*Xi));                                   # Current in the outer cage at slip = 0.07\n",
      "T = ((3*abs(Ios)**2*R0)/(s*Ws))+((3*abs(Iis)**2*Ri)/(s*Ws));          # Starting torque at s=0.07 in Newton-Meter\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 5.28 : SOLUTION :-\");\n",
      "print \" a) Starting torque Tst = %.2f Nm \"%(Tst)\n",
      "print \" b) Running torque at slip = 0.07 T = %.2f Nm \"%(T)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 5.28 : SOLUTION :-\n",
        " a) Starting torque Tst = 1100.42 Nm \n",
        " b) Running torque at slip = 0.07 T = 419.62 Nm \n"
       ]
      }
     ],
     "prompt_number": 26
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.29  Page No : 278"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "p = 4;                          # Total number of Poles of Induction Motor\n",
      "f = 50;                         # Frequency in Hertz\n",
      "V = 440;                        # Operating Voltage of the Inductuon Motor in Volts\n",
      "out = 25*1000;                  # Power rating of the Induction motor in Watts\n",
      "R0 = 2.5;                       # Circuit Parameter in Ohms\n",
      "Ri = 0.5;                       # Circuit Parameter in Ohms\n",
      "X0 = 1.0;                       # Circuit Parameter in Ohms\n",
      "Xi = 5.0;                       # Circuit Parameter in Ohms\n",
      "Rc = 500;                       # Circuit Parameter in Ohms\n",
      "R1 = 0.2;                       # Circuit Parameter in Ohms\n",
      "Xm = 50;                        # Circuit Parameter in Ohms\n",
      "X123 = 2.0;                     # Circuit Parameter in Ohms\n",
      "s = 0.05;                       # Slip\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "Ws = (2*math.pi*120*f)/(p*60);                                # Synchronous speed in Radins per second\n",
      "Zo = (R0/s)+(1j*X0);                                      # Outer cage impedance at slip = 0.05 in Ohms\n",
      "Zi = (Ri/s)+(1j*Xi);                                      # Inner cage impedance at slip = 0.05 in Ohms\n",
      "Z = (R1+1j*X123)+((Zo*Zi)/(Zo+Zi));                       # Total impdance in Ohms\n",
      "I = V/Z;                                                  # Current in the Cage winding in Amphere\n",
      "Io = (I*((Zo*Zi)/(Zo+Zi)))/Zo;                            # Current in the outer cage in Amphere\n",
      "Ii = (I*((Zo*Zi)/(Zo+Zi)))/Zi;                            # Current in the inner cage in Amphere\n",
      "T = ((3*abs(Io)**2*R0)/(s*Ws))+((3*abs(Ii)**2*Ri)/(s*Ws));  # Starting torque in Newton-Meter\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 5.29 : SOLUTION :-\");\n",
      "print \" a) Torque at slip %.2f T = %.2f Nm \"%(s,T)\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 5.29 : SOLUTION :-\n",
        " a) Torque at slip 0.05 T = 296.11 Nm \n"
       ]
      }
     ],
     "prompt_number": 27
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.30  Page No : 282"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "from numpy import real,imag\n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "m = 1;                          # Total Number of phase in Induction Motor\n",
      "p = 2;                          # Total number of Poles of Induction Motor\n",
      "f = 50;                         # Frequency in Hertz\n",
      "V = 220;                        # Operating Voltage of the Inductuon Motor in Volts\n",
      "R1 = 10;                        # Circuit Parameter in Ohms\n",
      "R2 = 11;                        # Circuit Parameter in Ohms\n",
      "X1 = 12;                        # Circuit Parameter in Ohms\n",
      "X2 = 12;                        # Circuit Parameter in Ohms\n",
      "Xm = 125;                       # Circuit Parameter in Ohms\n",
      "s = 0.03;                       # Slip\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "Zf = ((1j*Xm/2)*((R2/(2*s))+(1j*X2/2)))/((1j*Xm/2)+(R2/(2*s))+(1j*X2/2));               # Impedance offered by the forward field in Ohms\n",
      "Zb = ((1j*Xm/2)*((R2/(2*(2-s)))+(1j*X2/2)))/((1j*Xm/2)+(R2/(2*(2-s)))+(1j*X2/2));       # Impedance offered by the backward field in Ohms \n",
      "Z = (R1+1j*X1)+Zf+Zb;                               # Total Impedance in Ohms\n",
      "I = V/Z;                                            # Total input current in Amphere\n",
      "pf = math.cos(math.radians(math.degrees(math.atan2(I.imag,I.real))));                  # Power Factor (lagging)\n",
      "Vf = I*Zf;                                          # Forward Volatge at slip 0.03 in Volts\n",
      "Vb = I*Zb;                                          # Backward Volatge at slip 0.03 in Volts\n",
      "If = Vf/(0.5*R2/s);                                 # Forward Current in Amphere\n",
      "Ib = Vb/(0.5*R2/(2-s));                             # Forward Current in Amphere\n",
      "Ws = 2*math.pi*f;                                       # Synchronous Speed in radians per second\n",
      "T =  ((0.5*(If**2)*R2)/(s*Ws))-((0.5*(Ib**2)*R2)/((2-s)*Ws));          # Starting torque\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 5.30 : SOLUTION :-\");\n",
      "print \" a) Input Current, I = %.2f < %.f A \"%(abs(I),math.degrees(math.atan2(I.imag,I.real)))\n",
      "print \" b) Power factor, pf = %.2f Lagging \"%(pf)\n",
      "print \" c) Developed Torque, T = %.3f Nm \"%(T.real)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 5.30 : SOLUTION :-\n",
        " a) Input Current, I = 2.77 < -67 A \n",
        " b) Power factor, pf = 0.39 Lagging \n",
        " c) Developed Torque, T = 0.134 Nm \n"
       ]
      }
     ],
     "prompt_number": 28
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.31  Page No : 287"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "from numpy import real,imag\n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "Wsc = 900;                     # Power at Blocked Rotor test in Watts\n",
      "Vsc = 200;                     # Voltage at Blocked Rotor test in Volts\n",
      "Isc = 5.0;                     # Current at Blocked Rotor test in Amphere\n",
      "Wo = 60;                       # Power at No-load test in Watts\n",
      "Vo = 220;                      # Voltage at No-load test in Volts\n",
      "Io = 1.5;                      # Current at No-load test in Amphere \n",
      "m = 1;                         # Total Number of phase in Induction Motor\n",
      "p = 4;                         # Total number of Poles of Induction Motor\n",
      "V = 220;                       # Operating voltage of the Induction motor in Volts\n",
      "f = 50;                        # Frequency in Hertz\n",
      "s = 0.07;                      # Slip\n",
      "R1 = 12;                       # resistance of the main primary winding in Ohms\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "Zsc = Vsc/Isc;                      # Impedance in Blocked Rotor test in Ohms\n",
      "Rsc = Wsc/(Isc**2);                  # resistance in Blocked Rotor test in Ohms\n",
      "Xsc = math.sqrt((Zsc**2)-(Rsc**2));        # reactance in Blocked Rotor test in Ohms\n",
      "Xl1 = Xsc/2;                        # Leakage reactance of stator and rotor to be equal in Ohms\n",
      "Xl2 = Xsc/2;                        # Leakage reactance of stator and rotor to be equal in Ohms\n",
      "R2 = Rsc-R1;                    # Equivalent resistance of rotor referred to stator in Ohms\n",
      "Z0 = Vo/Io;                         # Impedance in Blocked Rotor test in Ohms\n",
      "R0 = Wo/(Io**2);                     # resistance in Blocked Rotor test in Ohms\n",
      "X0 = math.sqrt((Z0**2)-(R0**2));           # reactance in Blocked Rotor test in Ohms\n",
      "Wloss = Wo - ((Io**2)*(R1+R2));      # Loss in Watts\n",
      "Xm_half = X0-Xl1-Xl2/2;\n",
      "R2f = (R2/s)+((1j*Xl2)/2);                             # Forward resiamath.tance in Ohms\n",
      "Zf = ((1j*Xm_half)*R2f)/(1j*Xm_half+R2f);              # Total Forward impedance in Ohms\n",
      "R2b = (R2/(2-s))+((1j*Xl2)/2);                         # Backward resiamath.tance in Ohms\n",
      "Zb = ((1j*Xm_half)*R2b)/(1j*Xm_half+R2b);              # Total Backward impedance in Ohms\n",
      "Z = Zf+Zb+(R1+1j*Xl1);                                 # Total impedance in Ohms\n",
      "I = V/Z;                                               # Motor Current in Amphere\n",
      "pf = math.cos(math.radians(math.degrees(math.atan2(I.imag,I.real))));                      # Power Factor (lagging)\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 5.31 : SOLUTION :-\");\n",
      "print \" Circuit Parameters are  a) Leakage reactance of stator and rotor to be equal, Xl1 = Xl2 = %.2f Ohms \"%(Xl1)\n",
      "print \" b) Equivalent resistance of rotor referred to stator, R2 = %.f Ohms \"%(R2)\n",
      "print \" c) Total Forward impedance, Zf = %.1f < %.2f Ohms \"%(abs(Zf),math.degrees(math.atan2(Zf.imag,Zf.real)))\n",
      "print \" c) Total Backward impedance, Zb = %.2f < %.2f Ohms \"%(abs(Zb),math.degrees(math.atan2(Zb.imag,Zb.real)))\n",
      "print \" d) Total impedance, Z = %.2f < %.2f Ohms \"%(abs(Z),math.degrees(math.atan2(Z.imag,Z.real)))\n",
      "print \" e) Input Current, I = %.2f < %.2f A \"%(abs(I),math.degrees(math.atan2(I.imag,I.real)))\n",
      "print \" f) Power factor, pf = %.2f Lagging \"%(pf)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 5.31 : SOLUTION :-\n",
        " Circuit Parameters are  a) Leakage reactance of stator and rotor to be equal, Xl1 = Xl2 = 8.72 Ohms \n",
        " b) Equivalent resistance of rotor referred to stator, R2 = 24 Ohms \n",
        " c) Total Forward impedance, Zf = 122.0 < 69.16 Ohms \n",
        " c) Total Backward impedance, Zb = 12.70 < 24.56 Ohms \n",
        " d) Total impedance, Z = 144.44 < 62.39 Ohms \n",
        " e) Input Current, I = 1.52 < -62.39 A \n",
        " f) Power factor, pf = 0.46 Lagging \n"
       ]
      }
     ],
     "prompt_number": 29
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.32  Page No : 288"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "from numpy import imag,real\n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "Wsc = 600;                     # Power at Blocked Rotor test in Watts\n",
      "Vsc = 125;                     # Voltage at Blocked Rotor test in Volts\n",
      "Isc = 15.0;                    # Current at Blocked Rotor test in Amphere\n",
      "Wo = 360;                      # Power at No-load test in Watts\n",
      "Vo = 220;                      # Voltage at No-load test in Volts\n",
      "Io = 6.5;                      # Current at No-load test in Amphere \n",
      "m = 1;                         # Total Number of phase in Induction Motor\n",
      "p = 4;                         # Total number of Poles of Induction Motor\n",
      "V = 220;                       # Operating voltage of the Induction motor in Volts\n",
      "f = 50;                        # Frequency in Hertz\n",
      "s = 0.05;                      # Slip\n",
      "R1 = 1.2;                      # resistance of the main primary winding in Ohms\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "Zlr = Vsc/Isc;                      # Impedance in Blocked Rotor test in Ohms\n",
      "Rlr = Wsc/(Isc**2);                  # resistance in Blocked Rotor test in Ohms\n",
      "Xlr = math.sqrt((Zlr**2)-(Rlr**2));        # reactance in Blocked Rotor test in Ohms\n",
      "Xl1 = Xlr/2;                        # Leakage reactance of stator and rotor to be equal in Ohms\n",
      "Xl2 = Xlr/2;                        # Leakage reactance of stator and rotor to be equal in Ohms\n",
      "R2 = (Rlr-R1);                      # Equivalent resistance of rotor referred to stator in Ohms\n",
      "R2_half = R2/2;                     # Equivalent resistance of rotor referred to stator in Ohms\n",
      "Z0 = Vo/Io;                         # Impedance in Blocked Rotor test in Ohms\n",
      "R0 = Wo/(Io**2);                     # resistance in Blocked Rotor test in Ohms\n",
      "X0 = math.sqrt((Z0**2)-(R0**2));           # reactance in Blocked Rotor test in Ohms\n",
      "Wloss = Wo - ((Io**2)*(R1+R2));      # Loss in Watts\n",
      "Xm_half = X0-Xl1-Xl2/2;\n",
      "R2f = (R2/(2*s))+((1j*Xl2)/2);                         # Forward resiamath.tance in Ohms\n",
      "Zf = ((1j*Xm_half)*R2f)/(1j*Xm_half+R2f);              # Total Forward impedance in Ohms\n",
      "R2b = (R2/(2*(2-s)))+((1j*Xl2)/2);                     # Backward resiamath.tance in Ohms\n",
      "Zb = ((1j*Xm_half)*R2b)/(1j*Xm_half+R2b);              # Total Backward impedance in Ohms\n",
      "Z = Zf+Zb+(R1+1j*Xl1);                                 # Total impedance in Ohms\n",
      "I = V/Z;                                               # Motor Current in Amphere\n",
      "pf = math.cos(math.radians(math.degrees(math.atan2(I.imag,I.real))));                     # Power Factor (lagging)\n",
      "Vf = I*Zf;                                             # Voltage across forward impedance in Volts\n",
      "If = Vf/R2f;                                           # Forward current producing torque in Amphere\n",
      "Tf = ((abs(If)**2)*R2)/(2*s);                           # Forward torque in synchronous Watts\n",
      "Vb = I*Zb;                                             # Voltage across Backward impedance in Volts\n",
      "Ib = Vb/R2b;                                           # Backward current producing torque in Amphere\n",
      "Tb = ((abs(Ib)**2)*R2)/(2*(2-s));                       # Backward torque in synchronous Watts\n",
      "T = Tf-Tb;                                             # Net torque in Synchronous Watts\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 5.32 : SOLUTION :-\");\n",
      "print \" Circuit Parameters are  a) Leakage reactance of stator and rotor to be equal, Xl1 = Xl2 = %.2f Ohms \"%(Xl1)\n",
      "print \" b) Equivalent resistance of rotor referred to stator,R2 = %.2f Ohms \"%(R2)\n",
      "print \" c) Total Forward impedance, Zf = %.1f < %.2f Ohms \"%(abs(Zf),math.degrees(math.atan2(Zf.imag,Zf.real)))\n",
      "print \" c) Total Backward impedance, Zb = %.2f < %.2f Ohms \"%(abs(Zb),math.degrees(math.atan2(Zb.imag,Zb.real)))\n",
      "print \" d) Total impedance, Z = %.2f < %.2f Ohms \"%(abs(Z),math.degrees(math.atan2(Z.imag,Z.real)))\n",
      "print \" e) Input Current, I = %.2f < %.f A \"%(abs(I),math.degrees(math.atan2(I.imag,I.real)))\n",
      "print \" f) Power factor, pf = %.4f Lagging \"%(pf)\n",
      "print \" g) Forward torque, Tf = %.2f Synchronous Watts \"%(Tf)\n",
      "print \" h) Backward torque, Tb = %.2f Synchronous Watts \"%(Tb)\n",
      "print \" i) Net torque, T = %.2f Synchronous Watts \"%(T)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 5.32 : SOLUTION :-\n",
        " Circuit Parameters are  a) Leakage reactance of stator and rotor to be equal, Xl1 = Xl2 = 3.95 Ohms \n",
        " b) Equivalent resistance of rotor referred to stator,R2 = 1.47 Ohms \n",
        " c) Total Forward impedance, Zf = 12.3 < 34.65 Ohms \n",
        " c) Total Backward impedance, Zb = 1.87 < 79.96 Ohms \n",
        " d) Total impedance, Z = 17.28 < 47.68 Ohms \n",
        " e) Input Current, I = 12.73 < -48 A \n",
        " f) Power factor, pf = 0.6733 Lagging \n",
        " g) Forward torque, Tf = 1638.70 Synchronous Watts \n",
        " h) Backward torque, Tb = 52.90 Synchronous Watts \n",
        " i) Net torque, T = 1585.80 Synchronous Watts \n"
       ]
      }
     ],
     "prompt_number": 30
    }
   ],
   "metadata": {}
  }
 ]
}