summaryrefslogtreecommitdiff
path: root/Electrical_Machines_by_R._K._Srivastava/ch4.ipynb
blob: c63620390d0bf921af9bc6c3ead790dbf877808c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
{
 "metadata": {
  "name": "",
  "signature": "sha256:464b75634e7d41030e7ad9ee1cdf9d06dc7df25db4fc0612eef773b75ea834da"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 4 : Direct Current Machines"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.1  Page No : 99"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "N = 600;                   # Speed of the driven Machine in RPM\n",
      "D = 2;                     # Diameter of the Machine in Meter\n",
      "L = 0.3;                   # Length of the Machine in Meter\n",
      "Bm = 1.0;                  # Flux Density in Weber per Meter-Square \n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "n = N/60;                   # Revolution per second \n",
      "v = math.pi * D * n;            # Peripheral velocity in Meter per second\n",
      "E = Bm * v * L;             # Maximum EMF induced in the Conducter in Volts\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 4.1 : SOLUTION :-\") ;\n",
      "print \" a) Maximum EMF induced in the Conducter , E = %.3f V  \"%(E);\n",
      "print \"    [ TEXT BOOK SOLUTION IS PRINTED WRONGLY  I verified by manual calculation ]\" ;\n",
      "print \"      WRONGLY PRINTED ANSWERS ARE :- a)Induced EMF, E = 2.826 V instead of %.3f A  \"%(E);\n",
      "print \" From Calculation of the peripheral velocity(v), rest all the Calculated values in the TEXT BOOK is WRONG because of the peripheral velocity(v) value is WRONGLY calculated and the same used for the further Calculation part \"\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 4.1 : SOLUTION :-\n",
        " a) Maximum EMF induced in the Conducter , E = 18.850 V  \n",
        "    [ TEXT BOOK SOLUTION IS PRINTED WRONGLY  I verified by manual calculation ]\n",
        "      WRONGLY PRINTED ANSWERS ARE :- a)Induced EMF, E = 2.826 V instead of 18.850 A  \n",
        " From Calculation of the peripheral velocity(v), rest all the Calculated values in the TEXT BOOK is WRONG because of the peripheral velocity(v) value is WRONGLY calculated and the same used for the further Calculation part \n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.2  Page No : 101"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "p = 8;                          # Number of the poles in Dc machine\n",
      "a = 8;                          # Number of the Parallel path\n",
      "N = 500;                        # Rotation per minute in RPM\n",
      "phi = 0.095;                    # Average flux in air gap in Weber per meter\n",
      "Za = 1000;                      # Total number of the Conductor in Armature\n",
      "\n",
      "\n",
      "# CALCUALTIONS\n",
      "\n",
      "n = N/60;                       # Rotation (Revolution) per Second\n",
      "E = (p/a)*n*phi*Za;             # EMF induced in Volts\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 4.2 : SOLUTION :-\") ;\n",
      "print \" a) EMF induced , E = %.1f A  \"%(E);\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 4.2 : SOLUTION :-\n",
        " a) EMF induced , E = 760.0 A  \n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.3  Page No : 104"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "E = 420;                # EMF induced in Volts\n",
      "N = 900;                # Rotation speed in RPM\n",
      "phi = 0.06;             # Flux per pole in Weber per pole\n",
      "Two_p = 4;              # Total number of poles \n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "n = N/60;                       # Revolution Per second\n",
      "Zc = E/(Two_p*phi*n);           # Number of the Conductor in Parallel Path\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 4.3 : SOLUTION :-\") ;\n",
      "print \" a) Number of the Conductor in Parallel Path , Zc = %.2f Conductors nearly 117 conductors  \"%(Zc);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 4.3 : SOLUTION :-\n",
        " a) Number of the Conductor in Parallel Path , Zc = 116.67 Conductors nearly 117 conductors  \n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.4  Page No : 106"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "L = 0.3;            # Length of the Machine in Meter\n",
      "Ia = 10;            # Current through The Conductors in Ampheres\n",
      "N = 10;             # Number of the Conductors in each Slot\n",
      "Za = 24;            # Number of the Slots\n",
      "Bav = 0.6;          # Average Flux Density in Telsa\n",
      "D = 0.1;            # Machine Daimeter in Meter\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "F = N*Ia*Bav*L;                # Force due to the Single Slot in Newton\n",
      "T = (Bav*L*Ia*N*D*Za)/2        # Torque produced in the Machine in Newton-Meter\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 4.4 : SOLUTION :-\") ;\n",
      "print \" a) Torque produced in the Machine, T = %.1f N-m \"%(T);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 4.4 : SOLUTION :-\n",
        " a) Torque produced in the Machine, T = 21.6 N-m \n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.5  Page No : 109"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "p = 4.;              # Number of the Poles in the DC machine\n",
      "Nt = 100.;           # Number of the turns in the Dc machine\n",
      "N = 600.;            # Rotation speed of the DC machine in RPM\n",
      "E = 220.;            # EMF generated in open circuit in Volts\n",
      "Z = 200.;            # Total number of the Conductor in armature\n",
      "\n",
      "\n",
      "# CALCUALTIONS\n",
      "# For case (a) Lap Connected\n",
      "\n",
      "a = 4.;                          # Number of the Poles in the DC machine\n",
      "n = N/60;                       # Revolution per second\n",
      "phi_a = (E*a)/(p*Z*n);          # Useful flux per pole when Armature is Lap connected in Weber\n",
      "\n",
      "# For case (b) Wave Connected\n",
      "\n",
      "a = 2;                          # Number of the Poles in the DC machine\n",
      "phi_b = (E*a)/(p*Z*n);          # Useful flux per pole when Armature is Wave connected in Weber\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 4.5 : SOLUTION :-\") ;\n",
      "print \" a) Useful flux per pole when Armature is Lap connected , phi = %.1f Wb   \"%(phi_a);\n",
      "print \" B) Useful flux per pole when Armature is Lap connected , phi = %.3f Wb   \"%(phi_b);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 4.5 : SOLUTION :-\n",
        " a) Useful flux per pole when Armature is Lap connected , phi = 0.1 Wb   \n",
        " B) Useful flux per pole when Armature is Lap connected , phi = 0.055 Wb   \n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.6  Page No : 113"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "p = 6;                      # Number of the pole in DC Motor\n",
      "Ia = 20;                    # Armature Current in Amphere \n",
      "Z = 1000;                   # Number of the Conductors\n",
      "a = 6;                      # Number of the Parallel paths\n",
      "phi = 25 * 10 ** -3;         # Flux per pole in Weber\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "T = (p/a)*((Z*Ia*phi)/(2*math.pi));        # Deleloped Torque in Newton-Meter\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 4.6 : SOLUTION :-\") ;\n",
      "print \" a) Developed Torque in an Six-pole DC Motor , T = %.1f N-m  \"%(T);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 4.6 : SOLUTION :-\n",
        " a) Developed Torque in an Six-pole DC Motor , T = 79.6 N-m  \n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.7  Page No : 114"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "p = 2;                  # Number of the Pole\n",
      "N = 1000;               # Rotation speed of the Armature in RPM\n",
      "Ia = 20;                # Armature Current in Amphere\n",
      "CS = 36;                # Commutator Segments\n",
      "BW = 1.4;               # Brush width is 1.4 times of the Commutator Segments\n",
      "L = 0.09 * 10 ** -3;     # Inducatnce of the each Armature Coil\n",
      "\n",
      "\n",
      "# CALULATIONS\n",
      "\n",
      "a = p;                  # Number of the Parallel paths (Equal to number of poles because Lap Connected Armature\n",
      "n = N/60;               # Revoultion per second\n",
      "I = Ia/2;               # Current Through the each Conductor in Amphere\n",
      "v = n * CS;             # Peripheral Velocity of Commutator in Commutator segments per Seconds\n",
      "Tc = BW/v;              # Time of the Commutation in Seconds\n",
      "Er = (L*2*I)/Tc;        # reactance voltage in Volts\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 4.7 : SOLUTION :-\") ;\n",
      "print \" a) reactance voltage assuming Linear Commutation , Er = %.4f V \"%(Er);\n",
      "print \"    [ TEXT BOOK SOLUTION IS PRINTED WRONGLY  I verified by manual calculation ]\" ;\n",
      "print \"     WRONGLY PRINTED ANSWERS ARE :- a) Tc = 0.014 s instead of %.4f s \"%(Tc);\n",
      "print \"                                    b) Er = 1.2857 V instead of %.4f V\"%(Er);\n",
      "print \" From Calculation of the Time of commutation Tc), rest all the Calculated values in the TEXT BOOK is WRONG because of the Time of commutation Tc) value is WRONGLY calculated and the same used for the further Calculation part \"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 4.7 : SOLUTION :-\n",
        " a) reactance voltage assuming Linear Commutation , Er = 0.7406 V \n",
        "    [ TEXT BOOK SOLUTION IS PRINTED WRONGLY  I verified by manual calculation ]\n",
        "     WRONGLY PRINTED ANSWERS ARE :- a) Tc = 0.014 s instead of 0.0024 s \n",
        "                                    b) Er = 1.2857 V instead of 0.7406 V\n",
        " From Calculation of the Time of commutation Tc), rest all the Calculated values in the TEXT BOOK is WRONG because of the Time of commutation Tc) value is WRONGLY calculated and the same used for the further Calculation part \n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.8  Page No : 117"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "\n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "N = 800;                # Rotation speed of the Commutator in RPM\n",
      "D = 50;                # Diameter in Centimeter\n",
      "BW = 1.5;               # Brush Width in Centimeter\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "r = D/2;                   # Radius in Centimeter\n",
      "n = N/60;                  # Revoultion per second\n",
      "w = (2 * math.pi)*n;           # Angular velocity \n",
      "v = w*r;                   # Peripheral Speed in centimeter per second\n",
      "Tc = (BW/v)*1000;                 # Time of the Commutation in Second\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 4.8 : SOLUTION :-\") ;\n",
      "print \" a) Time of the Commutation , Tc = %.4f ms \"%(Tc);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 4.8 : SOLUTION :-\n",
        " a) Time of the Commutation , Tc = 0.7346 ms \n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.9  Page No : 119"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "p = 4;                      # Number of the pole in the Generator\n",
      "Ia = 100;                   #  supplying Current by the Generator in Amphere\n",
      "Za = 500;                   # Armature conductor\n",
      "beta = 8;                   # Brush shift in degrees\n",
      "If = 5;                     # Current in the Seperately exicted field winding \n",
      "ratio = 0.7;                # Ratio of Pole arc to Pole pitch\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "# For case (a) Lap winding\n",
      "\n",
      "a_a = p;                                         # Number of the Parallel Paths\n",
      "AT_a = (Za*Ia)/(2*a_a*p);                        # Amphere turns per pole\n",
      "ATd_a = (beta*Za*Ia)/(360*a_a);                  # Demagnetizing Armature Amphere turns per pole\n",
      "ATc_a = ((1/p)-(beta/180))*((Za*Ia)/(2*a_a));    # CrossMagnetizing Armature Amphere turns per pole\n",
      "ATw_a = ratio*AT_a;                            # Amphere turns of Compensating winding\n",
      "\n",
      "# For case (b) Wave winding\n",
      "\n",
      "a_b = p/2;                                       # Number of the Parallel Paths\n",
      "AT_b = (Za*Ia)/(2*a_b*p);                        # Amphere turns per pole\n",
      "ATd_b = (beta*Za*Ia)/(360*a_b);                  # Demagnetizing Armature Amphere turns per pole\n",
      "ATc_b = ((1/p)-(beta/180))*((Za*Ia)/(2*a_b));    # CrossMagnetizing Armature Amphere turns per pole\n",
      "ATw_b = ratio*AT_b;                              # Amphere turns of Compensating winding\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 4.9 : SOLUTION :-\") ;\n",
      "print \" For LAP winding  a.1) Amphere turns per pole, AT = %.1f AT \"%(AT_a);\n",
      "print \" a.2) Demagnetizing Armature Amphere turns per pole, ATd = %.1f AT \"%(ATd_a);\n",
      "print \" a.3) Cross-Magnetizing Armature Amphere turns per pole, ATc = %.1f AT \"%(ATc_a);\n",
      "print \" a.4) Amphere turns of Compensating winding, ATw = %.1f AT \"%(ATw_a);\n",
      "print \" For WAVE winding  b.1) Amphere turns per pole, AT = %.f AT \"%(AT_b);\n",
      "print \" b.2) Demagnetizing Armature Amphere turns per pole, ATd = %.2f AT \"%(ATd_b);\n",
      "print \" b.3) Cross-Magnetizing Armature Amphere turns per pole, ATc = %.f AT \"%(ATc_b);\n",
      "print \" b.4) Amphere turns of Compensating winding, ATw = %.1f AT \"%(ATw_b);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 4.9 : SOLUTION :-\n",
        " For LAP winding  a.1) Amphere turns per pole, AT = 1562.0 AT \n",
        " a.2) Demagnetizing Armature Amphere turns per pole, ATd = 277.0 AT \n",
        " a.3) Cross-Magnetizing Armature Amphere turns per pole, ATc = 0.0 AT \n",
        " a.4) Amphere turns of Compensating winding, ATw = 1093.4 AT \n",
        " For WAVE winding  b.1) Amphere turns per pole, AT = 3125 AT \n",
        " b.2) Demagnetizing Armature Amphere turns per pole, ATd = 555.00 AT \n",
        " b.3) Cross-Magnetizing Armature Amphere turns per pole, ATc = 0 AT \n",
        " b.4) Amphere turns of Compensating winding, ATw = 2187.5 AT \n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.10  Page No : 121"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "p = 6;                      # Number of the Poles\n",
      "P = 100 * 10 ** 3;           # Power rating of the DC machine in KiloWatts\n",
      "V = 440;                    # Voltage rating of the DC machine in Volts\n",
      "Z = 500;                    # Total number of the Armature Conductor\n",
      "Ig = 1.0 * 10 ** -2;         # Interpolar Air gap in Meter\n",
      "Bi = 0.28;                  # Interpolar Flux Densist in Weber per Meter-Square\n",
      "mue_0 = 4*math.pi*10** -7;       # Permeability of the air in Henry/Meter\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "Ia = P/V;                                # Full load current in Amphere\n",
      "a = p;                                   # Number of the Parallel path (Equal to p because LAP WINDING\n",
      "ATi = (Z*Ia)/(2*a*p)+((Bi*Ig)/mue_0);     # Amphere turns for each Interpole \n",
      "Nc = ATi/Ia;                             # Number of turns per pole of interpole\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 4.10 : SOLUTION :-\") ;\n",
      "print \" a) Amphere turns for each Interpol, ATi = %.2f AT \"%(ATi);\n",
      "print \" b) Number of turns per pole of interpole, Nc = %.2f turns per pole nearly %.f turns per pole \"%(Nc,Nc);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 4.10 : SOLUTION :-\n",
        " a) Amphere turns for each Interpol, ATi = 3804.17 AT \n",
        " b) Number of turns per pole of interpole, Nc = 16.76 turns per pole nearly 17 turns per pole \n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.11  Page No : 126"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "print \" EXAMPLE : 4.11 :           Given Data between the Field current and Open-Circuit EMF generated by DC shunt wound Generator \";\n",
      "print \" IfA    0       1       2       3       4       5       6  \";\n",
      "print \" Vocv  10      90      170     217.5   251     272.5   281 \";\n",
      "N = 1000.;               # Speed of an DC Shunt wound generator on open circuit in RPM\n",
      "Rf = 50.;                # Shunt field resistance in Ohms\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "# Refer Figure 4.20:- Page no. 180\n",
      "\n",
      "Vt = 277.17;                    # Terminal Voltage in Volts from Figure 4.20 (The slope of the resistance line Rf cuts the OCC at this Voltage [point]\n",
      "Voc_r = 90;                     # Critical Open circuit voltage in Volts from Figure 4.20 page no. 180\n",
      "If_r = 1.0;                     # Critical Field current in Amphere from Figure 4.20 page no. 180\n",
      "Rc = Voc_r/If_r;                # Crictical field resistance in Ohms\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 4.11 : SOLUTION :-\") ;\n",
      "print \" a) Crictical field resistance, Rc = %.f Ohms \"%(Rc);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " EXAMPLE : 4.11 :           Given Data between the Field current and Open-Circuit EMF generated by DC shunt wound Generator \n",
        " IfA    0       1       2       3       4       5       6  \n",
        " Vocv  10      90      170     217.5   251     272.5   281 \n",
        "EXAMPLE : 4.11 : SOLUTION :-\n",
        " a) Crictical field resistance, Rc = 90 Ohms \n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.12  Page No : 130"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "print \" EXAMPLE : 4.12 :           Given Data between the Field current and Open-Circuit EMF generated by DC Machine \";\n",
      "print \" IfA   0      0.25      0.5      1.0      1.5      2.0      2.5     3.0 \";\n",
      "print \" Vocv  8       43        77      151      198      229      253     269\";\n",
      "N = 600;                  # Speed of an DC Shunt wound generator on open circuit in RPM\n",
      "Rf1 = 100;                # Shunt field resistance in Ohms\n",
      "Rf2 = 125;                # Shunt field resistance in Ohms\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "# Refer Figure 4.21:- Page no. 181\n",
      "\n",
      "Vt1 = 253.33;                   # Terminal Voltage in Volts correspounding to field resistance of 100 Ohms from Figure4.21 Page no. 181 (The slope of the resistance line Rf cuts the OCC at this Voltage [point]\n",
      "Vt2 = 213.33;                   # Terminal Voltage in Volts correspounding to field resistance of 125 Ohms from Figure 4.21 Page no. 181 (The slope of the resistance line Rf cuts the OCC at this Voltage [point]\n",
      "Voc_r = 151;                    # Critical Open circuit voltage in Volts from Figure 4.20\n",
      "If_r = 1.0;                     # Critical Field current in Amphere from Figure 4.20\n",
      "Rc = Voc_r/If_r;                # Crictical field resistance in Ohms\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 4.12 : SOLUTION :-\") ;\n",
      "print \"  a)  Crictical field resistance, Rc = %.f Ohms \"%(Rc);\n",
      "print \" b.1) Terminal Voltage correspounding to field resistance of 100 Ohms is %.2f V  \"%( Vt1);\n",
      "print \" b.1) Terminal Voltage correspounding to field resistance of 125 Ohms is %.2f V  \"%( Vt2);\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " EXAMPLE : 4.12 :           Given Data between the Field current and Open-Circuit EMF generated by DC Machine \n",
        " IfA   0      0.25      0.5      1.0      1.5      2.0      2.5     3.0 \n",
        " Vocv  8       43        77      151      198      229      253     269\n",
        "EXAMPLE : 4.12 : SOLUTION :-\n",
        "  a)  Crictical field resistance, Rc = 151 Ohms \n",
        " b.1) Terminal Voltage correspounding to field resistance of 100 Ohms is 253.33 V  \n",
        " b.1) Terminal Voltage correspounding to field resistance of 125 Ohms is 213.33 V  \n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.13  Page No : 135"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "N1 = 1200;              # Rotation speed of the Separately excited Generator in RPM at case (1\n",
      "Ia1 = 100;              # Current supplied by the Generator in Amphere\n",
      "V1 = 220;               # Opearting Volatge of the Generator in Volts\n",
      "Ra = 0.08;              # Armature resistance in Ohms\n",
      "N2 = 1000;              # Rotation speed of the Separately excited Generator in RPM at case (2\n",
      "Vb = 2.0;               # Total Brush drop in Volts\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "RL = V1/Ia1;                             # Load resistance in Ohms\n",
      "E1 = V1 + Vb + (Ra * Ia1);               # Back EMF at case (1) in Volts\n",
      "E2 = (N2/N1)*E1;                         #  Back EMF at case (2) in Volts (Excitation is constant\n",
      "Ia2 = (E2 - Vb)/(RL + Ra);               # New load current in Amphere for case (2\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 4.13 : SOLUTION :-\") ;\n",
      "print \" a) New load current at %.f RPM , Ia2 = %.2f A \"%(N2,Ia2);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 4.13 : SOLUTION :-\n",
        " a) New load current at 1000 RPM , Ia2 = -0.96 A \n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.14  Page No : 139"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "I = 50;                       # Curent supplied by the Separately Excitated Generator in Amphere\n",
      "V = 250;                      # Dc bus bar in Volts\n",
      "phi_1 = 0.03;                 # Useful Flux in Weber\n",
      "Ra = 0.5;                     # Armature resistance in Ohms\n",
      "phi_2 = 0.029;                # New(Changed) Flux in Weber\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "Vd = I * Ra;                                       # Voltage drop in the Armature in Volts\n",
      "E1 = V + Vd;                                       # EMF Generated in Volts\n",
      "E2 = (phi_2/phi_1)*E1;                             # EMF Generated in Volts immediately after flux changes but speed will remains same\n",
      "Ia = (E2 - V)/Ra;                                 # Armature Current in Amphere immediately after flux changes\n",
      "perct = 100 * (( phi_1 - phi_2)/phi_2);            # Percenatge change in the speed of the machine that is required to restore the original Armature current but EMF raised to the original value and its Proportional to the speed and flux\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 4.14 : SOLUTION :-\") ;\n",
      "print \" a) Armature Current immediately after flux changes, Ia = %.1f A \"%(Ia);\n",
      "print \" b) Percenatge change in the speed of the machine that is required to restore the original Armature current) is %.2f Percenatge \"%(perct);\n",
      " \n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 4.14 : SOLUTION :-\n",
        " a) Armature Current immediately after flux changes, Ia = 31.7 A \n",
        " b) Percenatge change in the speed of the machine that is required to restore the original Armature current) is 3.45 Percenatge \n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.15  Page No : 142"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "from numpy import roots\n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "S = 500 * 10 ** 3;              # Rating of the Generator-1 and Generator-2\n",
      "VI = 800 * 10 ** 3             # Actual load \n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "#For Case (a\n",
      "\n",
      "Voc_a = 500;                                # Open-circuit EMF Generator-1 and Generator-2 in Volts\n",
      "I = 1000;                                   # Full load current in Amphere\n",
      "perct_1a = 2./100;                           # Percenatge fall of the Voltage in Generator-1\n",
      "perct_2a = 3./100;                           # Percenatge fall of the Voltage in Generator-2\n",
      "V1a = Voc_a - (perct_1a * Voc_a);           # Voltage in the Generator-1 in Volts when it falls to 2% at fully loaded  \n",
      "V2a = Voc_a - (perct_2a * Voc_a);           # Voltage in the Generator-2 in Volts when it falls to 3% at fully loaded  \n",
      "# From Chacteristics can be assumed linear as, for Generator 1 is V = 500 + ((500-490)*I1)/(0-1000), V = -0.01*I1+500 and for Generator 2 is V = 500 + ((500-485)*I2)/(0-1000), V = 0.015*I2+500 \n",
      "# When sharing load of 800KVA at voltage, the load current will be I = I1+I2 = (800*1000)/V\n",
      "# From above equations we get I1 = 1.5*I2 thus, 2.5*I2 = (800*1000)/V\n",
      "# Putting the above equations in the Generator 2 equation we get V = -0.015*((800*1000)/(2.5*V))+500 solving we get, 25*V**2 - 12500V + 120000 = 0\n",
      "V_a = [120000, -12500, 25]     #poly ([120000 -12500 25],'x','coeff');                            # Expression for the load Voltage in Quadratic form\n",
      "r_a = roots (V_a);                                                      # Value of the load Voltage in Volts (neglecting lower value\n",
      "I_a = VI/r_a[0];\n",
      "I2_a = I_a/2.5;\n",
      "I1_a = 1.5*I2_a;\n",
      "\n",
      "# For Case (b\n",
      "\n",
      "perct = 2./100;                              # Percenatge fall of the Voltage in Generator-1and Generator-2\n",
      "Voc_1b = 500.;                               # Open-circuit EMF Generator-1 in Volts\n",
      "Voc_2b = 505;                               # Open-circuit EMF Generator-2 in Volts\n",
      "I = 1000;                                   # Full load current in Amphere\n",
      "V1 = Voc_1b - (perct * Voc_1b);             # Voltage in the Generator-1 in Volts when it falls to 2% at fully loaded  \n",
      "V2 = Voc_2b - (perct * Voc_2b);             # Voltage in the Generator-2 in Volts when it falls to 2% at fully loaded  \n",
      "# From Chacteristics can be assumed linear as, for Generator 1 is V = 500 + ((500-490)*I1)/(0-1000), V = -0.01*I1+500 and for Generator 2 is V = 505 + ((505-494.5)*I2)/(0-1000), V = -0.0101*I2+505 \n",
      "# When sharing load of 800KVA at voltage, the load current will be I = I1+I2 = (800*1000)/V\n",
      "# From above equations we get V = -0.01*I1 + 500, I1 = -V/0.01 + 500/0.01 = 50000 - 100*V, V = -0.0101*I2 + 505 and I2 = 505/0.0101 - V/.0101 = 50000-99.0099*V\n",
      "# Putting the above equations in the Current I equation we get I = I1+I2 = (800*1000)/V = 2*50000-199.0099*V solving we get, 199.0099*V**2 - 100000V + 800000 = 0\n",
      "V_b = [800000, -100000, 199.0099]    #poly ([800000 -100000 199.0099],'x','coeff');                     # Expression for the load Voltage in Quadratic form\n",
      "r_b = roots (V_b);                                                      # Value of the load Voltage in Volts (neglecting lower value\n",
      "I_b = VI/r_b[0];\n",
      "I1_b = 50000-100*r_b[0]\n",
      "I2_b = 50000-99.0099*r_b[0]\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 4.15: SOLUTION :-\");\n",
      "print \" For case a) Having open-circuit EMfs of 500V but their voltage falls to 2 percent and 3 percent when fully loaded Load Voltage,      Load Voltage = %.2f V       Load current = %.2f A       Individual currents are %.2f A and %.2f A \"%(r_a[0],I_a,I1_a,I2_a)\n",
      "print \" For case b) Having open-circuit EMfs of 500V and 505V but their governors have identical speed regulation of 2 percent when fully loaded Load Voltage,      Load Voltage = %.2f V       Load current = %.2f A       Individual currents are %.2f A and %.2f A \"%(r_b[0],I_b,I1_b,I2_b)\n",
      "print \"    [ TEXT BOOK SOLUTION IS PRINTED WRONGLY  I verified by manual calculation ]\" ;\n",
      "print \"      WRONGLY PRINTED ANSWERS ARE :- For caseb) Load voltage = 493.35 V A instead of %.2f V  \"%(r_b[0]);\n",
      "print \"                                                 Load current = 1634.73 A instead of %.2f A  \"%(I_b)\n",
      "print \"                                                 Individual currents 665 A and 1153.5 A instead of %.2f A and %.2f  \"%(I1_b,I2_b)\n",
      "print \" For Case b):- From Calculation of the Load Voltage V), rest of all the Calculated values in the TEXT BOOK is WRONG because of the value Load Voltage V) is WRONGLY calculated and the same used for the further Calculation part \"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 4.15: SOLUTION :-\n",
        " For case a) Having open-circuit EMfs of 500V but their voltage falls to 2 percent and 3 percent when fully loaded Load Voltage,      Load Voltage = 0.10 V       Load current = 7833405.61 A       Individual currents are 4700043.37 A and 3133362.24 A \n",
        " For case b) Having open-circuit EMfs of 500V and 505V but their governors have identical speed regulation of 2 percent when fully loaded Load Voltage,      Load Voltage = 0.12 V       Load current = 6505272.69 A       Individual currents are 49987.70 A and 49987.82 A \n",
        "    [ TEXT BOOK SOLUTION IS PRINTED WRONGLY  I verified by manual calculation ]\n",
        "      WRONGLY PRINTED ANSWERS ARE :- For caseb) Load voltage = 493.35 V A instead of 0.12 V  \n",
        "                                                 Load current = 1634.73 A instead of 6505272.69 A  \n",
        "                                                 Individual currents 665 A and 1153.5 A instead of 49987.70 A and 49987.82  \n",
        " For Case b):- From Calculation of the Load Voltage V), rest of all the Calculated values in the TEXT BOOK is WRONG because of the value Load Voltage V) is WRONGLY calculated and the same used for the further Calculation part \n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.16  Page No : 147"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "Out_hp = 20;                   # Output of the Motor in HP\n",
      "eta = 90./100;                  # Full load efficiency of the Motor\n",
      "V = 220.;                       # Motor voltage in Volts\n",
      "ns = 5;                        # Number of the step of Starter\n",
      "Rf = 220;                      # Field resistance in Ohms\n",
      "cr = 1.8;                      # Lowest Current rating is 1.8 times of the Full load current\n",
      "Cu = 5./100;                    # Total Copper loss is 5% of the Input\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "Out = 20 * 746;                    \t       # Output of the Motor in Watt\n",
      "Inp = (Out/eta);                            # Input of the Motor in KiloWatt\n",
      "I = Inp/Rf;                                 # Full-Load Current in Amphere\n",
      "Cu_l = Inp*Cu;                              # Total Copper loss in Watts\n",
      "olf = (V ** 2)/Rf;                           # Ohmic loss in the Fiels in the Watts\n",
      "Acu = Cu_l - olf;                           # Armature Copper loss in Watts\n",
      "Ra = Acu/(I * I);                           # Armature resistance in Ohms\n",
      "I2 = I * cr;                                # Lower Current in Amphere\n",
      "n = ns - 1;                                 # Number of the resistance\n",
      "gama = ( (I2 * Ra)/Rf ) ** (1/(n + 1));      # Current Ratio\n",
      "I1 = I2/gama;                               # Initial Current in amphere\n",
      "R1 = V/I1;                                  # Initial resistance in Ohms\n",
      "R2 = gama * R1;                             # Initial resistance in Ohms\n",
      "r1 = R1 - R2;                               # Graded resistance in Ohms\n",
      "R3 = gama * R2;                             # Initial resistance in Ohms\n",
      "r2 = gama * r1;                             # Graded resistance in Ohms\n",
      "r3 = gama ** 2 * r1;                         # Graded resistance in Ohms\n",
      "r4 = gama ** 3 * r1;                         # Graded resistance in Ohms\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 4.16 : SOLUTION :-\") ;\n",
      "print \" a) Graded resistances are %.4f Ohms, %.4f Ohms, %.4f Ohms and %.4f Ohms \"%(r1,r2,r3,r4);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 4.16 : SOLUTION :-\n",
        " a) Graded resistances are 0.0000 Ohms, 0.0000 Ohms, 0.0000 Ohms and 0.0000 Ohms \n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.17  Page No : 151"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "I = 30.;                     # Initial starting Current in Amphere\n",
      "ns = 5.;                     # Number of Steps of the starter\n",
      "V = 500.;                    # Operating Voltage of the DC Shunt Motor in Volts\n",
      "I1 = 50.;                    # Peak(Upper) Current limit in Amphere\n",
      "Ra = 1.0;                   # Armature Circuit resistance in Ohms\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "R1 = V / I;                         # Initial resistance in Ohms\n",
      "gama = ( Ra/R1) ** (1/(ns-1));       # Current Ratio \n",
      "I2 = gama * I1;                     # Lower Current limit in Amphere\n",
      "r1 = R1 * (1-gama);                 # Graded resistances in Ohms\n",
      "r2 = gama * r1;                     # Graded resistances in Ohms\n",
      "r3 = gama * r2;                     # Graded resistances in Ohms\n",
      "r4 = gama * r3;                     # Graded resistances in Ohms\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 4.17 : SOLUTION :-\") ;\n",
      "print \" a)Graded resistances are %.2f Ohms, %.4f Ohms, %.4f Ohms and %.4f Ohms \"%(r1,r2,r3,r4);\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 4.17 : SOLUTION :-\n",
        " a)Graded resistances are 8.42 Ohms, 4.1662 Ohms, 2.0620 Ohms and 1.0205 Ohms \n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.18  Page No : 152"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "V = 500;                                            # Operating voltage of the DC series motor in Volts\n",
      "P_hp = 10;                                          # Operating Power in HP \n",
      "Il = 40;                                            # Lower currents limit in Amphere\n",
      "Ih = 60;                                            # Higher currents limit in Amphere\n",
      "f = 0.5/100;                                        # Motor flux rises by 0.5% per amphere\n",
      "Rt = 0.8;                                           # Motor terminal resistance in Ohms\n",
      "eta = 90./100;                                       # Motor efficiency\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "E1 = V-Il*Rt;                                       # Induced EMF E1 in Volts\n",
      "# Induced EMF, E2 = 500-60(0.8+r4) = 500 - 60*R4 where r4 is the fourth-step resistance, and R4 = 0.8+r4 and E1 = 1.1*E2 , 500 - 40*0.8 = 1.1*(500-60(0.8+r4)), 500-32 = 550-66*R4 thus we get, R4 = (550-500+32)/66 refer page no. 197\n",
      "R4 = (V-(E1/1.1))/Ih;\n",
      "r4 = R4 - Rt;                                           # Fourth-step resistance in ohms\n",
      "R3 = (V-((V-Il*R4)/1.1))/Ih;\n",
      "r3 = R3 - R4;                                           # Third-step resistance in ohms\n",
      "R2 = (V-((V-Il*R3)/1.1))/Ih;\n",
      "r2 = R2 - R3;                                           # Second-step resistance in ohms\n",
      "R1 = (V-((V-Il*R2)/1.1))/Ih;\n",
      "r1 = R1 - R2;                                           # First-step resistance in ohms\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 4.18: SOLUTION :-\");\n",
      "print \" a) The resistance steps in series motor stater are %.3f Ohms,%.4f Ohms, %.3f Ohms and %.2f Ohms \"%(r1,r2,r3,r4)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 4.18: SOLUTION :-\n",
        " a) The resistance steps in series motor stater are 0.098 Ohms,0.1625 Ohms, 0.268 Ohms and 0.44 Ohms \n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.19  Page No : 157"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "Vac = 250;                  # Operating AC Voltage in Volts\n",
      "V = 220;                    # Operating Voltage of the separately excited DC motor in Volts\n",
      "fa = 30;                    # Firing Angle in Degree\n",
      "Out_hp = 20;                # DC Motor Output in HP\n",
      "La = 20 * 10 ** -3;          # Armature Inducatnce in Henry\n",
      "Ra = 0.15;                  # Armature resistance in Ohms\n",
      "E_cons = 0.2;               # EMF constant in Volts/RPM\n",
      "eta = 90./100;               # Motor Operating Efficiency\n",
      "N = 1000.;                   # Rotational Speed of the Motor in RPM\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "out = 20 * 746;                         # DC Motor Output in Watt\n",
      "Vt = ((Vac*2*math.sqrt(2))/math.pi)*math.degrees(math.cos(math.radians(fa)));    # Average Terminal volatge in Volts\n",
      "Ia = out/(V*eta);                       # Rated Current in Amphere\n",
      "E = Vt - ( Ia * Ra );                   # Back EMF in Volts\n",
      "n = E/E_cons;                           # Speed of the Motor in RPM\n",
      "e_cons = (E_cons*60)/ ( 2 * math.pi);       # EMF constant in Volts-Second per radians\n",
      "T = e_cons * Ia;                        # Devolped Torque in Newton-Meter\n",
      "pi = (E*Ia)+(Ia**2*Ra);                  # Power intake in Watts\n",
      "pi_v = Vt * Ia;                         # Power intake in Watts (Verification\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 4.19 : SOLUTION :-\") ;\n",
      "print \" a) Speed of the Motor, N = %.2f RPM \"%(n);\n",
      "print \" b) Devolped Torque, T = %.2f N-m \"%(T);\n",
      "print \" b) Power intake at Rated current and Firing angle of %.f deg, VI = %.1f W \"%(fa,pi);\n",
      "print \"    [ TEXT BOOK SOLUTION IS PRINTED WRONGLY  I verified by manual calculation ]\" ;\n",
      "print \"      WRONGLY PRINTED ANSWERS IS :- a T = 114.07 N-m instead of 143.91 N-m \" ;\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 4.19 : SOLUTION :-\n",
        " a) Speed of the Motor, N = 55785.15 RPM \n",
        " b) Devolped Torque, T = 143.91 N-m \n",
        " b) Power intake at Rated current and Firing angle of 30 deg, VI = 841573.5 W \n",
        "    [ TEXT BOOK SOLUTION IS PRINTED WRONGLY  I verified by manual calculation ]\n",
        "      WRONGLY PRINTED ANSWERS IS :- a T = 114.07 N-m instead of 143.91 N-m \n"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.20  Page No : 162"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "N = 1500;                   # Speed of the separately excited DC Motor in RPM\n",
      "Out_hp = 100;               # Output of the DC Motor in HP\n",
      "V = 500;                    # Motor operating Volatge in Volts\n",
      "VL = 440;                   # 3-phase Line-line Voltage in Volts\n",
      "f = 50;                     # Frequency in Hertz\n",
      "Ra = 0.0835;                # Armature resistance in Ohms\n",
      "La = 5.7 * 10 ** -3;         # Armature Inducmath.tance in Henry\n",
      "eta = 89./100;               # Operating Efficiency of the Motor \n",
      "E_cons = 0.35;              # EMF constant in Volts per RPM\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "# For case (a\n",
      "\n",
      "Out = Out_hp * 746;                 # Output of the DC Motor in Watts\n",
      "Ia = Out/(V*eta);                   # Rated Current in Amphere\n",
      "Vph = VL/math.sqrt(3);                   # Phase Voltage in Volts\n",
      "a = (3*Vph*math.sqrt(6)) / math.pi;          # constant\n",
      "E = N * E_cons;                     # Back EMF at Rated speed\n",
      "V = E + (Ia * Ra);                  # Terminal Volatge in Volts\n",
      "alpa = math.acos(math.radians(V/a));                  # Firing Angle\n",
      "\n",
      "# For case (b\n",
      "# Assumed that No load current is about 12% of full load current\n",
      "\n",
      "Io = ( 0.12 * Ia );                     # No load current in Amphere\n",
      "V_b1 = a * math.degrees(math.cos(math.radians(0)));                     # Terminal Voltage at Firing Angle 0 deg\n",
      "E_b1 = V_b1 + (Io * Ra);                # Back EMF at Firing Angle 0 deg\n",
      "N_b1 = E_b1/E_cons;                     # No load speed at Firing Angle 0 deg\n",
      "V_b2 = a * math.degrees(math.cos(math.radians(30)));                    # Terminal Voltage at Firing Angle 30 deg\n",
      "E_b2 = V_b2 + (Io * Ra);                # Back EMF at Firing Angle 30 deg\n",
      "N_b2 = E_b2/E_cons;                     # No load speed at Firing Angle 30 deg\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 4.20 : SOLUTION :-\") ;\n",
      "print \"  a)  Firing Angle at Rated speed and Rated Motor Current , alpa = %.2f deg \"%(alpa);\n",
      "print \" b.1) No load speed at Firing Angle 0 deg, N = %.1f RPM \"%(N_b1);\n",
      "print \" b.2) No load speed at Firing Angle 30 deg, N = %.1f RPM \"%(N_b2);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 4.20 : SOLUTION :-\n",
        "  a)  Firing Angle at Rated speed and Rated Motor Current , alpa = 1.55 deg \n",
        " b.1) No load speed at Firing Angle 0 deg, N = 97278.1 RPM \n",
        " b.2) No load speed at Firing Angle 30 deg, N = 84245.9 RPM \n"
       ]
      }
     ],
     "prompt_number": 21
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.21  Page No : 166"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "# Given that Back EMF is Zero Because Motor is at Smath.degrees(math.atanstill\n",
      "\n",
      "V = 250;                        # DC supply Voltage to separately excited DC Motor in Volts\n",
      "Ra = 1.0;                       # Armature resistance in Ohms\n",
      "La = 30 * 10 ** -3;              # Armature Inducmath.tance in Henry\n",
      "E_cons = 0.19;                  # Motor (EMF) constant in Volts per RPM\n",
      "Ia = 25;                        # Average Armature Current in Amphere\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "V1 = Ia * Ra;                   # Minimum Terminal Volatge in Volts\n",
      "alpa_mini = Ia/V;               # Minimum Duty Cycle\n",
      "alpa_max = 1.0;                 # Maximum Duty Cycle\n",
      "V2 = V;                         # Maximum Terminal Volatge in Volts when Duty cycle (alpa) is 1.0\n",
      "E2 = V2 - (V1 * alpa_max);      # Back EMF at Maximum Duty cycle ( i.e alpa = 1.0) in Volts\n",
      "N = E2/E_cons;                  # Speed of the Motor \n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 4.21 : SOLUTION :-\") ;\n",
      "print \" a) Range of the Speed is from 0 RPM to %.2f RPM and Range of the Duty Cycle is %.1f to %.1f \"%(N,alpa_mini,alpa_max);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 4.21 : SOLUTION :-\n",
        " a) Range of the Speed is from 0 RPM to 1184.21 RPM and Range of the Duty Cycle is 0.0 to 1.0 \n"
       ]
      }
     ],
     "prompt_number": 22
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.22  Page No : 170"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "N1 = 1000;                  # Speed of the DC shunt Motor in RPM\n",
      "Out_hp = 20;                # Output of the DC shunt Motor in HP\n",
      "V = 220;                    # Motor operating Volatge in Volts\n",
      "Ra = 0.9;                   # Armature resistance in Ohms\n",
      "Rf = 200;                   # Field resistance in Ohms\n",
      "eta = 89./100;               # Operating Efficiency of the Motor \n",
      "Ra_a = 0.2;                 # resistance inserted to the armature circuit\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "out = Out_hp * 746;                 # Output of the DC Motor in watts\n",
      "I =  out/(V * eta);                 # Rated current in Amphere\n",
      "If = V/Rf;                          # Field current in Amphere\n",
      "Ia1 = I - If;                       # Armature current in Amphere\n",
      "E1 = V - (Ia1 * Ra);                # Back EMF in Volts\n",
      "# Assuming that Torque and Armature current is constant\n",
      "E2 = V - ( Ra + Ra_a ) * Ia1;       # New Back EMF in Volts \n",
      "N2 = N1*(E2/E1);                    # New speed in RPM\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 4.22: SOLUTION :-\") ;\n",
      "print \" a) New Speed of the Motor , N2 = %.2f RPM \"%(N2);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 4.22: SOLUTION :-\n",
        " a) New Speed of the Motor , N2 = 901.26 RPM \n"
       ]
      }
     ],
     "prompt_number": 23
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.23  Page No : 171"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "from numpy import roots\n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "N1 = 600;                   # Speed of the DC shunt Motor in RPM\n",
      "Out_hp = 10;                # Output of the DC shunt Motor in HP\n",
      "V = 220;                    # Motor operating Volatge in Volts\n",
      "Ra = 1.5;                   # Armature resistance in Ohms\n",
      "Rf = 250;                   # Field resistance in Ohms\n",
      "eta = 88./100;               # Operating Efficiency of the Motor \n",
      "Rf_a = 50;                  # resistance inserted to the field circuit\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "out = Out_hp * 746                  # Output of the DC Motor in watts\n",
      "I =  out/(V * eta);                 # Rated current in Amphere\n",
      "If1 = V/Rf;                         # Field current in Amphere\n",
      "Ia1 = I - If1;                      # Aramature current in Amphere\n",
      "E1 = V - Ra*Ia1;                    # Back EMF in Volts\n",
      "If2 = V/(Rf+Rf_a);                  # New Field current in Amphere after 50 Ohms resistance inserted to the field circuit\n",
      "\n",
      "# Refer page no. 217 we have T1 = K*If1*Ia1 proportional to 1/W1**2 and T1 = K*If2*Ia2 proportional to 1/W2**2 thus T1/T2 = (If1*Ia1)/(If2*Ia2) = (W2**2)/(W1**2) = (N2**2)/(N1**2), Ia2 = (If1*Ia1*W1**2)/(If1*W1**2) = (0.88*37.65*N2**2)/(0.733*600*600) \n",
      "# Now New EMF E2 is E2 = V - Ia2*Ra, E1/E2 = (k*If1*N1)/(k*If2*N2), E2 = (0.733*N2)/(0.88*600) = 220 - (0.88*37.65*1.5*N2**2)/(0.733*600*600) Thus we have 0.001388*N2**2 = 220 - 1.833*10**-4*N2\n",
      "N2 = [-220, 0.001388, 1.833*10**-4]     #poly ([-220 0.001388 1.833*10**-4],'x','coeff');                 # Expression for the new speed of the motor in Quadratic form\n",
      "r = roots (N2);                                                     # Value of the New speed of the motor in RPM\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 4.23 : SOLUTION :-\") ;\n",
      "print \" a) New speed of the motor, N2 = %.2f RPM nearly %.f RPM \"%(r[0],r[1]); \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 4.23 : SOLUTION :-\n",
        " a) New speed of the motor, N2 = 0.00 RPM nearly -0 RPM \n"
       ]
      }
     ],
     "prompt_number": 24
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.24  Page No : 174"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "N1 = 1000;                  # Speed of the DC shunt Motor in RPM\n",
      "Out_hp = 10;                # Output of the DC shunt Motor in HP\n",
      "V = 220;                    # Motor operating Volatge in Volts\n",
      "Ra = 0.5;                   # Armature resistance in Ohms\n",
      "Rf = 100;                   # Field resistance in Ohms\n",
      "eta = 90./100;               # Operating Efficiency of the Motor \n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "out = Out_hp * 746;                 # Output of the DC Motor in watts\n",
      "I =  out/(V * eta);                 # Rated current in Amphere\n",
      "If = V/Rf;                          # Field  current in Amphere\n",
      "Ia = I-If;                          # Armature current in Amphere\n",
      "E = V - (Ia*Ra);                    # Back EMF of the Motor in Volts\n",
      "Rd = E/I;                           # resistance at Dynamic Braking in Ohms\n",
      "Rc = (V+E)/I;                       # resistance at Counter Current Braking in Ohms\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 4.24 : SOLUTION :-\") ;\n",
      "print \" a) resistance at Dynamic Braking, Rd = %.2f Ohms \"%(Rd);\n",
      "print \" b) resistance at Counter Current Braking, Rc = %.1f Ohms \"%(Rc);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 4.24 : SOLUTION :-\n",
        " a) resistance at Dynamic Braking, Rd = 5.37 Ohms \n",
        " b) resistance at Counter Current Braking, Rc = 11.2 Ohms \n"
       ]
      }
     ],
     "prompt_number": 25
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.25  Page No : 177"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "from numpy import roots\n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "V = 220;                    # Motor operating Volatge in Volts\n",
      "Ra = 1.0;                   # Armature resistance in Ohms\n",
      "Rf = 220;                   # Field resistance in Ohms\n",
      "Ia1 = 20;                   # Armature Current in Amphere\n",
      "N1 = 800;                   # Motor drving speed in RPM\n",
      "N2 = 1000;                  # To be obtained speed in RPM\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "If = V/Rf;                                   # Field Current in Amphere\n",
      "E1 = V - ( Ia1 - If ) * Ra;                  # Back EMF E1 at N1 Speed in Volts\n",
      "# Now we have Back EMF E2 at N2 Speed, E2 = 220-Ia2*1.0 = 220-Ia2 and the field flux be proportional to the field current, math.since torque is constant we get, If2*Ia2 = If1*Ia1 = 20\n",
      "# Thus (220-Ia2)/201 = (If2*N2)/(If1*N1) = If2*(1000/(800*1.0)), 220-Ia2 = 201*(10/8)*(20/Ia2) = 5000/Ia2 solving this we get Ia2**2 - 220Ia2 + 2000 = 0\n",
      "Ia2 = [5000, -220, 1] #poly ([5000 -220 1],'x','coeff');                 # Expression for the new Armature current in Quadratic form\n",
      "r = roots (Ia2);                                        # Value of the New Armature current in Amphere\n",
      "If2 = If*(Ia1/r[1]);                                  # New field current in Amphere when New Armature current is 39.29A\n",
      "Rfn = V/If2;                                            # New field resistance in ohms\n",
      "ERf = Rfn - Rf;                                         # Extra resistance in Ohms\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 4.25 : SOLUTION :-\") ;\n",
      "print \" a) Extra resistance should be added in the field circuit for raimath.sing the speed to %.f RPM is = %.2f Ohms \"%(N2,ERf);\n",
      "print \"    [ TEXT BOOK SOLUTION IS PRINTED WRONGLY  I verified by manual calculation ]\" ;\n",
      "print \"      WRONGLY PRINTED ANSWERS ARE :- a) Ia2 = 39.29 A and 180.71 A instead of %.2f A and %.2f A  \"%(r[0],r[1]);\n",
      "print \"                                     b) Extra resistance required is 212.22 Ohms  instead of %.2f Ohms  \"%(ERf);\n",
      "print \" From Calculation of the New armature current Ia2)%( rest all the Calculated values in the TEXT BOOK\\\n",
      " is WRONG because of the New armature current Ia2) value is WRONGLY calculated and the same used for the further Calculation part \"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 4.25 : SOLUTION :-\n",
        " a) Extra resistance should be added in the field circuit for raimath.sing the speed to 1000 RPM is = -219.94 Ohms \n",
        "    [ TEXT BOOK SOLUTION IS PRINTED WRONGLY  I verified by manual calculation ]\n",
        "      WRONGLY PRINTED ANSWERS ARE :- a) Ia2 = 39.29 A and 180.71 A instead of 0.04 A and 0.01 A  \n",
        "                                     b) Extra resistance required is 212.22 Ohms  instead of -219.94 Ohms  \n",
        " From Calculation of the New armature current Ia2)%( rest all the Calculated values in the TEXT BOOK is WRONG because of the New armature current Ia2) value is WRONGLY calculated and the same used for the further Calculation part \n"
       ]
      }
     ],
     "prompt_number": 26
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.26  Page No : 180"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "R = 2.0;                        # DC series Motor resistance between the terminals in Ohms\n",
      "V1 = 220;                       # Motor Operating voltage in Volts\n",
      "N1 = 500;                       # Rotation Sped of the DC series Motor in RPM\n",
      "I1 = 22;                        # Current in Motor in Amphere\n",
      "N2 = 600;                       # New Rotation Sped of the DC series Motor in RPM\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "# For case (a) when magnetic circuit is Unsaturated\n",
      "\n",
      "E1 = V1 - (I1 * R);                 # Back EmF at N1 Speed in Volts\n",
      "I2_a = (N2/N1)*I1;                  # Current in Motor at N2 speed in Amphere\n",
      "E2_a = (E1*I2_a*N2)/(I1*N1);      # Back EmF at N2 Speed in Volts\n",
      "V2_a = E2_a + (I2_a * R);           # Applied Voltage at N2 Speed in Volts\n",
      "\n",
      "# For case (b) when magnetic circuit is Saturated\n",
      "\n",
      "I2_b = ((N2/N1)**2)*I1;              # Current in Motor at N2 speed in Amphere\n",
      "E2_b = (N2/N1)*E1;                  # Back EmF at N2 Speed in Volts\n",
      "V2_b = E2_b + (I2_b * R);             # Applied Voltage at N2 Speed in Volts\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 4.26 : SOLUTION :-\") ;\n",
      "print \" a.1) Applied Voltage when magnetic circuit is Unsaturated, V2 = %.2f V \"%(V2_a);\n",
      "print \" a.2) Current in Motor when magnetic circuit is Unsaturated,  I2 = %.1f A \"%(I2_a);\n",
      "print \" b.1) Applied Voltage when magnetic circuit is Saturated, V2 = %.2f V \"%(V2_b);\n",
      "print \" b.2) Current in Motor when magnetic circuit is Saturated,  I2 = %.2f A \"%(I2_b);\n",
      "\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 4.26 : SOLUTION :-\n",
        " a.1) Applied Voltage when magnetic circuit is Unsaturated, V2 = 255.20 V \n",
        " a.2) Current in Motor when magnetic circuit is Unsaturated,  I2 = 22.0 A \n",
        " b.1) Applied Voltage when magnetic circuit is Saturated, V2 = 220.00 V \n",
        " b.2) Current in Motor when magnetic circuit is Saturated,  I2 = 22.00 A \n"
       ]
      }
     ],
     "prompt_number": 27
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.27  Page No : 183"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "V = 220;                    # DC series Motor operating Volatge in Volts\n",
      "Ra = 1.0;                   # Armature resistance in Ohms\n",
      "Rf = 1.0;                   # Field resistance in Ohms\n",
      "I1 = 20;                    # Armature Current in Amphere\n",
      "N1 = 1800;                  # Motor drving speed in RPM\n",
      "If = 20;                    # Armature Current in Amphere\n",
      "Rd = 0.5;                   # Diverter resistance in Ohms\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "E1 = V - ( Ra + Rf ) * I1;                  # Back EMF in Volts\n",
      "I2 = math.sqrt(3)*I1;                            # New Armature current in Amphere\n",
      "If2 = ( Rd * I2 )/(Ra + Rd);                # New field Current in Amphere\n",
      "E2 = V - ( Ra + (1./3))*I1;                  # New BAck EMF in Volts\n",
      "N2 = (N1*E2*If)/(E1*If2);                   # New Rotation speed of the Motor in RPM\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 4.27 : SOLUTION :-\") ;\n",
      "print \"  a)   New Rotation speed of the Motor at torque remains constant,  N2 = %.f RPM \"%(N2);\n",
      "print \" b.1)  New Armature Current at torque remains constant,  I2 = %.2f A \"%(I2);\n",
      "print \" b.2)  New Field Current at torque remains constant,  If2 = %.2f A \"%(If2);\n",
      " \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 4.27 : SOLUTION :-\n",
        "  a)   New Rotation speed of the Motor at torque remains constant,  N2 = 3349 RPM \n",
        " b.1)  New Armature Current at torque remains constant,  I2 = 34.64 A \n",
        " b.2)  New Field Current at torque remains constant,  If2 = 11.55 A \n"
       ]
      }
     ],
     "prompt_number": 28
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.28  Page No : 184"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "V = 220;                    # DC shunt Motor operating Volatge in Volts\n",
      "Ra = 1.0;                   # Armature resistance in Ohms\n",
      "Rf = 220;                   # Field resistance in Ohms\n",
      "In1 = 5;                    # No-Load Current in Amphere\n",
      "N1 = 1000;                  # Motor drving speed in RPM\n",
      "inp = 10 * 10 ** 3;          # Motor input in Watts\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "If = V/Rf;                              # Field Current in Amphere\n",
      "Ian1 = In1 - If;                        # No load Armature Current in Amphere\n",
      "E1 = V - (Ian1 * Ra);                   # Back EMF in Volts\n",
      "Iin = inp/V;                            # Motor Input Current in Amphere\n",
      "Ia = Iin - If;                          # Armature current in Amphere\n",
      "E2 = V - (Ia * Ra);                     # New Back EMF in Volts\n",
      "N2 = (N1*E2)/E1;                        # New Rotation speed of the Motor in RPM\n",
      "Pa = E2 * Ia;                           # Developed Armature Power in Watts\n",
      "T = Pa/((2*math.pi*N2)/60);                 # Developed Torque in Newton-Meter\n",
      "Pi = V * In1;                           # No-Load input Power in Watts\n",
      "Pa_cu = Ian1 ** 2 * Ra;                  # No-Load Armature Copper loss in Watts\n",
      "F_loss = Pi - Pa_cu;                    # Fixed losses in Watts\n",
      "Pa_cu_load = Ia ** 2 * Ra;               # Loaded Armature Copper loss in Watts \n",
      "Total_loss = F_loss + Pa_cu_load;       # Total losses in loaded conditions in Watts\n",
      "out = inp - Total_loss;                 # Shaft output in Watts \n",
      "Ts = out/((2*math.pi*N2)/60);               # Shaft torque in Newton-Meter\n",
      "eta = (out/inp)*100;               \n",
      "      # Efficiency in Percentage\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 4.28 : SOLUTION :-\") ;\n",
      "print \"  a)  New Rotation speed of the Motor , N2 = %.f RPM \"%(N2);\n",
      "print \" b.1) Developed Torque, T = %.1f N-m A \"%(T);\n",
      "print \" b.2) Shaft torque, Ts = %.2f N-m \"%(Ts);\n",
      "print \"  c)  Efficiency in Percentage, eta = %.2f percent  \"%(eta);\n",
      "\n",
      " \n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 4.28 : SOLUTION :-\n",
        "  a)  New Rotation speed of the Motor , N2 = 815 RPM \n",
        " b.1) Developed Torque, T = 90.8 N-m A \n",
        " b.2) Shaft torque, Ts = 81.80 N-m \n",
        "  c)  Efficiency in Percentage, eta = 69.80 percent  \n"
       ]
      }
     ],
     "prompt_number": 29
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.29  Page No : 187"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "V = 220;                    # Shunt Motor operating Line Volatge in Volts\n",
      "Ra = 0.2;                   # Armature resistance in Ohms\n",
      "Iam = 72;                   # Motor Armature current in Amphere\n",
      "I = 12;                     # Line Current in Amphere\n",
      "Ifm = 1;                    # Motor field Current in Amphere\n",
      "Ifg = 1.5;                  # Generator field Current in Amphere\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "Iag = Iam - I;                           # Geneartor Armature current in Amphere\n",
      "Pfm = V * Ifm;                           # Loss in Motor Field winding in Watts\n",
      "Pfg = V * Ifg;                           # Loss in Geneartor Field winding in Watts\n",
      "loss_ma = Iam ** 2 * Ra;                  # Loss in Motor Armature circuit in Watts\n",
      "loss_ga = Iag ** 2 * Ra;                  # Loss in Generator Armature circuit in Watts\n",
      "Em = V - Iam * Ra;                       # Motor EMF in Volts\n",
      "Eg = V + Iag * Ra;                       # Generator EMF in Volts\n",
      "T_loss = (V*I) - (Ra*Iam**2 + Ra*Iag**2);  # Total Iron and Rotational Loss in Watts\n",
      "Pim = (V*Iam)+(V*Ifm);                   # Motor input in Watts\n",
      "Wc = 0.5 * T_loss;                       # Total Iron and Rotational Loss in each Machine in Watts\n",
      "Wm = Wc+(Ra*Iam**2)+V*Ifm;                # Motor losses in Watts\n",
      "Pom = Pim - Wm;                          # Motor output in Watts\n",
      "eta_m = (1-(Wm/Pom))*100;                # Motor Efficiency in Percentage\n",
      "Pog = V*Iag;                             # Generator output in Watts\n",
      "Wg = Wc+(Ra*Iag**2)+V*Ifg;                # Generator losses in Watts\n",
      "Pin = Pog + Wg;                          # Generator input power in Watts\n",
      "eta_g = (1-(Wg/Pin))*100;                # Generator Efficiency in Percentage\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 4.29 : SOLUTION :-\") ;\n",
      "print \" a) Motor Efficiency , eta = %.2f Percentage  \"%(eta_m);\n",
      "print \" b) Generator Efficiency , eta = %.2f Percantage  \"%(eta_g);\n",
      "print \"    [ TEXT BOOK SOLUTION IS PRINTED WRONGLY  I verified by manual calculation ]\" ;\n",
      "print \"      WRONGLY PRINTED ANSWERS ARE :- a) Total Iron and Rotational Loss = 720 W instead of %.1f W  \"%(T_loss);\n",
      "print \"                                     b) Pim = 15912 W instead of %.f W  \"%(Pim);\n",
      "print \"                                     c) Wm = 1371.4 Winstead of %.1f W  \"%(Wm);\n",
      "print \"                                     d) Pom = 14540.6 W instead of %.1f W  \"%(Pom);\n",
      "print \"                                     e) eta_m = 90.54 Percentage  instead of %.2f Percentage  \"%(eta_m);\n",
      "print \"                                     f) eta_g = 93.22 Percentage  instead of %.2f Percentage  \"%(eta_g);\n",
      "print \" From Calculation of the Total Iron and Rotational Loss in each Machine Wc), rest all the Calculated values in the TEXT BOOK is WRONG because of the Total Iron and Rotational Loss in each Machine Wc) value is WRONGLY calculated and the same used for the further Calculation part \"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 4.29 : SOLUTION :-\n",
        " a) Motor Efficiency , eta = 88.17 Percentage  \n",
        " b) Generator Efficiency , eta = 89.85 Percantage  \n",
        "    [ TEXT BOOK SOLUTION IS PRINTED WRONGLY  I verified by manual calculation ]\n",
        "      WRONGLY PRINTED ANSWERS ARE :- a) Total Iron and Rotational Loss = 720 W instead of 883.2 W  \n",
        "                                     b) Pim = 15912 W instead of 16060 W  \n",
        "                                     c) Wm = 1371.4 Winstead of 1698.4 W  \n",
        "                                     d) Pom = 14540.6 W instead of 14361.6 W  \n",
        "                                     e) eta_m = 90.54 Percentage  instead of 88.17 Percentage  \n",
        "                                     f) eta_g = 93.22 Percentage  instead of 89.85 Percentage  \n",
        " From Calculation of the Total Iron and Rotational Loss in each Machine Wc), rest all the Calculated values in the TEXT BOOK is WRONG because of the Total Iron and Rotational Loss in each Machine Wc) value is WRONGLY calculated and the same used for the further Calculation part \n"
       ]
      }
     ],
     "prompt_number": 30
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.30  Page No : 191"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "Vg = 110;                   # Generator operating Volatge in Volts\n",
      "Vm = 102;                   # Motor operating Volatge in Volts\n",
      "Vs = 274;                   # Supply Volatge in Volts\n",
      "Ra = 1.0;                   # Armature resistance in Ohms for both the Machines\n",
      "Rf = 0.82;                  # Field resistance in Ohms for both the Machines\n",
      "N = 1440;                   # Speed of the Set in RPM\n",
      "Ig = 17.5;                  # Generator current in Amphere\n",
      "Im = 9.5;                   # Motor current in Amphere\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "Pi = Vs * Im;                                   # Input power in Watts\n",
      "Pg = Vg * Ig;                                   # Output power in Watts\n",
      "Pim = Vm * Im;                                  # Power Input to the Motor in Watts\n",
      "Pl = Pi - Pg;                                   # Losses in the entire set in Watts\n",
      "Pcu = Im**2*(Ra+2*Rf) + Ig**2*Ra;                 # Total Copper loss for both the Machines in Watts\n",
      "P_l = Pi - Pg - Pcu;                            # Frictional, Windage and core losses of the both Machines in Watts\n",
      "Po = P_l/2;                                     # Frictional, Windage and core loss of each Machines in Watts\n",
      "eta_m = (1 - ((Po + Im**2*(Ra+Rf))/Pim))*100;     # Motor Effiicency in Percentage\n",
      "Pig = Pg + Po + Ig**2*Ra + Im**2*Rf;              # Generator input in Watts\n",
      "eta_g = (Pg / Pig)*100;                         # Generator Effiicency in Percentage\n",
      "T = (Vg*Ig *60)/(2*math.pi*N);                      # Torque in Newton-Meter\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 4.30 : SOLUTION :-\") ;\n",
      "print \" a) Motor Efficiency , eta_m = %.2f percentage  \"%(eta_m);\n",
      "print \" b) Generator Efficiency , eta_g = %.2f Percentage  \"%(eta_g);\n",
      "print \" c) Torque , T = %.2f N-m  \"%(T);\n",
      "print \"    [ TEXT BOOK SOLUTION IS PRINTED WRONGLY  I verified by manual calculation ]\" ;\n",
      "print \"      WRONGLY PRINTED ANSWERS ARE :- a) Generator input = 2307.5 W instead of %.f W  \"%(Pig);\n",
      "print \"                                     b) eta_g = 83.42 Percenatge  instead of %.2f Percentage  \"%(eta_g);\n",
      "print \" From Calculation of the Generator input, rest all the Calculated values in the TEXT BOOK is WRONG because of the Generator input value is WRONGLY calculated and the same used for the further Calculation part \"\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 4.30 : SOLUTION :-\n",
        " a) Motor Efficiency , eta_m = 76.16 percentage  \n",
        " b) Generator Efficiency , eta_g = 81.16 Percentage  \n",
        " c) Torque , T = 12.77 N-m  \n",
        "    [ TEXT BOOK SOLUTION IS PRINTED WRONGLY  I verified by manual calculation ]\n",
        "      WRONGLY PRINTED ANSWERS ARE :- a) Generator input = 2307.5 W instead of 2372 W  \n",
        "                                     b) eta_g = 83.42 Percenatge  instead of 81.16 Percentage  \n",
        " From Calculation of the Generator input, rest all the Calculated values in the TEXT BOOK is WRONG because of the Generator input value is WRONGLY calculated and the same used for the further Calculation part \n"
       ]
      }
     ],
     "prompt_number": 31
    }
   ],
   "metadata": {}
  }
 ]
}