1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
|
{
"metadata": {
"name": "",
"signature": "sha256:8c0e26b2120c740eae3eda89e337841bb8c023e39333e40c3ee698af058c7096"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 3 : Transformers"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.1 Page No : 26"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\n",
"# GIVEN DATA\n",
"\n",
"Z = (0.05 + 0.05 * 1j) * 100; # Transmission line parameters (impedance) in Ohms (multiplied by 100 because dismath.tance of the Transmission line is 100km)\n",
"R = 0.05 * 100; # Transmission line resistance in Ohms (multiplied by 100 because dismath.tance of the Transmission line is 100km)\n",
"V1 = 220; # Terminal voltage in Volts\n",
"V2 = 1 * 10 ** 3; # Terminal volatge from Generator side in Volts\n",
"P = 20 * 10 ** 3; # Power in Watts\n",
"\n",
"\n",
"# CACULATIONS\n",
"\n",
"I1 = P/V1; # Line current for 220V in Amphere\n",
"I2 = P/V2; # Line current for 1kV in Amphere\n",
"I1Z = Z*I1; # Voltage drop due to I1 in Volts \n",
"I2Z = Z*I2; # Voltage drop due to I2 in Volts\n",
"Loss1 = (I1 ** 2) * R * 10 ** -3; # Line loss for I1 in kW\n",
"Loss2 = (I2 ** 2) * R * 10 ** -3; # Line loss for I2 in kW\n",
"Vg1 = V1 + I1Z; # Input Voltages on Generator Terminal in Volts\n",
"Vg2 = V2 + I2Z; # Input Voltages on Generator Terminal in Volts\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"\n",
"print (\"EXAMPLE : 3.1 : SOLUTION :-\") ;\n",
"print \" a.1) Voltage drop due to I1 ,I1Z = % .2f+j%.2f V \"%(I1Z.real,I1Z.imag);\n",
"print \" a.2) Voltage drop due to I2 , I2Z = % .f+j%.f V \"%(I2Z.real,I2Z.imag);\n",
"print \" b.1) Line loss for I1 , Loss1 = %.2f kW \"%(Loss1);\n",
"print \" b.2) Line loss for I2 , Loss2 = % .2f kW \"%(Loss2);\n",
"print \" c.1) Input Voltages on Generator Terminal from a load terminal , Vg1 = %.2f+j%.2f = %.2f V \"%(Vg1.real,Vg1.imag,abs(Vg1));\n",
"print \" c.2) Input Voltages on Generator Terminal from a Generating Station , Vg2 = % .f+j%.f = %.2f V \"%(Vg2.real,Vg2.imag,abs(Vg2));\n",
"print \" [ TEXT BOOK SOLUTION IS PRINTED WRONGLY I verified by manual calculation ]\" ;\n",
"print \" WRONGLY PRINTED ANSWERS ARE :- a I1Z = 450.45+j450.45V instead of 454.55+j454.55 V\" ;\n",
"print \" b) Vg1 = 670.45)+j450.45) = 807.72 V instead of % .2f+j%.2f = %.2f V \"%(Vg1.real,Vg1.imag,abs(Vg1) );\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 3.1 : SOLUTION :-\n",
" a.1) Voltage drop due to I1 ,I1Z = 450.00+j450.00 V \n",
" a.2) Voltage drop due to I2 , I2Z = 100+j100 V \n",
" b.1) Line loss for I1 , Loss1 = 40.50 kW \n",
" b.2) Line loss for I2 , Loss2 = 2.00 kW \n",
" c.1) Input Voltages on Generator Terminal from a load terminal , Vg1 = 670.00+j450.00 = 807.09 V \n",
" c.2) Input Voltages on Generator Terminal from a Generating Station , Vg2 = 1100+j100 = 1104.54 V \n",
" [ TEXT BOOK SOLUTION IS PRINTED WRONGLY I verified by manual calculation ]\n",
" WRONGLY PRINTED ANSWERS ARE :- a I1Z = 450.45+j450.45V instead of 454.55+j454.55 V\n",
" b) Vg1 = 670.45)+j450.45) = 807.72 V instead of 670.00+j450.00 = 807.09 V \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.2 Page No : 28"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# GIVEN DATA\n",
"E1 = 6.6 * 10 ** 3; # Primary voltage in Volts\n",
"E2 = 220; # Secondary Voltage in volts \n",
"f = 50; # Frequency in Hertz\n",
"phi_m = 0.06; # Flux in Weber\n",
"S = 50 * 10**6; # Rating of the math.single-phase transformer in VA\n",
"\n",
"# CALCULATIONS\n",
"N1 = E1/(4.44*f*phi_m); # Number of turns in Primary\n",
"vpn1 = E1/N1; # Voltage per turns in Primary in Volts/turn\n",
"N2 = E2/(4.44*f*phi_m); # Number of turns in Secondary\n",
"vpn2 = E2/N2; # Voltage per turns in Secondary in Volts/turn\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"print (\"EXAMPLE : 3.2 : SOLUTION :-\") ;\n",
"print \" a.1) Number of turns in Primary , N1 = %.1f Turns nearly 496 Turns \"%(N1);\n",
"print \" a.2) Number of turns in Secondary , N2 = %.1f Turns nearly 16 Turns \"%(N2);\n",
"print \" b.1) Voltage per turns in Primary , vpn1 = %.1f Volts/turns \"%(vpn1);\n",
"print \" b.2) Voltage per turns in Secondary , vpn2 = %.2f Volts/turns \"%(vpn2);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 3.2 : SOLUTION :-\n",
" a.1) Number of turns in Primary , N1 = 495.5 Turns nearly 496 Turns \n",
" a.2) Number of turns in Secondary , N2 = 16.5 Turns nearly 16 Turns \n",
" b.1) Voltage per turns in Primary , vpn1 = 13.3 Volts/turns \n",
" b.2) Voltage per turns in Secondary , vpn2 = 13.32 Volts/turns \n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.3 Page No : 30"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"\n",
"# GIVEN DATA\n",
"f = 50; # Frequency in Hertz\n",
"N = 50; # Number of turns in Secondary\n",
"E =220; # Induced voltage in Volts\n",
"\n",
"\n",
"# CALCULATIONs \n",
"phi_m = E/(4.44*f*N); # Maximum value of the Flux in Weber\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"\n",
"print (\"EXAMPLE : 3.3 : SOLUTION :-\") ;\n",
"print \" a) Maximum value of the Flux , phi_m = % .7f Wb \"%(phi_m);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 3.3 : SOLUTION :-\n",
" a) Maximum value of the Flux , phi_m = 0.0198198 Wb \n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.4 Page No : 32"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# GIVEN DATA\n",
"S = 1.5; # Transformer Rating in KVA\n",
"E1 = 220.; # HV side voltage in volts\n",
"E2 = 40.; # LV side voltage in volts\n",
"\n",
"\n",
"# CALCULATION\n",
"Ihv = (S * 10 ** 3)/E1; # Rated HV side Curent in Amphere\n",
"Ilv = (S * 10 ** 3)/E2; # Rated lV side Curent in Amphere\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"print (\"EXAMPLE : 3.4 : SOLUTION :-\") ;\n",
"print \" a) Rated HV side Curent , Ihv = %.2f A \"%(Ihv);\n",
"print \" b) Rated LV side Curent , Ilv = %.1f A \"%(Ilv);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 3.4 : SOLUTION :-\n",
" a) Rated HV side Curent , Ihv = 6.82 A \n",
" b) Rated LV side Curent , Ilv = 37.5 A \n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.5 Page No : 36"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# GIVEN DATA\n",
"Ai = 2.3 * 10 ** -3; # Cross-Sectional area of the core in Meter-Square\n",
"mue_0 = 4*math.pi*10** -7; # Permeability of the air in Henry/Meter\n",
"Fe_loss = 2.6; # Iron loss at the working Flux density Watts/kg\n",
"Fe_den = 7.8 * 10 ** 3; # Density of the Iron in kg/Meter-Cube\n",
"N1 = 800.; # Number of Turns of the Primary winding\n",
"L = 2.5; # Length of the Flux path in Meter\n",
"mue_r = 1000.; # Relative Permeability\n",
"E = 400.; # Primary Volatge of the Transformer in Volts\n",
"f = 50.; # Frequency in Hertz\n",
"\n",
"\n",
"# CALCULATIONS\n",
"Bm = E/(4.44*f*Ai*800); # Flux Density in Weber/Meter-Square\n",
"phi_m = (Bm*Ai)*10**3; # Maximum Flux in the core in milli-Weber\n",
"F = (L*Bm)/(mue_r*mue_0); # Magnetizing MMF in Amphere-turns\n",
"Im = F/(N1*math.sqrt(2)); # Magnetizing Current in Amphere\n",
"Vol = L*Ai; # Volume of the Core in Meter-Cube\n",
"W = Vol * Fe_den; # Weight of the Core in kg\n",
"Total_Fe_loss = Fe_loss * W; # Total Iron loss in Watt\n",
"Ic = Total_Fe_loss/E; # Loss component of Current in Amphere\n",
"Io= math.sqrt((Ic ** 2)+(Im ** 2)); # No load Current in Amphere\n",
"pf_angle = math.degrees(math.atan(Io/Ic)); # No load Power factor angle in degree\n",
"pf = math.degrees(math.cos(math.radians(pf_angle))); # No load Power factor \n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"print (\"EXAMPLE : 3.5 : SOLUTION :-\") ;print \" a) Maximum Flux in the core , phi_m = %.6f mWb \"%(phi_m);\n",
"print \" b) No load Current , I0 = %.3f A \"%(Io);\n",
"print \" c) No load Power factor angle = %.3f degree \"%(pf_angle);\n",
"print \" d) No load Power factor = %.4f \"%(pf);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 3.5 : SOLUTION :-\n",
" a) Maximum Flux in the core , phi_m = 2.252252 mWb \n",
" b) No load Current , I0 = 1.746 A \n",
" c) No load Power factor angle = 80.523 degree \n",
" d) No load Power factor = 9.4336 \n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.6 Page No : 39"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# GIVEN DATA\n",
"S = 5.; # Transformer Rating in kVA\n",
"V1 = 220.; # HV side voltage in volts\n",
"V2 = 110.; # LV side voltage in Volts\n",
"P = 4. * 10 ** 2; # Load of the Transformer\n",
"pf = 0.8; # Power Factor (lagging)\n",
"f = 50.; # Frequency in Hertz\n",
"\n",
"\n",
"# CALCULATIONS\n",
"a = V1/V2; # Turn Ratio of the Transformer\n",
"\n",
"# case (a) At full load\n",
"I1 = (S * 10 ** 3)/V1; # Primary current at full load in Amphere\n",
"I2 = (S * 10 ** 3)/V2; # Secondary Current at full Load in Amphere\n",
"\n",
"# Case (b) At 4kW, 0.8 lagging pf load\n",
"I11 = (4 * 10 ** 3 * 0.8)/V1; # Primary current At 4kW, 0.8 lagging pf load in Amphere\n",
"I22 = (4 * 10 ** 3 * 0.8)/V2; # Secondary Current At 4kW, 0.8 lagging pf load in Amphere\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"print (\"EXAMPLE : 3.6 : SOLUTION :-\") ;\n",
"print \" a) Turn Ratio of the Transformer , a = %.f \"%(a);\n",
"print \" b.1.1) Primary current at full load , I1 = %.2f A \"%(I1);\n",
"print \" b.1.2) Secondary current at full load , I2 = %.2f A \"%(I2);\n",
"print \" b.2.1) Primary current at 4kW, 0.8 lagging pf load , I1 = %.3f A \"%(I11);\n",
"print \" b.2.1) Secondary current at 4kW, 0.8 lagging pf load , I2 = %.3f A \"%(I22);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 3.6 : SOLUTION :-\n",
" a) Turn Ratio of the Transformer , a = 2 \n",
" b.1.1) Primary current at full load , I1 = 22.73 A \n",
" b.1.2) Secondary current at full load , I2 = 45.45 A \n",
" b.2.1) Primary current at 4kW, 0.8 lagging pf load , I1 = 14.545 A \n",
" b.2.1) Secondary current at 4kW, 0.8 lagging pf load , I2 = 29.091 A \n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.7 Page No : 41"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# GIVEN DATA\n",
"a = 100./200; # Turn ratio of the Ideal transformer\n",
"R = 1.0; # resistance across the secondary side having 200 turns in Ohms \n",
"\n",
"\n",
"# CALCULATIONS\n",
"R1 = (a ** 2)*R; # Referred value of the resistance from Primary side having 100 turns in Ohms\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"print (\"EXAMPLE : 3.7 : SOLUTION :-\") ;\n",
"print \" a) Referred value of the %.f Ohm resistance from Primary side having 100 turns , R1 = %.2f ohms \"%(R,R1);\n",
"print \" [ TEXT BOOK SOLUTION IS PRINTED WRONGLY I verified by manual calculation ]\" ;\n",
"print \" WRONGLY PRINTED ANSWERS ARE :- a) Referred value of the resistance from Primary side having\\\n",
"\\n 100 turns = 0.025 Ohms instead of %.2f Ohms \"%(R1);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 3.7 : SOLUTION :-\n",
" a) Referred value of the 1 Ohm resistance from Primary side having 100 turns , R1 = 0.25 ohms \n",
" [ TEXT BOOK SOLUTION IS PRINTED WRONGLY I verified by manual calculation ]\n",
" WRONGLY PRINTED ANSWERS ARE :- a) Referred value of the resistance from Primary side having\n",
" 100 turns = 0.025 Ohms instead of 0.25 Ohms \n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.8 Page No : 44"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# GIVEN DATA\n",
"S = 60.; # Tranformer Rating in kVA\n",
"V1 = 6600.; # HV Side Voltage Rating of the Transformer in Volts\n",
"V2 = 220.; # LV Side Voltage Rating of the Transformer in Volts\n",
"R1 = 7.8; # primary resistances of the Transformer in Ohms\n",
"R2 = 0.0085; # Secondary resistances of the Transformer in Ohms\n",
"\n",
"\n",
"# CALCULATIONS\n",
"a = V1/V2; # Transformation Ratio\n",
"Rp = R1+(a**2)*R2; # resistance referred to Primary side in Ohms \n",
"Rs = (R1/(a**2))+R2; # resistance referred to Secondary side in Ohms\n",
"Ip = (S*1000)/V1 # Current in Primary Side in Ampheres\n",
"Cu_loss = Rp*(Ip**2); # Copper loss in Transformer in Watts\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"print (\"EXAMPLE : 3.8 : SOLUTION :-\") ;\n",
"print \" a) Equlivalent resistance as Referred to Primary Side, Rp = % .2f ohms \"%(Rp)\n",
"print \" b) Equlivalent resistance as Referred to Secondary Side, Rs = % .5f ohms \"%(Rs)\n",
"print \" c) Total Copper Loss, Cu_loss = % .2f W \"%(Cu_loss)\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 3.8 : SOLUTION :-\n",
" a) Equlivalent resistance as Referred to Primary Side, Rp = 15.45 ohms \n",
" b) Equlivalent resistance as Referred to Secondary Side, Rs = 0.01717 ohms \n",
" c) Total Copper Loss, Cu_loss = 1276.86 W \n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.9 Page No : 45"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# GIVEN DATA\n",
"V1 = 11000.; # HV Side Voltage Rating of the Transformer in Volts\n",
"V2 = 440.; # LV Side Voltage Rating of the Transformer in Volts\n",
"R = 1.0; # resistance across the secondary side having 11kV in Ohms\n",
"\n",
"\n",
"# CALCULATIONS\n",
"a = V1/V2; # Turns ratio of the ideal transformers\n",
"R2 = (a ** 2)*R; # Referred value of the resistance from Primary side having 440V in Ohms\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"\n",
"print (\"EXAMPLE : 3.9 : SOLUTION :-\") ;\n",
"print \" a) Referred value of the resistance from Primary side having 440V , R2 = %.f Ohms \"%(R2);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 3.9 : SOLUTION :-\n",
" a) Referred value of the resistance from Primary side having 440V , R2 = 625 Ohms \n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.10 Page No : 48"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import cmath\n",
"import math\n",
"\n",
"# GIVEN DATA\n",
"V1 = 440.; # HV Side Voltage Rating of the Transformer in Volts\n",
"V2 = 220.; # LV Side Voltage Rating of the Transformer in Volts\n",
"pf_o = 0.2; # No-load Power factor lagging\n",
"pf_l = 0.8; # Load Power factor lagging\n",
"I_o = 5.; # No-load current in Amphere\n",
"I_2 = 120.; # Load current in Amphere\n",
"\n",
"# CALCULATIONS\n",
"a = V1/V2; # Turns ratio of the two winding Transformers\n",
"theta_o =math.degrees(math.acos(math.radians(pf_o))); # No load power factor of the two winding Transformers in Degrees\n",
"Io = I_o * cmath.exp(-(1j*theta_o*math.pi/180)); # No load current of the two winding Transformers (minus because lagging) in Amphere\n",
"theta =math.degrees(math.acos(math.radians(pf_l))); # load power factor of the two winding Transformers in Degrees\n",
"I2 = I_2 * cmath.exp(-(1j*theta*math.pi/180)); # secondary load current of the two winding Transformers (minus because lagging) in Amphere\n",
"I21 = I2/a; # Secondary referred to the primaryin Amphere\n",
"I1 = Io + I21; # Primary current in Amphere\n",
"I1_mag = abs(I1); # Primary current magnitude inj Amphere\n",
"theta_1 = (math.atan2(I1.imag,I1.real)); # Primary current angle in Degree\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"\n",
"print (\"EXAMPLE : 3.10 : SOLUTION :-\") ;\n",
"print \" a) Primary current , I1 = %.2f < %.1f A \"%(I1_mag,theta_1);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 3.10 : SOLUTION :-\n",
" a) Primary current , I1 = 65.00 < -1.6 A \n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.11 Page No : 50"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"import cmath \n",
"\n",
"# GIVEN DATA\n",
"\n",
"S = 50.; # kVA Rating of the Transformer\n",
"f = 50.; # Frequency in Hertz\n",
"Wo = 190.; # Meter Readings when HV Winding kept open in Watt\n",
"Vo = 230.; # Meter Readings when HV Winding kept open in Volts\n",
"Io = 6.5; # Meter Readings when HV Winding kept open in Amphere\n",
"R2 = 0.06; # resistance of the LV Winding in Ohms\n",
"V1 = 2300.; # Voltage across the HV Side in Volts\n",
"V2 = 230.; # Voltage across the LV Side in Volts\n",
"AC = 230.; # Tranformer connected to AC mains in Volts\n",
"\n",
"\n",
"# CALCULATIONS\n",
"\n",
"a = V1/V2; # Trasformation ratio of the Transformer\n",
"Wc = Wo - ((Io ** 2) * R2); # Core loss in Watts\n",
"Po = Wc; # Core loss in Watts\n",
"Pc = Wc; # Core loss in Watts\n",
"cos_theta_o = Po/(Vo*Io); # No load power factor\n",
"theta_o =math.degrees(math.acos(math.radians(cos_theta_o))); # No load power factor angle in Degrees\n",
"Ic = Io * math.degrees(math.cos(math.radians(theta_o))); \n",
"E = V1 - Io * cmath.exp(1j*(theta_o)*math.pi/180); \n",
"Rc = Pc/(Ic ** 2 ); # Core loss resistance in Ohms\n",
"Im = Io *math.degrees(math.sin(math.radians(theta_o))); # Current through the Magnetizing branch in Amphre \n",
"Xm = E/Im; # Magnetizing reactance in Ohms\n",
"Ift = (S * 10 ** 3)/V2; # Full Load current in Amphere\n",
"Ie = (Io/Ift)*100; # Percentage of the Exicting Current in Amphere\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"\n",
"print (\"EXAMPLE : 3.11 : SOLUTION :-\") ;\n",
"print \" a) Core loss , Wc = %.2f W \"%(Wc);\n",
"print \" b.1) No load power factor angle , theta_o = % .2f Degree \"%(theta_o);\n",
"print \" b.2) No load power factor , (costheta_o) = % .6f \"%(cos_theta_o );\n",
"print \" c.1) Curent through Core loss Component , Ic = %.4f A \"%(Ic);\n",
"print \" c.2) Core loss resistance , Rc = %.2f Ohms \"%(Rc);\n",
"print \" d) Current through the Magnetizing Component Xm , Im = % .2f A \"%(Im);\n",
"print \" e) Percentage of the Exicting Current = % .2f Percent \"%(Ie);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 3.11 : SOLUTION :-\n",
" a) Core loss , Wc = 187.47 W \n",
" b.1) No load power factor angle , theta_o = 89.87 Degree \n",
" b.2) No load power factor , (costheta_o) = 0.125395 \n",
" c.1) Curent through Core loss Component , Ic = 0.8151 A \n",
" c.2) Core loss resistance , Rc = 282.19 Ohms \n",
" d) Current through the Magnetizing Component Xm , Im = 372.42 A \n",
" e) Percentage of the Exicting Current = 2.99 Percent \n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.12 Page No : 54"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"from numpy.linalg import solve\n",
"\n",
"# GIVEN DATA\n",
"N1 = 1000.; # 1st Test at No-load condition f1 Frequency, Speed in RPM\n",
"Vo1 = 250.; # 1st Test at No-load condition f1 Frequency, Voltage in Volts\n",
"Io1 = 0.5; # 1st Test at No-load condition f1 Frequency, Current in Amphere\n",
"Wo1= 230.; # 1st Test at No-load condition f1 Frequency, Power in Watts\n",
"\n",
"N2 = 900.; # 2nd Test at No-load condition f2 Frequency, Speed in RPM\n",
"Vo2 = 225.; # 2nd Test at No-load condition f2 Frequency, Voltage in Volts\n",
"Io2= 0.5; # 2nd Test at No-load condition f2 Frequency, Current in Amphere\n",
"Wo2 = 200.; # 2nd Test at No-load condition f2 Frequency, Power in Watts\n",
"p = 6.; # Number of poles of math.single phase alternator\n",
"N = 220.; # Number of the turns of math.single phase alternator\n",
"R = 0.66; # resistance of the math.single phase alternator in Ohms\n",
"\n",
"\n",
"# CALCULATIONS\n",
"f1 = (N1*p)/120; # 1st case Supply Frequency in Hertz\n",
"Ratio1 = Vo1/f1; # 1st case Ratio of the Volatge and Frequency in Volts/Hertz\n",
"f2 = (N2*p)/120; # 2nd case Supply Frequency in Hertz\n",
"Ratio2 = Vo2/f2; # 2nd case Ratio of the Volatge and Frequency in Volts/Hertz\n",
"\n",
"c = (Wo1-(Io1**2)*R)/f1; # No-load corrected losses Eq 1 in Watts\n",
"d = (Wo2-(Io2**2)*R)/f2; # No-load corrected losses Eq 2 in watts\n",
"\n",
"x = [[ 1, f1] ,[ 1, f2] ]; # No-load corrected losses Eq 1 in watts\n",
"y = [ [c] , [d] ]; # No-load corrected losses Eq 2 in watts\n",
"\n",
"E = solve(x,y); # Solution of constants A in Watts/Hertz and B in watts/Hertz-Sqare in matrix form\n",
"A = E[0]; # Solution of constant A in Watts/Hertz\n",
"B = E[1]; # Solution of constant B in watts/Hertz-Sqare\n",
"Ph = f1*A; # Hysteresis loss at 50 Hertz in Watts\n",
"Pe = (f1**2)*B; # Eddy current loss at 50 Hertz in Watts\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"\n",
"print (\"EXAMPLE : 3.12 : SOLUTION :-\") ;\n",
"print \" a) Hysteresis loss at %.f Hertz , Ph = %.3f W \"%(f1,Ph);\n",
"print \" b) Eddy current loss at %.f Hertz , Pe = % .2f W \"%(f1,Pe);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 3.12 : SOLUTION :-\n",
" a) Hysteresis loss at 50 Hertz , Ph = 151.874 W \n",
" b) Eddy current loss at 50 Hertz , Pe = 77.96 W \n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.13 Page No : 59"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"from numpy.linalg import solve\n",
"\n",
"# GIVEN DATA\n",
"\n",
"N1 = 1500.; # 1st Test on Transformer at f1 Frequency and Vo1 voltage, Speed in RPM\n",
"Vo1 = 250.; # 1st Test on Transformer at f1 Frequency and Vo1 voltage, Voltage in Volts\n",
"Wo1= 55.; # 1st Test on Transformer at f1 Frequency and Vo1 voltage, Power in Watts\n",
"N2 = 1200.; # 2nd Test on Transformer at f2 Frequency and Vo2 voltage, Speed in RPM\n",
"Vo2 = 200.; # 2nd Test on Transformer at f2 Frequency and Vo2 voltage, Voltage in Volts\n",
"Wo2 = 40.; # 2nd Test on Transformer at f2 Frequency and Vo2 voltage, Power in Watts\n",
"p = 4.; # Number of poles of math.single phase alternator\n",
"\n",
"\n",
"# CALCULATIONS\n",
"f1 = (N1*p)/120; # 1st case Supply Frequency in Hertz\n",
"Ratio1 = Vo1/f1; # 1st case Ratio of the Volatge and Frequency in Volts/Hertz\n",
"f2 = (N2*p)/120; # 2nd case Supply Frequency in Hertz\n",
"Ratio2 = Vo2/f2; # 2nd case Ratio of the Volatge and Frequency in Volts/Hertz\n",
"\n",
"c = Wo1/f1; # No-load corrected losses Eq 1 in Watts\n",
"d = Wo2/f2; # No-load corrected losses Eq 2 in watts\n",
"\n",
"x = [ [1, f1] , [1, f2] ]; # No-load corrected losses Eq 1 in watts\n",
"y = [ [c] , [d] ]; # No-load corrected losses Eq 2 in watts\n",
"\n",
"E = solve(x,y); # Solution of constants A in Watts/Hertz and B in watts/Hertz-Sqare in matrix form\n",
"A = E[0]; # Solution of constant A in Watts/Hertz\n",
"B = E[1]; # Solution of constant B in watts/Hertz-Sqare\n",
"Ph1 = f1*A; # Hysteresis loss at 50 Hertz in Watts\n",
"Pe1 = (f1**2)*B; # Eddy current loss at 50 Hertz in Watts\n",
"Ph2 = f2*A; # Hysteresis loss at 40 Hertz in Watts\n",
"Pe2 = (f2**2)*B; # Eddy current loss at 40 Hertz in Watts\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"\n",
"print (\"EXAMPLE : 3.13 : SOLUTION :-\") ;\n",
"print \" a.1) Hysteresis loss at %.f Hertz , Ph = %.f W \"%(f1,Ph1);\n",
"print \" a.2) Eddy current loss at %.f Hertz , Pe = %.f W \"%(f1,Pe1);\n",
"print \" b.1) Hysteresis loss at %.f Hertz , Ph = %.f W \"%(f2,Ph2);\n",
"print \" b.2) Eddy current loss at %.f Hertz , Pe = %.f W \"%(f2,Pe2);\n",
"print \" [ TEXT BOOK SOLUTION IS PRINTED WRONGLY I verified by manual calculation ]\" ;\n",
"print \" WRONGLY PRINTED ANSWERS ARE :- a) Hysteresis loss at %.f Hertz , Ph = 25 W instead of %.f W \"%(f2,Ph2);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 3.13 : SOLUTION :-\n",
" a.1) Hysteresis loss at 50 Hertz , Ph = 30 W \n",
" a.2) Eddy current loss at 50 Hertz , Pe = 25 W \n",
" b.1) Hysteresis loss at 40 Hertz , Ph = 24 W \n",
" b.2) Eddy current loss at 40 Hertz , Pe = 16 W \n",
" [ TEXT BOOK SOLUTION IS PRINTED WRONGLY I verified by manual calculation ]\n",
" WRONGLY PRINTED ANSWERS ARE :- a) Hysteresis loss at 40 Hertz , Ph = 25 W instead of 24 W \n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.14 Page No : 62"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# GIVEN DATA\n",
"\n",
"S = 10 * 10 ** 3; # Rating of the Single Transformer in VA\n",
"f = 50; # Frequency in Hertz\n",
"Pc = 110; # Required input no-load at normal voltage in Watts (Core loss)\n",
"Psc = 120; # Required input Short-circuit at full-load current in Watts (copper loss or short circuit loss)\n",
"\n",
"\n",
"# CALCUATIONS\n",
"# case (a) for Unity power factor\n",
"\n",
"cos_theta1 = 1; # Unity Power factor\n",
"K1 = 1.0; # Full load\n",
"K2 = 0.5; # Half load\n",
"eta_11 = 100 * (K1*S*cos_theta1)/((K1*S*cos_theta1)+Pc+( K1 ** 2 )*Psc); # Efficiency at unity factor and full load ( beacuse taken k1 = 1 ) in percentage\n",
"eta_12 = 100 * (K2*S*cos_theta1)/((K2*S*cos_theta1)+Pc+( K2 ** 2 )*Psc); # Efficiency at unity factor and half load ( beacuse taken k2 = 0.5 ) in percentage\n",
"\n",
"# case (b) for 0.8 power factor lagging\n",
"\n",
"cos_theta2 = 0.8; # 0.8 power factor lagging\n",
"eta_21 = 100 * (K1*S*cos_theta2)/((K1*S*cos_theta2)+Pc+( K1 ** 2 )*Psc); # Efficiency at 0.8 power factor lagging and full load ( beacuse taken k1 = 1 ) in percentage\n",
"eta_22 = 100 * (K2*S*cos_theta2)/((K2*S*cos_theta2)+Pc+( K2 ** 2 )*Psc); # Efficiency at 0.8 power factor lagging and half load ( beacuse taken k2 = 0.5 ) in percentage\n",
"\n",
"# Case (c) for 0.8 poer factor leading\n",
"\n",
"eta_31 = eta_21; # Efficiency at 0.8 power factor leading and full load will be same as the Efficiency at 0.8 power factor lagging and full load in percentage\n",
"eta_32 = eta_22; # Efficiency at 0.8 power factor leading and half load will be same as the Efficiency at 0.8 power factor lagging and half load in percentage\n",
"\n",
"# Case (d) Maximum Efficiency assumed that unity power factor \n",
"# Psc = Pc At Maximum Efficiency\n",
"\n",
"eta_41 = 100 * (K1*S*cos_theta1)/((K1*S*cos_theta1)+Pc+Pc); # Maximum Efficiency at unity factor and full load ( beacuse taken k1 = 1 ) in percentage\n",
"\n",
"# Case (e) Maximum Efficiency assumed that 0.8 power factor lagging \n",
"# Psc = Pc At Maximum Efficiency\n",
"\n",
"eta_51 = 100 * (K1*S*cos_theta2)/((K1*S*cos_theta2)+Pc+Pc); # Maximum Efficiency at unity factor and full load ( beacuse taken k1 = 1 ) in percentage\n",
"\n",
"# Case (f) Maximum Efficiency assumed that 0.8 power factor leading\n",
"# Psc = Pc At Maximum Efficiency\n",
"\n",
"eta_61 = eta_51; # Maximum Efficiency at 0.8 power factor leading and full load will be same as the Maximum Efficiency at 0.8 power factor lagging and full load in percentage\n",
"out1 = K1*S*cos_theta1; # Output at which maximum efficiency occurs at unity power factor at full load in Watts\n",
"out2 = K1*S*cos_theta2; # Output at which maximum efficiency occurs at 0.8 power factor lagging at full load in Watts\n",
"out3 = K1*S*cos_theta2; # Output at which maximum efficiency occurs at unity power factor leading at full load in Watts\n",
"\n",
"# DISPLAY RESULTS\n",
"\n",
"print (\"EXAMPLE : 3.14 : SOLUTION :-\") ;\n",
"print \" a.1) Efficiency at unity power factor and full load , eta = %.2f Percent \"%(eta_11);\n",
"print \" a.2) Efficiency at unity power factor and half load , eta= % .2f Percent \"%(eta_12);\n",
"print \" b.1) Efficiency at 0.8 power factor lagging and full load , eta = %.2f Percent \"%(eta_21);\n",
"print \" b.2) Efficiency at 0.8 power factor lagging and half load , eta= % .2f Percent \"%(eta_22);\n",
"print \" c.1) Efficiency at 0.8 power factor leading and full load , eta = %.2f Percent \"%(eta_31);\n",
"print \" c.2) Efficiency at 0.8 power factor leading and half load , eta= % .2f Percent \"%(eta_32);\n",
"print \" d) Maximum Efficiency at unity power factor and full load , eta = %.2f Percent \"%(eta_41);\n",
"print \" e) Maximum Efficiency at 0.8 power factor lagging and full load , eta = %.2f Percent \"%(eta_51);\n",
"print \" f) Maximum Efficiency at 0.8 power factor leading and full load , eta = %.2f Percent \"%(eta_61);\n",
"print \" g) Output at which maximum efficiency occurs at unity power factor at full load = %.f W \"%(out1);\n",
"print \" h) Output at which maximum efficiency occurs at 0.8 power factor lagging at full load = %.f W \"%(out2);\n",
"print \" i) Output at which maximum efficiency occurs at 0.8 power factor leading at full load = %.f W \"%(out3);\n",
"print \" IN THE ABOVE PROBLEM MAXIMUM EFFICIENCY AND THE OUTPUT AT WHICH THE MAXIMUM EFFICIENCY OCCURS IS\\\n",
"\\n NOT CALCULATED IN THE TEXT BOOK \"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 3.14 : SOLUTION :-\n",
" a.1) Efficiency at unity power factor and full load , eta = 97.75 Percent \n",
" a.2) Efficiency at unity power factor and half load , eta= 97.28 Percent \n",
" b.1) Efficiency at 0.8 power factor lagging and full load , eta = 97.21 Percent \n",
" b.2) Efficiency at 0.8 power factor lagging and half load , eta= 96.62 Percent \n",
" c.1) Efficiency at 0.8 power factor leading and full load , eta = 97.21 Percent \n",
" c.2) Efficiency at 0.8 power factor leading and half load , eta= 96.62 Percent \n",
" d) Maximum Efficiency at unity power factor and full load , eta = 97.85 Percent \n",
" e) Maximum Efficiency at 0.8 power factor lagging and full load , eta = 97.32 Percent \n",
" f) Maximum Efficiency at 0.8 power factor leading and full load , eta = 97.32 Percent \n",
" g) Output at which maximum efficiency occurs at unity power factor at full load = 10000 W \n",
" h) Output at which maximum efficiency occurs at 0.8 power factor lagging at full load = 8000 W \n",
" i) Output at which maximum efficiency occurs at 0.8 power factor leading at full load = 8000 W \n",
" IN THE ABOVE PROBLEM MAXIMUM EFFICIENCY AND THE OUTPUT AT WHICH THE MAXIMUM EFFICIENCY OCCURS IS\n",
" NOT CALCULATED IN THE TEXT BOOK \n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.15 Page No : 65"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# GIVEN DATA\n",
"# Refer figure 3.17 page no. 101\n",
"\n",
"S = 500. * 10 ** 6; # Rating of power transformer in VA\n",
"V1 = 400. * 10**3; # HV side rating of the power transformer in Volts\n",
"V2 = 131. * 10**3; # LV side rating of the power transformer in Volts\n",
"pcu = 5.; # Rated Copper loss in Percentage\n",
"pi = 1.; # Rated Core loss in Percentage\n",
"\n",
"\n",
"# CALCULATIONS\n",
"\n",
"Pcu = S*(pcu/100); # Rated Copper loss in Watts\n",
"Pi = S*(pi/100); # Rated Core loss in Watts\n",
"kt = 0.25*3 + 0.75*3 + 1*3 + 0.5*3 + 1.0*3 + 0.25*6 + 1.0*3; # From graph figure 3.17 page no. 101\n",
"out = S*kt; # Output energy in kilo-watt-hour\n",
"kt2 = 0.54375; # From graph figure 3.17 page no. 101\n",
"eloss = 24*Pi + S*kt2; # Energy required in losses in kilo-watt-hour { Energy required in losses = 24*Pi + sigma(copper loss * duration)}\n",
"eta = 100*(out/(out+eloss)); # All day efficiency\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"\n",
"print (\"EXAMPLE : 3.15: SOLUTION :-\");\n",
"print \" a) All day efficiency = %.2f percent \"%(eta)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 3.15: SOLUTION :-\n",
" a) All day efficiency = 95.03 percent \n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.16 Page No : 68"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\n",
"# GIVEN DATA\n",
"\n",
"S = 20. * 10 ** 3; # Rating of the Step-down Transformer in VA\n",
"f = 50.; # Frequency in Hertz\n",
"V = 200.; # Normally supplied Voltage of Step-down Transformer in Volts\n",
"Vsc = 100.; # Potential difference when Secondary being Short- Circuited in Volts\n",
"Isc = 10.; # Primary Current when Secondary being Short- Circuited in Amphere\n",
"Cos_theta_sc = 0.28; # Power factor when Secondary being Short- Circuited\n",
"\n",
"\n",
"# CALCULATIONS\n",
"\n",
"I = S/V; # Rated primary current in Amphere\n",
"Wsc = Vsc * Isc * Cos_theta_sc; # Power loss when Secondary being Short- Circuited in Watts\n",
"R = Wsc/(Isc ** 2); # resistance of Transformer referred to primary side in Ohms\n",
"Z = Vsc/Isc; # Referred Impedence in Ohms\n",
"X = math.sqrt((Z**2)-(R**2)); # Leakage reactance referred to primary side in Ohms\n",
"Er = (I*R)/V; # Per unit resistance in Ohms\n",
"Ex = (I*X)/V; # Per unit reactance in Ohms\n",
"Cos_theta1 = 1.0; # Unity Power factor\n",
"Cos_theta2 = 0.6; # 0.6 Power factor Lagging\n",
"Cos_theta3 = 0.6; # 0.6 Power factor Leading\n",
"Sin_theta1 = 0.0; # Unity Power factor\n",
"Sin_theta2 = 0.8; # 0.6 Power factor Lagging\n",
"Sin_theta3 = 0.8; # 0.6 Power factor Leading\n",
"E1 = (Er*Cos_theta1)+(Ex*Sin_theta1); # pu Regulation at Unity Power factor\n",
"E2 = (Er*Cos_theta2)+(Ex*Sin_theta2); # pu Regulation at 0.6 Power factor Lagging\n",
"E3 = (Er*Cos_theta3)-(Ex*Sin_theta3); # pu Regulation at 0.6 Power factor Leading\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"\n",
"print (\"EXAMPLE : 3.16 : SOLUTION :-\") ;\n",
"print \" a) pu Regulation at Unity Power factor , E = %.1f \"%(E1);\n",
"print \" b) pu Regulation at 0.6 Power factor Lagging , E= % .2f \"%(E2);\n",
"print \" c) pu Regulation at 0.6 Power factor Leading , E= % .2f \"%(E3);\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 3.16 : SOLUTION :-\n",
" a) pu Regulation at Unity Power factor , E = 1.4 \n",
" b) pu Regulation at 0.6 Power factor Lagging , E= 4.68 \n",
" c) pu Regulation at 0.6 Power factor Leading , E= -3.00 \n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.17 Page No : 73"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\n",
"# GIVEN DATA\n",
"\n",
"S = 500.; # Rating of the 3-Phase transformer in kVA\n",
"V1 = 11. * 10 ** 3; # Votage rating of the 3-Phase transformer on HV side in Volts\n",
"V2 = 400.; # Votage rating of the 3-Phase transformer on LV side in Volts\n",
"f = 60.; # Frequencyin Hertz\n",
"eta = 98.; # Maximum Efficency of the Transformer in Percentage Operating at 80% full load and Unity Power factor \n",
"K = 0.8; # Beacuse 80% Full load\n",
"x = 1.0; # Unity Power factor\n",
"Ex = 4.5; # Percentage impedance \n",
"\n",
"\n",
"# CALCULATIONS\n",
"\n",
"Out = S * K * x; # Output in KiloWatts at 80% full load and Unity Power factor \n",
"Inp = Out/(eta/100); # Input in KiloWatts at full load and Unity Power factor \n",
"Total_loss = Inp - Out; # Total loss at full load in KiloWatts\n",
"Cu_loss = Total_loss/2; # Copper loss in KiloWatts at 80% full load and Unity Power factor \n",
"Pcu = Cu_loss/(K **2 ); # Full load Copper loss in KiloWatts\n",
"Er = Pcu/S; # Per unit resistance\n",
"theta = math.degrees(math.atan((Ex/100)/Er)); # Power factor angle at secondary terminal voltage is minimum in Degrees\n",
"Pf =math.degrees(math.cos(math.radians(theta))); # Load power factor for minimum volatge of the secondary terminal\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"\n",
"print (\"EXAMPLE : 3.17 : SOLUTION :-\") ;\n",
"print \" a) Load power factor for minimum volatge of the secondary terminal ( math.costheta) = %.4f lagging \"%(Pf);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 3.17 : SOLUTION :-\n",
" a) Load power factor for minimum volatge of the secondary terminal ( math.costheta) = 15.6248 lagging \n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.19 Page No : 74"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# GIVEN DATA\n",
"\n",
"Sa = 200; # Rating of the TWO 1-Phase Transformer in kVA\n",
"Z1 = 0.005 + 0.08 * 1j # Equivalent Impedance of the Transformer-1 in Per-Unit\n",
"Z2 = 0.0075 + 0.04 * 1j # Equivalent Impedance of the Transformer-2 in Per-Unit\n",
"P = 400; # Total load in kiloWatts\n",
"Cos_theta = 1.0; # Unity power factor\n",
"\n",
"\n",
"# CALCULATIONS\n",
"\n",
"kVA = P/Cos_theta; # kVA rating of the Transformer\n",
"S = kVA; # kVA rating of the Transformer\n",
"S1 = ( Z2/(Z1+Z2) )*S; # Load shared by Transformer-1 in kVA\n",
"S2 = S - S1; # Load shared by Transformer-2 in kVA\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"\n",
"print (\"EXAMPLE : 3.19 : SOLUTION :-\") ;\n",
"print \" a) Load shared by Transformer-1 , S1 = %.2f+j%.2f) kVA \"%(S1.real,S1.imag);\n",
"print \" b )Load shared by Transformer-2 , S2 = %.2f+j%.2f kVA \"%(S2.real,S2.imag);\n",
"print \" [ TEXT BOOK SOLUTION IS PRINTED WRONGLY I verified by manual calculation ]\" ;\n",
"print \" WRONGLY PRINTED ANSWERS ARE :- a) S1 = -131.90)+j38.47)kVA instead of %.2f+j%.2f) kVA \"%(S1.real,S1.imag);\n",
"print \" b) S2 = 268.1)+j.38047)kVA instead of %.2f+j%.2f kVA \"%(S2.real,S2.imag);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 3.19 : SOLUTION :-\n",
" a) Load shared by Transformer-1 , S1 = 134.48+j-10.99) kVA \n",
" b )Load shared by Transformer-2 , S2 = 265.52+j10.99 kVA \n",
" [ TEXT BOOK SOLUTION IS PRINTED WRONGLY I verified by manual calculation ]\n",
" WRONGLY PRINTED ANSWERS ARE :- a) S1 = -131.90)+j38.47)kVA instead of 134.48+j-10.99) kVA \n",
" b) S2 = 268.1)+j.38047)kVA instead of 265.52+j10.99 kVA \n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.20 Page No : 78"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\n",
"# GIVEN DATA\n",
"\n",
"V1 = 110; # Primary voltage of the Two Transformers the two primaries are connected in parallel in Volts\n",
"I1 = 2.0; # Primary Current in Amphere\n",
"P1 = 40; # Primary power intake in Watts\n",
"V2 = 28; # secondary voltage of the Two Transformers the two secondary are connected in phase opposition in Volts\n",
"I2 = 6.8; # secondary Current in Amphere\n",
"P2 = 180.; # secondary power intake in Watts\n",
"a = 110./220; # Turn ratio of the Transformer\n",
"\n",
"\n",
"# CALCULATIONS\n",
"\n",
"theta_o = math.acos(math.radians((a*P1)/(a*I1*V1))); # Primary Power factor angle in Degrees\n",
"Io = 1.0 * (math.degrees(math.cos(math.radians(theta_o)))-math.degrees(math.sin(math.radians(theta_o)))* 1j); # No-load current in individual transformer in Amphere\n",
"theta_sc = math.acos(math.radians((a*P2)/(a*I2*V2))); # Secondary Power factor angle in Degrees\n",
"i_sc = I2 * ( math.degrees(math.cos(math.radians(theta_sc)))-math.degrees(math.sin(math.radians(theta_sc)))* 1j); # Secondary current in Amphere\n",
"I_sc = (1/a)*i_sc; # referred Secondary current in each of the primary side in Amphere\n",
"It1 = Io + I_sc; # LT winding current in the 1st Transformer in Amphere\n",
"It2 = Io - I_sc; # LT winding current in the 2nd Transformer in Amphere\n",
"In1 = It1 + It2; # The current flowing on paralel connected LT winding (This is same as total no-load current in the two Transforemer) in Amphere\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"\n",
"print (\"EXAMPLE : 3.20 : SOLUTION :-\") ;\n",
"print \" a) LT Primary ) winding current in the 1st Transformer It1 = %.3f+j%.4f) A \"%(It1.real,It1.imag);\n",
"print \" b) LT Primary ) winding current in the 2nd Transformer It2= %.3f+j%.5f A \"%(It2.real,It2.imag);\n",
"print \" c) LT winding are connected in parallel, the current flowing on paralel connected LT winding\\\n",
"\\n In1 = %.3f+j%.5f) A \"%(In1.real,In1.imag);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 3.20 : SOLUTION :-\n",
" a) LT Primary ) winding current in the 1st Transformer It1 = 836.210+j-22.7033) A \n",
" b) LT Primary ) winding current in the 2nd Transformer It2= -721.662+j19.56840 A \n",
" c) LT winding are connected in parallel, the current flowing on paralel connected LT winding\n",
" In1 = 114.549+j-3.13485) A \n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.21 Page No : 83"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# GIVEN DATA\n",
"# Refer figures 3.31(a), 3.31(b) and 3.31(c):- Page no. 121\n",
"\n",
"VaH = 220.; # HV side Voltage of the two winding Transformer in volts for case(a)\n",
"VaL = 110.; # LV side Voltage of the two winding Transformer in volts for case(a)\n",
"VbH = 330.; # HV side Voltage of the two winding Transformer in volts for case(b)\n",
"VbL = 220.; # LV side Voltage of the two winding Transformer in volts for case(b)\n",
"VcH = 330; # HV side Voltage of the two winding Transformer in volts for case(c) \n",
"VcL = 110.; # LV side Voltage of the two winding Transformer in volts for case(c)\n",
"S = 1.5; # Ratings of the the two winding Transformer in kVA\n",
"I1 = 6.8; # Rated current in HV side in Amphere \n",
"I2 = 13.6; # Rated current in LV side in Amphere \n",
"\n",
"\n",
"# CALCULATIONS\n",
"# for case(a):- figure 3.31(b) page no. 121\n",
"\n",
"IbH = I2; # Current of Auto-Transformer in HV side in Amphere\n",
"IbL = I1 + I2; # Current of Auto-Transformer in LV side in Amphere\n",
"KVA_b_L = (VbL*IbL)/1000; # LV side kVA rating of the Auto-Transformer in kVA\n",
"KVA_b_H = (VbH*IbH)/1000; # HV side kVA rating of the Auto-Transformer in kVA\n",
"\n",
"# for case(b):- figure 3.31(c) page no. 121\n",
"\n",
"IcH = I1; # Current of Auto-Transformer in HV side in Amphere\n",
"IcL = I1 + I2; # Current of Auto-Transformer in LV side in Amphere\n",
"KVA_c_L = (VcL*IcL)/1000; # LV side kVA rating of the Auto-Transformer in kVA\n",
"KVA_c_H = (VcH*IcH)/1000; # HV side kVA rating of the Auto-Transformer in kVA\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"\n",
"print (\"EXAMPLE : 3.21 : SOLUTION :-\") ;\n",
"print \" a.1) Current of Auto-Transformer in HV side for case b) , IH = %.1f A \"%(IbH);\n",
"print \" Current of Auto-Transformer in LV side for case b), IL= % .1f A \"%(IbL);\n",
"print \" a.2) LV side kVA rating of the Auto-Transformer for case b), KVAL = % .3f kVA \"%(KVA_b_L);\n",
"print \" HV side kVA rating of the Auto-Transformer for case b), KVAH= % .3f kVA \"%(KVA_b_H);\n",
"print \" b.1) Current of Auto-Transformer in HV side for case c) , IH = %.1f A \"%(IcH);\n",
"print \" Current of Auto-Transformer in LV side for case c) , IL= % .1f A \"%(IcL);\n",
"print \" b.2) LV side kVA rating of the Auto-Transformer for case c), KVAL = % .3f kVA \"%(KVA_c_L);\n",
"print \" HV side kVA rating of the Auto-Transformer for case c) KVAH= % .3f kVA \"%(KVA_c_H);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 3.21 : SOLUTION :-\n",
" a.1) Current of Auto-Transformer in HV side for case b) , IH = 13.6 A \n",
" Current of Auto-Transformer in LV side for case b), IL= 20.4 A \n",
" a.2) LV side kVA rating of the Auto-Transformer for case b), KVAL = 4.488 kVA \n",
" HV side kVA rating of the Auto-Transformer for case b), KVAH= 4.488 kVA \n",
" b.1) Current of Auto-Transformer in HV side for case c) , IH = 6.8 A \n",
" Current of Auto-Transformer in LV side for case c) , IL= 20.4 A \n",
" b.2) LV side kVA rating of the Auto-Transformer for case c), KVAL = 2.244 kVA \n",
" HV side kVA rating of the Auto-Transformer for case c) KVAH= 2.244 kVA \n"
]
}
],
"prompt_number": 21
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.22 Page No : 84"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# GIVEN DATA\n",
"\n",
"S = 10. * 10 ** 3; # Rating of the Two-winding Transformer in VA\n",
"V1 = 2000.; # HV side voltage of the Two-winding Transformer in Volts\n",
"V2 = 200.; # LV side voltage of the Two-winding Transformer in Volts\n",
"V_A_H = 2200.; # Two-winding Transformer is connected to auto transformer HV side in Volts\n",
"V_A_L = 200.; # Two-winding Transformer is connected to auto transformer LV side in Volts\n",
"f = 50.; # Frequency in Hertz\n",
"\n",
"\n",
"# CALCULATIONS\n",
"# for finding (a)\n",
"\n",
"I2 = S/V2; # Rated LV side current of winding for Step-up Auto transformer in Amphere\n",
"I1 = S/V1; # Rated HV side current of winding for Step-up Auto transformer in Amphere\n",
"IaH = I2; # The HV side current in the Auto-Transformer for Full-load in Amphere\n",
"IaL = I2 + I1 ; # The LV side current in the Auto-Transformer for Full-load in Amphere\n",
"VL = V1; # LV side voltage in Volts\n",
"VH = V1 + V2; # HV side voltage in Volts\n",
"KVA_a_L = (VL*IaL)/1000; # kVA rating of LV SIDE \n",
"KVA_a_H = (VH*IaH)/1000; # kVA rating of HV SIDE \n",
"\n",
"# For finding (b)\n",
"\n",
"IbH = I1; # HV side Rated current through the Auto-Transformer in Amphere\n",
"IbL = I1 + I2; # LV side Rated current through the Auto-Transformer in Amphere\n",
"KVA_b_L = (V_A_L*IbL)/1000; # kVA rating of LV SIDE as output Auto-Transformer\n",
"KVA_b_H = (V_A_H*IbH)/1000; # kVA rating of HV SIDE as output Auto-Transformer \n",
"\n",
"# case (c)\n",
"\n",
"V = V1; # Voltage on the Secondary, if the Commom windings are open\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"\n",
"print (\"EXAMPLE : 3.22 : SOLUTION :-\") ;\n",
"print \" a.1) HV side Curent supplied by the common windings , IH = %.f A \"%(IaH);\n",
"print \" a.2) LV side Curent supplied by the common windings , IL= %.f A \"%(IaL);\n",
"print \" b.1) KVA rating of LV SIDE as output Auto-Transformer , KVAL = %.f kVA \"%(KVA_b_L);\n",
"print \" b.2) KVA rating of HV SIDE as output Auto-Transformer , KVAH= %.f kVA \"%(KVA_b_H);\n",
"print \" c) Voltage on the Secondary, if the Commom windings are open , V = %.f V \"%(V);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 3.22 : SOLUTION :-\n",
" a.1) HV side Curent supplied by the common windings , IH = 50 A \n",
" a.2) LV side Curent supplied by the common windings , IL= 55 A \n",
" b.1) KVA rating of LV SIDE as output Auto-Transformer , KVAL = 11 kVA \n",
" b.2) KVA rating of HV SIDE as output Auto-Transformer , KVAH= 11 kVA \n",
" c) Voltage on the Secondary, if the Commom windings are open , V = 2000 V \n"
]
}
],
"prompt_number": 22
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.23 Page No : 86"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"import cmath \n",
"\n",
"\n",
"\n",
"# GIVEN DATA\n",
"\n",
"S = 100.; # Rating of the 3-Phase Transformer in kVA\n",
"VH = 11.; # HV side voltage in kilo-Volts\n",
"VL = 440.; # LV side voltage in Volts\n",
"Vl = 400.; # Line voltage in Volts\n",
"ZA = 0.6; # Line impedance in line A in Ohms\n",
"ZB = 0.6*(0.8 + 0.6 * 1j); # Line impedance in line B in Ohms\n",
"ZC = 0.6*(0.5 - 0.866 * 1j); # Line impedance in line C in Ohms\n",
"\n",
"\n",
"# CALCULATIONS\n",
"\n",
"Vp = Vl/math.sqrt(3); # Phase voltage in Volts \n",
"VAB = Vl * cmath.exp( 1j * 0 * math.pi/180); # Line Voltage across line A and B in Volts\n",
"VBC = Vl * cmath.exp( 1j * (-120) * math.pi/180); # Line Voltage across line B and C in Volts\n",
"VCA = Vl * cmath.exp( 1j * 120 * math.pi/180); # Line Voltage across line C and A in Volts\n",
"VAN = (Vl/math.sqrt(3)) * cmath.exp( 1j * (-30) * math.pi/180); # Phase Voltage across line A and Neutral in Volts\n",
"VBN = (Vl/math.sqrt(3)) * cmath.exp( 1j * (-150) * math.pi/180); # Phase Voltage across line B and Neutral in Volts\n",
"VCN = (Vl/math.sqrt(3)) * cmath.exp( 1j * (90) * math.pi/180); # Phase Voltage across line C and Neutral in Volts\n",
"IA = VAN/ZA; # Line current in line A in Amphere\n",
"IB = VBN/ZB; # Line current in line B in Amphere\n",
"IC = VCN/ZC; # Line current in line C in Amphere\n",
"IN = IA + IB + IC ; # Current in the Neutral in Amphere\n",
"Y = (1/ZA)+(1/ZB)+(1/ZC); # Net Admitmath.tance in mho\n",
"VN = IN/Y; # Neutral Potential in Volts\n",
"VDA = VAN - VN; # Voltage drops across the ZA in Volts\n",
"VDB = VBN - VN; # Voltage drops across the ZB in Volts\n",
"VDC = VCN - VN; # Voltage drops across the ZC in Volts\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"\n",
"print (\"EXAMPLE : 3.23 : SOLUTION :-\") ;\n",
"print \" a.1) Line current in line A , IA = %.f<%.f A \"%(abs(IA),math.degrees(math.atan2(IA.imag,IA.real)));\n",
"print \" a.2) Line current in line B , IB = %.f<%.2f A \"%(abs(IB),math.degrees(math.atan2(IB.imag,IB.real)));\n",
"print \" a.3) Line current in line C , IC = %.f<%.f A \"%(abs(IC),math.degrees(math.atan2(IC.imag,IC.real)));\n",
"print \" b.1) Phase Voltage across line A and Neutral , VAN = %.f<%.f V \"%(abs(VAN),math.degrees(math.atan2(VAN.imag,VAN.real)));\n",
"print \" b.2) Phase Voltage across line B and Neutral , VBN = %.f<%.f V \"%(abs(VBN),math.degrees(math.atan2(VBN.imag,VBN.real)));\n",
"print \" b.3) Phase Voltage across line C and Neutral , VCN = %.f<%.f V \"%(abs(VCN),math.degrees(math.atan2(VCN.imag,VCN.real)));\n",
"print \" c) Neutral Potential , VN = %.1f<%.2f V \"%(abs(VN),math.degrees(math.atan2(VN.imag,VN.real)));\n",
"print \" [ TEXT BOOK SOLUTION IS PRINTED WRONGLY I verified by manual calculation ]\" ;\n",
"print \" WRONGLY PRINTED ANSWERS ARE :- a) IC = 385<-90.1 V instead of %.f<%.f A \"%(abs(IC),math.degrees(math.atan2(IC.imag,IC.real)));\n",
"print \" b) VN = 230.5<78.17 V instead of %.1f<%.2f V \"%(abs(VN),math.degrees(math.atan2(VN.imag,VN.real)) );\n",
"print \" From Calculation of the IC, rest all the Calculated values in the TEXT BOOK is WRONG because of the IC value is WRONGLY calculated and the same used for the further Calculation part \";\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 3.23 : SOLUTION :-\n",
" a.1) Line current in line A , IA = 385<-30 A \n",
" a.2) Line current in line B , IB = 385<173.13 A \n",
" a.3) Line current in line C , IC = 385<150 A \n",
" b.1) Phase Voltage across line A and Neutral , VAN = 231<-30 V \n",
" b.2) Phase Voltage across line B and Neutral , VBN = 231<-150 V \n",
" b.3) Phase Voltage across line C and Neutral , VCN = 231<90 V \n",
" c) Neutral Potential , VN = 99.7<166.53 V \n",
" [ TEXT BOOK SOLUTION IS PRINTED WRONGLY I verified by manual calculation ]\n",
" WRONGLY PRINTED ANSWERS ARE :- a) IC = 385<-90.1 V instead of 385<150 A \n",
" b) VN = 230.5<78.17 V instead of 99.7<166.53 V \n",
" From Calculation of the IC, rest all the Calculated values in the TEXT BOOK is WRONG because of the IC value is WRONGLY calculated and the same used for the further Calculation part \n"
]
}
],
"prompt_number": 23
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.24 Page No : 91"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"\n",
"# GIVEN DATA\n",
"VL = 11000.; # Line-line voltage of the 3 identical 1-phase Transformer in Volts\n",
"IL = 10.; # Line current of the 3 identical 1-phase Transformer in Amphere\n",
"a = 10.; # Ratio of trun per phase of the 3 identical 1-phase Transformer\n",
"\n",
"\n",
"# CALCULATIONS\n",
"# For case (a) STAR-STAR\n",
"\n",
"VPp_a = VL/math.sqrt(3); # Primary phase volatge in Volts\n",
"IPp_a = IL; # Primary phase current in Amphere\n",
"VSp_a = VPp_a/a; # Secondary phase voltage in Volts\n",
"ISp_a = a*IPp_a; # Secondary phase current in Amphere\n",
"ISl_a = ISp_a; # Secondary line current in Amphere\n",
"VSl_a = VSp_a*math.sqrt(3); # Secondary line voltage in Volts\n",
"Out_a = math.sqrt(3)*VSl_a*ISl_a/1000; # Output in kVA\n",
"\n",
"# For case (b) STAR-DELTA\n",
"\n",
"VPp_b = VL/math.sqrt(3); # Primary phase volatge in Volts\n",
"IPp_b = IL; # Primary phase current in Amphere\n",
"VSp_b = VPp_a/a; # Secondary phase voltage in Volts\n",
"ISp_b = a*IPp_b; # Secondary phase current in Amphere\n",
"ISl_b = math.sqrt(3)*ISp_b; # Secondary line current in Amphere\n",
"VSl_b = VSp_b; # Secondary line voltage in Volts\n",
"Out_b = math.sqrt(3)*VSl_b*ISl_b/1000; # Output in kVA\n",
"\n",
"# For case (c) DELTA-DELTA\n",
"\n",
"VPp_c = VL; # Primary phase volatge in Volts\n",
"IPp_c = IL/math.sqrt(3); # Primary phase current in Amphere\n",
"VSp_c = VPp_c/a; # Secondary phase voltage in Volts\n",
"ISp_c = a*IPp_c; # Secondary phase current in Amphere\n",
"ISl_c = math.sqrt(3)*ISp_c; # Secondary line current in Amphere\n",
"VSl_c = VSp_c; # Secondary line voltage in Volts\n",
"Out_c = math.sqrt(3)*VSl_c*ISl_c/1000; # Output in kVA\n",
"\n",
"# For case (d) DALTA-STAR\n",
"\n",
"VPp_d = VL; # Primary phase volatge in Volts\n",
"IPp_d = IL/math.sqrt(3); # Primary phase current in Amphere\n",
"VSp_d = VPp_d/a; # Secondary phase voltage in Volts\n",
"ISp_d = a*IPp_d; # Secondary phase current in Amphere\n",
"ISl_d = ISp_d; # Secondary line current in Amphere\n",
"VSl_d = math.sqrt(3)*VSp_d; # Secondary line voltage in Volts\n",
"Out_d = math.sqrt(3)*VSl_d*ISl_d/1000; #Output in kVA\n",
"\n",
"\n",
"# DISPLAY RESULTS\n",
"\n",
"print (\"EXAMPLE : 3.24 : SOLUTION :-\") ;\n",
"print \" For STAR-STAR Connection a.1) Secondary line voltage = %.f V \"%(VSl_a);\n",
"print \" a.2) Secondary line current = % .f A \"%(ISl_a);\n",
"print \" a.3) Primary phase current = %.f A \"%(IPp_a);\n",
"print \" a.4) Secondary phase current = %.f A \"%(ISp_a);\n",
"print \" a.5) Output = %.2f kVA \"%(Out_a);\n",
"print \" For STAR-DELTA Connection b.1) Secondary line voltage = % .f V \"%(VSl_b);\n",
"print \" b.2) Secondary line current = %.f A \"%(ISl_b);\n",
"print \" b.3) Primary phase current = %.f A \"%(IPp_b);\n",
"print \" b.4) Secondary phase current = %.f A \"%(ISp_b);\n",
"print \" b.5) Output = % .2f kVA \"%(Out_b);\n",
"print \" For DELTA-DELTA Connection c.1) Secondary line voltage = %.f V \"%(VSl_c);\n",
"print \" c.2) Secondary line current = %.2f A \"%(ISl_c);\n",
"print \" c.3) Primary phase current = %.2f A \"%(IPp_c);\n",
"print \" c.4) Secondary phase current = %.1f A \"%(ISp_c);\n",
"print \" c.5) Output = %.1f kVA \"%(Out_c);\n",
"print \" For DELTA-STAR Connection d.1) Secondary line voltage = % .2f V \"%(VSl_d);\n",
"print \" d.2) Secondary line current = %.1f A \"%(ISl_d);\n",
"print \" d.3) Primary phase current = %.2f A \"%(IPp_d);\n",
"print \" d.4) Secondary phase current = %.1f A \"%(ISp_d);\n",
"print \" d.5) Output = % .1f kVA \"%(Out_d);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EXAMPLE : 3.24 : SOLUTION :-\n",
" For STAR-STAR Connection a.1) Secondary line voltage = 1100 V \n",
" a.2) Secondary line current = 100 A \n",
" a.3) Primary phase current = 10 A \n",
" a.4) Secondary phase current = 100 A \n",
" a.5) Output = 190.53 kVA \n",
" For STAR-DELTA Connection b.1) Secondary line voltage = 635 V \n",
" b.2) Secondary line current = 173 A \n",
" b.3) Primary phase current = 10 A \n",
" b.4) Secondary phase current = 100 A \n",
" b.5) Output = 190.53 kVA \n",
" For DELTA-DELTA Connection c.1) Secondary line voltage = 1100 V \n",
" c.2) Secondary line current = 100.00 A \n",
" c.3) Primary phase current = 5.77 A \n",
" c.4) Secondary phase current = 57.7 A \n",
" c.5) Output = 190.5 kVA \n",
" For DELTA-STAR Connection d.1) Secondary line voltage = 1905.26 V \n",
" d.2) Secondary line current = 57.7 A \n",
" d.3) Primary phase current = 5.77 A \n",
" d.4) Secondary phase current = 57.7 A \n",
" d.5) Output = 190.5 kVA \n"
]
}
],
"prompt_number": 24
}
],
"metadata": {}
}
]
}
|