summaryrefslogtreecommitdiff
path: root/Electrical_Machines_by_R._K._Srivastava/ch2.ipynb
blob: 9787f0b6967e7380a697c95f656d598b05408888 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
{
 "metadata": {
  "name": "",
  "signature": "sha256:bba21646340635cd25e22fb5f80c8550eb87632b564d8cf0b5f47b826da1d6e4"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 2 : Forces in a Electromagnetic System"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.1  Page No : 5"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "\n",
      "# GIVEN DATA\n",
      "A = 0.0001;                # The Cross-sectional area of core in metre-square \n",
      "Mo = 4*math.pi*(10)**(-7);      # Permeability of air in Henre/metre\n",
      "Mr = 1000;                 # Relative permeability of core\n",
      "N1 = 10;N2=20;N3=10;       # Number of turns\n",
      "I1 = 1.0;I2=0.5;I3=1.5;    # Currents in Amphere\n",
      "d = 2.5;                   # Dimension of inner window in centimetre\n",
      "w = 1.0;                   # Each limb wide in centimeter\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "F = (N1*I1)+(N2*I2)-(N3*I3);          # MMF in Amphere-turns (minus because third coil produces the flux in opposite direction to that of other to coils)\n",
      "L = ((d*4)+(I2*2*4))*10**-2;           # Length of the Magnetic path in metre (4-is sides of the windows)(2-Going and returning of current I2)\n",
      "R = L/(Mr*Mo*A);                      # Relucmath.tance of the Magnetic path in MKS unit of Relucmath.tance\n",
      "phi = (F*10**3)/R;                     # Flux in milli-Weber\n",
      "B = phi/A;                            # Flux Density in Weber/metre Square\n",
      "H = F/L;                              # Magnetic Field Intensity in Amphere-turns/Metre\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "\n",
      "print (\"EXAMPLE : 2.1 : SOLUTION :-\") ;\n",
      "print \" a) Flux in the core, phi = %.6f mWb \"%(phi);\n",
      "print \" b) Flux Density in the core, B = %.2f Wb/metre square  \"%(B);\n",
      "print \" c) Magnetic Field Intensity in the core, H = %.2f At/m  \"%(H);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 2.1 : SOLUTION :-\n",
        " a) Flux in the core, phi = 0.004488 mWb \n",
        " b) Flux Density in the core, B = 44.88 Wb/metre square  \n",
        " c) Magnetic Field Intensity in the core, H = 35.71 At/m  \n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.2  Page No : 9"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "\n",
      "# GIVEN DATA\n",
      "\n",
      "N = 100;               # Number of turns\n",
      "La = 0.3;              # Mean arc length of material \"a\" is a Nickel-iron alloy in Metre\n",
      "Lb = 0.2;              # Mean arc length of material \"b\" is a Steel in Metre\n",
      "Lc = 0.1;              # Mean arc length of material \"c\" is a Cast Steel in Metre\n",
      "a = 0.001;             # Area of the all Materials \"a,b,c\" in Metre-Square\n",
      "phi = 6*10**-4;         # Magnetic Flux in Weber\n",
      "mue_0 = 4*math.pi*10** -7;  # Permeability of the air in Henry/Meter\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "\n",
      "B = phi/a;                      # Flux Density in Telsa (Here Flux Density same for all the Materials \"a,b,c\" because Area of Cross Section is Same)\n",
      "Ha = 10;                        # Fileld Intensity in Amphere-Turn/Meter Correspounding to Flux density (B) of material \"a\" obtained from the Smath.degrees(math.atanard B-H curve\n",
      "Hb = 77;                        # Fileld Intensity in Amphere-Turn/Meter Correspounding to Flux density (B) of material \"b\" obtained from the Smath.degrees(math.atanard B-H curve\n",
      "Hc = 270;                       # Fileld Intensity in Amphere-Turn/Meter Correspounding to Flux density (B) of material \"c\" obtained from the Smath.degrees(math.atanard B-H curve\n",
      "F = (Ha*La)+(Hb*Lb)+(Hc*Lc);    # The Total MMF Required in Amphere-Turns\n",
      "I = F/N;                        # Current flowing through the Coil in Amphere\n",
      "mue_r_a = B/(Ha*mue_0);        # Relatative permeability of the Material \"a\"\n",
      "mue_r_b = B/(Hb*mue_0);        # Relatative permeability of the Material \"a\"\n",
      "mue_r_c = B/(Hc*mue_0);        # Relatative permeability of the Material \"a\"\n",
      "Ra = (Ha*La)/phi;              # Relucatnce of the Material \"a\" in MKS unit\n",
      "Rb = (Hb*Lb)/phi;              # Relucatnce of the Material \"b\" in MKS unit\n",
      "Rc = (Hc*Lc)/phi;              # Relucatnce of the Material \"c\" in MKS unit\n",
      "L = (N*phi)/I;                 # Inducmath.tance of the Coil in Henry\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "print (\"EXAMPLE : 2.2 : SOLUTION :-\") ;\n",
      "print \" a)   The Total MMF , F = %.1f At  \"%(F);\n",
      "print \" b)   Current flowing through the Coil , I = %.3f A \"%(I);\n",
      "print \" c.1) Relatative permeability of the Material a, mue_r_a = %.f  \"%(mue_r_a);\n",
      "print \" c.2) Relatative permeability of the Material b, mue_r_b = %.f  \"%(mue_r_b);\n",
      "print \" c.3) Relatative permeability of the Material c, mue_r_c = %.f  \"%(mue_r_c);\n",
      "print \" c.4) Relucatnce of the Material a, Ra= %.f MKS unit \"%(Ra);\n",
      "print \" c.5) Relucatnce of the Material b, Rb= %.1f MKS unit \"%(Rb);\n",
      "print \" c.6) Relucatnce of the Material c, Rc= %.f MKS unit \"%(Rc);\n",
      "print \" d)   Inductance of the Coil , L = %.4f H \"%(L);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 2.2 : SOLUTION :-\n",
        " a)   The Total MMF , F = 45.4 At  \n",
        " b)   Current flowing through the Coil , I = 0.454 A \n",
        " c.1) Relatative permeability of the Material a, mue_r_a = 47746  \n",
        " c.2) Relatative permeability of the Material b, mue_r_b = 6201  \n",
        " c.3) Relatative permeability of the Material c, mue_r_c = 1768  \n",
        " c.4) Relucatnce of the Material a, Ra= 5000 MKS unit \n",
        " c.5) Relucatnce of the Material b, Rb= 25666.7 MKS unit \n",
        " c.6) Relucatnce of the Material c, Rc= 45000 MKS unit \n",
        " d)   Inductance of the Coil , L = 0.1322 H \n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.3  Page No : 11"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "F = 35;                # Total MMF in Amphere-Turns\n",
      "Lc = 0.1;              # Inducmath.tance of The Material \"c\" in Henry \n",
      "a = 0.001;             # Area of the all Materials \"a,b,c\" in Metre-Square\n",
      "\n",
      "\n",
      "# CALCULATIONS\n",
      "Hc = F/Lc;              # Field Intensity in Amphere-Turns/Meter (Given that entire MMf apperas on Material \"c\" Because of the highest relucmath.tance about 45000 MKS unit From Example 2.2)\n",
      "Bc = 0.65;              # Flux density of material \"c\" in in Telsa obtained from the Smath.degrees(math.atanard B-H curve\n",
      "phi = Bc*a;             # Flux in the core in Weber\n",
      "Ba = Bc;                # Flux density of material \"a\" in in Telsa Same because Area of Cross Section is Same\n",
      "Bb = Bc;                # Flux density of material \"b\" in in Telsabecause Area of Cross Section is Same\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "print (\"EXAMPLE : 2.3 : SOLUTION :-\") ;\n",
      "print \" a) Flux in the core , phi = %.5f Wb  \"%(phi);\n",
      "print \" b) Flux density of material a,b, c , Ba = Bb = Bc %.2f T \"%(Ba);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 2.3 : SOLUTION :-\n",
        " a) Flux in the core , phi = 0.00065 Wb  \n",
        " b) Flux density of material a,b, c , Ba = Bb = Bc 0.65 T \n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.4  Page No : 12"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# GIVEN DATA\n",
      "# Refer figure 2.7:- Page no. 41\n",
      "a = 0.0001;                # Cross Sectional Area of the Core in Meter-Square\n",
      "Li = 0.158;                # Total length of the Path abcdef in Meter (4.0*4.0 - 0.2 = 15.8cm = 0.158m)\n",
      "Lg = 0.002;                # Length of the air gap in Meter\n",
      "mue_0 = 4*math.pi*10**-7;       # Permeability of the air in Henry/Meter\n",
      "mue_r = 10000;             # Permeability of the core\n",
      "N = 10;                    # Number of Turns\n",
      "I = 1.0;                   # Current in the Coil in Amphere\n",
      "v = 50;                    # hall effect sensor generates volatge produces in milli volt per 1 Telsa\n",
      "Li_new = 0.16;              # Length of the Flux path in Absence of the Air gap in Meter\n",
      "\n",
      "\n",
      "# CALCUALTIONS\n",
      "F = N*I;                         # MMF of the Coil in Amphere-turn\n",
      "Ri = Li/(mue_0*mue_r*a);         # Relucatnce of the Iron Coil in MKS unit\n",
      "Rg = Lg/(mue_0*a);               # Relucatnce of air gap in MKS unit\n",
      "R = Ri+Rg;                       # Total Relucmath.tance in MKS unit\n",
      "phi = F/R;                       # Flux in the Core in Weber\n",
      "B = phi/a;                       # FLux density in the core(Presence of the Air gap) in Weber/Meter-Square\n",
      "HEV = B*50;                      # Output of the Hall effect Sensor device in Milli-Volt\n",
      "R_new = Li_new/(mue_0*mue_r*a)   # Relucamath.tance of the Magnetic Circuit in Absence of the Air gap\n",
      "phi_new = F/R_new;               # New Flux in the Core in Weber\n",
      "B_new = phi_new/a;               # New FLux density in the core in Weber/Meter-Square\n",
      "Ratio = B_new/B;                 # Ratio of the Flux Density in Absence of the Air gap and in the presence of the Air gap \n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "print (\"EXAMPLE : 2.4 : SOLUTION :-\") ;\n",
      "print \" a) Flux density in the corePresence of the Air gap) , B = %.8f Wb/Meter-Square  \"%(B);\n",
      "print \" b) Output of the Hall effect Sensor device , HEV = %.7f mV \"%(HEV);\n",
      "print \" c) Ratio of the Flux Density in Absence of the Air gap and in the presence of the Air gap , Ratio = %.2f  \"%(Ratio);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 2.4 : SOLUTION :-\n",
        " a) Flux density in the corePresence of the Air gap) , B = 0.00623394 Wb/Meter-Square  \n",
        " b) Output of the Hall effect Sensor device , HEV = 0.3116969 mV \n",
        " c) Ratio of the Flux Density in Absence of the Air gap and in the presence of the Air gap , Ratio = 125.99  \n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.5  Page No : 13"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "\n",
      "# GIVEN DATA\n",
      "# Refer figure 2.3(a):- Page no. 36\n",
      "B = 1.0;                    # Flux Density in the Core in Weber/Meter-Square\n",
      "Liron = 0.55;               # Mean length of the flux path of Iron in Meter\n",
      "Lair = 0.002;               # Mean length of the flux path of Air Gap in Meter\n",
      "I = 20;                     # Coil Current in Amphere\n",
      "H = 200;                    # Field Intensity in Amphere-Turns/Meter\n",
      "mue_r = 20000;              # Relative permeability of Ferrite core\n",
      "mue_0 = 4*math.pi*10**-7;        # Permeability of the air in Henry/Meter\n",
      "a = 0.0025;                 # Area of the Cross sectional of the core oin Metre-Square\n",
      "\n",
      "\n",
      "# CALCULATIONS \n",
      "phi = B*a;                             # Toatl Flux in the core in Weber\n",
      "Rair = Lair/(mue_0*a);                 # Relucatnce in the Air gap\n",
      "Fair = Rair*phi;                       # MMf in the Air gap in Amphere-Turns\n",
      "Firon = H*Liron;                       # MMf in the Iron core in Amphere-Turns\n",
      "F = Firon+Fair;                        # Total MMF in Amphere-Turns\n",
      "N = F/I;                               # Number of turns in the Coil\n",
      "F_new = B/(mue_0*mue_r);               # Field Intensity in Amphere-Turns/Meter\n",
      "F_new_total = (Fair+F_new);            # Total MMF in Amphere-Turns\n",
      "N_new = F_new_total/I;                 # Number of turns in the Coil\n",
      "\n",
      "\n",
      "# DISPLAY RESULTS\n",
      "print (\"EXAMPLE : 2.5 : SOLUTION :-\") ;\n",
      "print \" a) Number of turns in the Coil in air gap made of Silicon Steel having an field intensity \\\n",
      "\\n200At/m corresounds to 1.0 T Flux Density , N = %.2f appoximately 85  \"%(N);\n",
      "print \" b) Number of turns in the Coil for a ferrite core of having Relative premeability of 20000 and\\\n",
      "\\n magnetic Field Density corresponnds to 1.0 T , N_new = %.2f appoximately 82  \"%(N_new);\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "EXAMPLE : 2.5 : SOLUTION :-\n",
        " a) Number of turns in the Coil in air gap made of Silicon Steel having an field intensity \n",
        "200At/m corresounds to 1.0 T Flux Density , N = 85.08 appoximately 85  \n",
        " b) Number of turns in the Coil for a ferrite core of having Relative premeability of 20000 and\n",
        " magnetic Field Density corresponnds to 1.0 T , N_new = 81.57 appoximately 82  \n"
       ]
      }
     ],
     "prompt_number": 6
    }
   ],
   "metadata": {}
  }
 ]
}