summaryrefslogtreecommitdiff
path: root/Electrical_Machines_by_M._V._Despande/Chapter_7_1.ipynb
blob: 0d89dc6533395950ee66ad08955b8f43ef0b0445 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
{
 "metadata": {
  "name": "",
  "signature": "sha256:7e4e2e6787926b617e4251aa7653a01838e0c57700ac6f7c0e3e804f7aaa974a"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "CHAPTER 7 - PRINCIPLE AND CONSTRUCTION OF DC MACHINES"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E3 - Pg 130"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Caption:Find effect of change in connection on voltage,current and output\n",
      "#Exa:7.3\n",
      "P=50000.#Power of generator(in watt)\n",
      "V_b1=230.#Voltage of generator(in volts)\n",
      "p=4.#Number of poles\n",
      "a=4.#Number of parallel paths for lap winding\n",
      "b=2.#Number of parallel paths for wave winding\n",
      "C=268.#Number of conductors with LAP winding\n",
      "t=2.#Two turns coils are used\n",
      "c=t*2.#Conductors per slot\n",
      "n=C/c\n",
      "I_1=P/(V_b1)\n",
      "V_b2=V_b1*b\n",
      "I_2=P/(V_b2)\n",
      "print '%s %.f %.1f' %('voltage(in volts) and Current(in A) for LAP winding=',V_b1,I_1)\n",
      "print '%s %.f %.1f' %('voltage(in volts) and Current(in A) for WAVE winding=',V_b2,I_2)\n",
      "print '%s %.f' %('Output is same for both connections(in watts)=',P)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "voltage(in volts) and Current(in A) for LAP winding= 230 217.4\n",
        "voltage(in volts) and Current(in A) for WAVE winding= 460 108.7\n",
        "Output is same for both connections(in watts)= 50000\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E6 - Pg 132"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Caption: Select a two circuit armature winding for a d.c machine\n",
      "#Exa:7.6\n",
      "import math\n",
      "p=4.#Number of poles \n",
      "n=1000.#Speed of d.c. machine(in r.p.m)\n",
      "V=400.#Voltage of d.cmachine(in volts)\n",
      "B=0.04#Flux per pole(in weber)\n",
      "s_1=41.#Slot 1\n",
      "s_2=45.#Slot 2\n",
      "s_3=51.#Slot 3\n",
      "a=2.#Number of parallel paths\n",
      "Z=(V*60.*a)/(B*n*p)\n",
      "Z_c=Z/a\n",
      "Y=(s_3+1.)/(p/2.)\n",
      "t=3.#turns per coil\n",
      "c=t*a\n",
      "z=s_3*c\n",
      "print '%s %.f' %('slots=',z)\n",
      "print '%s %.f' %('turn coils=',c)\n",
      "print '%s %.f' %('coils sides per slot=',t)\n",
      "print '%s %.f' %('total number of conductors=',s_3)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "slots= 306\n",
        "turn coils= 6\n",
        "coils sides per slot= 3\n",
        "total number of conductors= 51\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E7 - Pg 132"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Caption: Find (a)e.m.f generated at 750r.p.m for lap wound (b)e.m.f generated at 600r.p.m for wave wound (c)Speed to be driven for 400V for same flux per pole\n",
      "#Exa:7.7\n",
      "import math \n",
      "p=4.#Number of poles\n",
      "B=0.04#Flux per pole(in weber)\n",
      "c=740.#Number of conductors for lap connection\n",
      "n_1=750.#Speed of machine(in r.p.m)\n",
      "n_2=600.#Speed of machine(in r.p.m)\n",
      "V=400.#Voltage of machine(in volts)\n",
      "a=4.#Number of parallel paths for lap winding\n",
      "b=2.#Number of parallel paths for wave winding\n",
      "E=(B*c*n_1*p)/(60.*a)\n",
      "print '%s %.f' %('(a)E.M.F generated at 750r.p.m for lap wound(in volts)=',E)\n",
      "E_1=(B*c*n_2*p)/(60.*b)\n",
      "print '%s %.f' %('(b)E.M.F generated at 600r.p.m for wavewound(in volts)=',E_1)\n",
      "n=(V*60.*b)/(B*c*p)\n",
      "print '%s %.1f' %('(c)Speed of machine(in r.p.m)=',n)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)E.M.F generated at 750r.p.m for lap wound(in volts)= 370\n",
        "(b)E.M.F generated at 600r.p.m for wavewound(in volts)= 592\n",
        "(c)Speed of machine(in r.p.m)= 405.4\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E8 - Pg 139"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Caption: Calculate (a)Total armature current (b)Current per armature path (c)Generated e.m.f\n",
      "#Exa:7.8\n",
      "import math\n",
      "p=4.#Number of poles\n",
      "P=4000.#Power of generator(in watts)\n",
      "V=230.#Voltage of generator(in volts)\n",
      "r_f=115.#Field resistance(in ohms)\n",
      "r_a=0.1#Armature resistance(in ohms)\n",
      "a=p#number of parallel paths\n",
      "i_f=V/r_f\n",
      "i_l=P/V\n",
      "I_a=i_l+i_f\n",
      "print '%s %.1f' %('(a)Armature current(in A)=',I_a)\n",
      "i=I_a/p\n",
      "print '%s %.2f' %('(b)Current per armature path(in A)=',i)\n",
      "E=V+(I_a*r_a)\n",
      "print '%s %.2f' %('(c)E.M.F generated(in volts)=',E)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)Armature current(in A)= 19.4\n",
        "(b)Current per armature path(in A)= 4.85\n",
        "(c)E.M.F generated(in volts)= 231.94\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E9 - Pg 139"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Caption:Find the speed at which it will run as a motor\n",
      "#Exa:7.9\n",
      "import math\n",
      "P_g=110000.#Power of generator(in watts)\n",
      "n=402.#Speed of generator(in r.p.m)\n",
      "V=220.#Voltage of busbars(in volts)\n",
      "P_m=10900.#Power of motor(in watt)\n",
      "r_a=0.025#Armature resistance(in ohms)\n",
      "r_f=55.#Field resistance(in ohms)\n",
      "v_b=1.#Voltage drop at each brush(in volt)\n",
      "i_l=P_g/V\n",
      "i_f=V/r_f\n",
      "I_a=i_l+i_f\n",
      "V_a=I_a*r_a\n",
      "E=V+V_a+(2*v_b)\n",
      "I_1=P_m/V\n",
      "i_a=I_1-i_f\n",
      "v_a=i_a*r_a\n",
      "E_b=V-(i_a*r_a)-(2.*v_b)\n",
      "N_m=(n*E_b)/E\n",
      "print '%s %.f' %('Speed at which generator will run as motor is(in r.p.m)=',N_m)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Speed at which generator will run as motor is(in r.p.m)= 372\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E10 - Pg 140"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Caption: Calculate the speed of the motor when it is loaded and takes 60A from the mains\n",
      "#Exa:7.10\n",
      "V=230.#Voltage of motor(in volts)\n",
      "n=800.#Speedof motor(in r.p.m)\n",
      "i=5.#Current taken by motor(in A)\n",
      "r_a=0.25#Armature resistance(in ohms)\n",
      "r_f=230.#field resistance(in ohms)\n",
      "i_l=60.#Load current(in A)\n",
      "i_f=V/r_f\n",
      "i_a=i-i_f\n",
      "E_b1=V-(i_a*r_a)\n",
      "i_al=i_l-i_f\n",
      "E_b2=V-(i_al*r_a)\n",
      "N=(n*E_b2)/E_b1\n",
      "print '%s %.f' %('Required speed of motor(in r.p.m) is=',N)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Required speed of motor(in r.p.m) is= 752\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E11 - Pg 141"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Caption: Calculate Power and torque developed\n",
      "#Exa:7.11\n",
      "import math\n",
      "p=4.#Number of poles\n",
      "d=20.#Diameter of armature(in cm)\n",
      "l=25.#Core length(in cm)\n",
      "c=300.#Number of conductors\n",
      "i_a=50.#Armature current(in A)\n",
      "B=0.3#Average flux density(in weber/m**2)\n",
      "n=1000.#Speedofmotor(in r.p.m)\n",
      "T=(B*(l/100.)*(i_a/p)*c*(d/100.)*(1./2.))\n",
      "s=(2.*math.pi*n)/(60.)\n",
      "P=(T*s)/1000.\n",
      "print '%s %.3f %s %.2f' %('Torque(in Nm) developed is=',T,'\\nPower(in KW)=',P)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Torque(in Nm) developed is= 28.125 \n",
        "Power(in KW)= 2.95\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E12 - Pg 145"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Caption: Determineper pole (a)Number of cross magnetising ampereturns,and (b)Demagnetising ampereturns \n",
      "#Exa:7.12\n",
      "I=100.#Current(in A)\n",
      "c=500.#Armature conductors\n",
      "p=6.#Poles \n",
      "t=10.#Angle of lead(in degree)\n",
      "a=2.#Wave wound\n",
      "e=(10.*p)/2.\n",
      "F_d=(c*I*2.*e)/(2.*a*p*180.)\n",
      "print '%s %.f' %('(a)Number of cross magnetising ampereturns=',F_d)\n",
      "F_c=(c*I)*(1.-((2.*e)/180.))/(2.*a*p)\n",
      "print '%s %.f' %('(b)Demagnetising ampereturns=',F_c)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)Number of cross magnetising ampereturns= 694\n",
        "(b)Demagnetising ampereturns= 1389\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E13 - Pg 147"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Caption:Find the time of Commutation\n",
      "#Exa:7.13\n",
      "import math\n",
      "p=4.#Number of poles\n",
      "n=600.#Speed of generator(in r.p.m)\n",
      "d=0.4#Diameter of commutator(in m)\n",
      "c=243.#Number ofcommutator segments\n",
      "c_s=3.#Coil sides per layer\n",
      "w=12.5#Width of brush(in mm)\n",
      "W=0.6#Width of mica between commutator segments\n",
      "W_c=(math.pi*d*1000.)/(c)\n",
      "D=w-W+(2.*W_c)\n",
      "V_c=(math.pi*d*n)/60.\n",
      "T=D/V_c*(10.**(-3.))\n",
      "print '%s %.5f' %('Time of commutation(in sec)=',T)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Time of commutation(in sec)= 0.00177\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E14 - Pg 150"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Caption: Find average reactance voltage produce due to commutation\n",
      "#Exa:7.14\n",
      "p=4.#Number of poles\n",
      "I=300.#Current delievered by generator on full load(in A)\n",
      "L=0.02*(10.**(-3.))#Inductance of each coil(in mH)\n",
      "a=2.#Wavw wound\n",
      "i=I/2.#Current in conductors in each path(in A)\n",
      "T_c=0.00174#Time of commutation(in sec)\n",
      "E_r=(2.*L*i)/T_c\n",
      "print '%s %.2f' %('Average reactance voltage(in volts)=',E_r)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Average reactance voltage(in volts)= 3.45\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E15 - Pg 150"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Caption: Calculate the number of turns needed on each commutating pole\n",
      "#Exa:7.15\n",
      "import math\n",
      "p=4.#Number of poles\n",
      "P=125000.#Power delievered by generator(in watts)\n",
      "V=230.#Voltage of generator(in volts)\n",
      "z=240.#Armature conductors \n",
      "B=0.3#Flux density under the interpolar gap(in weber/m**2)\n",
      "g=0.01#Interpolar airgap(in m)\n",
      "a=p#LAP connection\n",
      "I_a=P/V\n",
      "F_a=(z*I_a)/(2.*a*p)\n",
      "A=(B*g)/(4.*math.pi*(10.**(-7.)))\n",
      "A_t=A+F_a\n",
      "T=A_t/I_a\n",
      "print '%s %.2f' %('The number of turns on each commutating pole=',T)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The number of turns on each commutating pole= 11.89\n"
       ]
      }
     ],
     "prompt_number": 9
    }
   ],
   "metadata": {}
  }
 ]
}