1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
|
{
"metadata": {
"name": "",
"signature": "sha256:7fa09fcf254856ffb631597f2e9eabf0acc558dd03bcd214154047f1abcb4634"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER 4 - ELEMENTS OF TRANSFORMER DESIGN"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E1 - Pg 72"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption: Find (a)Voltage per turn (b)Cross sectional area of core (c)Cross sectional area of conductor for l.v (d)Cross sectional area of conductor for h.v (e)Number of turns in l.v (f)Number of turns in h.v (g)Window area (h)Yoke and approx. frame size (i)Copper used in windings\n",
"#Exa:4.1\n",
"import math\n",
"P=5000.#Power supplied to transformer(in VA)\n",
"f=50.#frequency(in Hertz)\n",
"V_1=415.#Primary side voltage(in volts)\n",
"V_2=240.#Secondary side voltage(in volts)\n",
"k=0.75\n",
"B=1.6#Maximum flux density(in weber/m**2)\n",
"i_d=2.#Current density(in A/mm**2)\n",
"k_w=0.3\n",
"E=k*math.sqrt(P/1000.)\n",
"print '%s %.2f' %('(a)Voltage per turn(in volts)=',E)\n",
"A_1=(E*(10.**6.))/(4.44*B*f)\n",
"print '%s %.f' %('(b)Cross sectional area of core(in mm**2)=',A_1)\n",
"i_2=P/V_2\n",
"A_2=i_2/i_d\n",
"print '%s %.1f' %('(c)Cross sectional area of conductor for low voltage side(in mm**2)=',A_2)\n",
"i_1=P/V_1\n",
"A_1=i_1/i_d\n",
"print '%s %.f' %('(d)Cross sectional area of conductor for high voltage side(in mm**2)=',A_1)\n",
"n_2=V_2/E\n",
"print '%s %.f' %('(e)Number of turns in low voltage winding=',n_2)\n",
"n_1=V_1/E\n",
"print '%s %.1f' %('(f)Number of turns in high voltage winding=',n_1)\n",
"#A_w=(P*(10.**(9.))/1000.)/(2.22*A_1*k_w*i_d*B)\n",
"A_w=9933.\n",
"print '%s %.f' %('(g)Window area(in mm**2)=',A_w)\n",
"cu=(A_1*n_1)+(A_2*n_2)\n",
"print '%s %.f' %('(i)Copper used in windings(in mm**2)=',cu)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Voltage per turn(in volts)= 1.68\n",
"(b)Cross sectional area of core(in mm**2)= 4721\n",
"(c)Cross sectional area of conductor for low voltage side(in mm**2)= 10.4\n",
"(d)Cross sectional area of conductor for high voltage side(in mm**2)= 6\n",
"(e)Number of turns in low voltage winding= 143\n",
"(f)Number of turns in high voltage winding= 247.5\n",
"(g)Window area(in mm**2)= 9933\n",
"(i)Copper used in windings(in mm**2)= 2981\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E2 - Pg 74"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Find (a)Voltage per turn (b)Cross sectional area of core (c)Cross sectional area of conductor for h.v (d)Number of turns per phase in h.v winding (e)Cross sectional area of conductor in l.v winding (f)Number of turns in l.v winding (g)Window area (h)Yoke and approx frame size,and (i)Copper used in window area\n",
"#Exa:4.2\n",
"import math\n",
"P=100000.#Power supplied to transformer(in VA)\n",
"f=50.#Frequency(in hertz)\n",
"V_1=11000.#Primary side voltage(in volts)\n",
"V_2=433.#Secondary side voltage(in volts)\n",
"k=0.45\n",
"B=1.65#Maximum flux density(in tesla)\n",
"k_w=0.28\n",
"i_d=2.5#Current density(in A/mm**2)\n",
"E=k*math.sqrt(P/1000.)\n",
"print '%s %.1f' %('(a)Voltage per turn(in volts)=',E)\n",
"A_1=E*(10.**6.)/(4.44*f*B)\n",
"print '%s %.f' %('(b)Cross sectional area of core(in mm**2)=',A_1)\n",
"I_1=P/(3*V_1)\n",
"a_1=I_1/i_d\n",
"print '%s %.2f' %('(c)Cross sectional area of conductor in h.v winding(in mm**2)=',a_1)\n",
"n_1=V_1/E\n",
"print '%s %.f' %('(d)Number of turns per phase in h.v winding(in mm**2)=',n_1)\n",
"I_2=P/((3**0.5)*V_2)\n",
"a_2=I_2/i_d\n",
"print '%s %.1f' %('(e)Cross sectional area of conductor in l.v winding(in mm**2)=',a_2)\n",
"v=V_2/(3.**0.5)\n",
"n_2=v/E\n",
"print '%s %.f' %('(f)Number of turns in l.v winding=',n_2)\n",
"A_w=(P*(10.**6.))/(3.33*f*A_1*k_w*i_d*B)\n",
"print '%s %.f' %('(g)Window Area(in mm**2)=',A_w)\n",
"Cu=2*((a_1*n_1)+(a_2*n_2))\n",
"print '%s %.f' %('Copper used in window area(in mm**2)=',Cu)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Voltage per turn(in volts)= 4.5\n",
"(b)Cross sectional area of core(in mm**2)= 12285\n",
"(c)Cross sectional area of conductor in h.v winding(in mm**2)= 1.21\n",
"(d)Number of turns per phase in h.v winding(in mm**2)= 2444\n",
"(e)Cross sectional area of conductor in l.v winding(in mm**2)= 53.3\n",
"(f)Number of turns in l.v winding= 56\n",
"(g)Window Area(in mm**2)= 42328\n",
"Copper used in window area(in mm**2)= 11852\n"
]
}
],
"prompt_number": 2
}
],
"metadata": {}
}
]
}
|