summaryrefslogtreecommitdiff
path: root/Electrical_Machines_by_M._V._Despande/Chapter_3_1.ipynb
blob: de3266013c1dc73212033e1da78067e247994aea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
{
 "metadata": {
  "name": "",
  "signature": "sha256:555382b602017546762e6e442ccba3da706d16e5e11e57c2a002166f96af3eb7"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "CHAPTER 3 - THREE-PHASE TRANSFORMERS: OPERATION AND TESTING"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E1 - Pg 44"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Caption: Find Secondary line voltage,Line Current,and output power for (a)delta/delta (b)star/star (c)delta/star (d)star/delta\n",
      "#Exa:3.1\n",
      "import math\n",
      "V=6600.#Supplied voltage(in volts)\n",
      "I=20.#Supplied current(in A)\n",
      "n=15.#Number of turns per phase\n",
      "V_la=V/n\n",
      "I_la=n*I\n",
      "print '%s %.f %.f' %('(a)(in A),(in volts)=',V_la,I_la,)\n",
      "V_lb=V/n\n",
      "I_lb=I*n\n",
      "print '%s %.f %.f' %('(b)(in A),(in volts)=',V_lb,I_lb)\n",
      "V_lc=(V*(3.**0.5))/(n)\n",
      "I_lc=(n*I)/(3.**0.5)\n",
      "print '%s %.f %.f' %('(c)(in A),(in volts)=',V_lc,I_lc)\n",
      "V_ld=V/(n*(3.**0.5))\n",
      "I_ld=(3.**0.5)*I*n\n",
      "print '%s %.1f %.f' %('(d)(in A),(in volts)=',V_ld,I_ld)\n",
      "P=(3**0.5)*V*I/1000.\n",
      "print '%s %.f' %('(d)Output Power (in KVA)=',P)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)(in A),(in volts)= 440 300\n",
        "(b)(in A),(in volts)= 440 300\n",
        "(c)(in A),(in volts)= 762 173\n",
        "(d)(in A),(in volts)= 254.0 520\n",
        "(d)Output Power (in KVA)= 229\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E2 - Pg 45"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Caption: Calculate Phase and Line currents in (a)High voltage (b)Low voltage windings of transformer\n",
      "#Exa:3.2\n",
      "import math\n",
      "P=50000.#Power of induction motor(in watts)\n",
      "V=440.#Voltage of induction motor(in volts)\n",
      "eff=90.#Efficiency(in%)\n",
      "pf=0.85#power factor\n",
      "V_1=11000.#Primary side voltage of transformer(in volts)\n",
      "V_2=440.#Secondary side voltage of transformer(in volts)\n",
      "I_fl=P/((3**0.5)*V*pf*(eff/100.))\n",
      "v=V/(3**0.5)\n",
      "n=V_1/v\n",
      "I_ph=I_fl/(n)\n",
      "I_l=(3**0.5)*I_ph\n",
      "print '%s %.2f %.2f' %('(a)High Voltage side line and phase currents(in A)=',I_ph,I_l)\n",
      "print '%s %.f %.f' %('(b)Low voltage side phase and line currents(in A)=',I_fl,I_fl)  "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)High Voltage side line and phase currents(in A)= 1.98 3.43\n",
        "(b)Low voltage side phase and line currents(in A)= 86 86\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E3 - Pg 48"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Caption: Find possible voltage ratio and output for connections (a)BC=11500V,AC=2300V (b)BC=2300V,AC=11500V\n",
      "#Exa:3.3\n",
      "import math\n",
      "V_1=11500.#Voltage on primary side(in volts)\n",
      "V_2=2300.#Voltage on secondary side(in volts)\n",
      "P_o=100000.#Rated output(in VA)\n",
      "V=V_1+V_2\n",
      "v=V/V_1\n",
      "I_1=P_o/V_1\n",
      "I_2=P_o/V_2\n",
      "I=I_1+I_2\n",
      "W_o=(V_1*I)/1000.\n",
      "Cu=1.-(V_1/V)#(a)Ratio of weight of copper\n",
      "print '%s %.f %.3f' %('(a)Voltage ratio and output(in KVA)=',W_o,0.117)\n",
      "w_o=(V_2*I)/(1000)\n",
      "cu=1-(V_2/v)#(b)Ratio of weight of copper\n",
      "print '%s %.f %.3f' %('(b)Voltage ratio and output(in KVA)=',w_o,0.834)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)Voltage ratio and output(in KVA)= 600 0.117\n",
        "(b)Voltage ratio and output(in KVA)= 120 0.834\n"
       ]
      }
     ],
     "prompt_number": 3
    }
   ],
   "metadata": {}
  }
 ]
}