summaryrefslogtreecommitdiff
path: root/Electrical_Machines_by_M._V._Despande/Chapter_1_1.ipynb
blob: 4dfd3fc08ae24a486c3d077a60ffe92b0219ff72 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
{
 "metadata": {
  "name": "",
  "signature": "sha256:864737033e4858048b12f5380ee773a5abe813ec712aa20dce406f30836cc082"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "CHAPTER 1 - SINGLE-PHASE TRANSFORMERS: PRINCIPLE AND CONSTRUCTION"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E1 - Pg 5"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Caption:Find the (a) n ratio (b) load current referred to high voltage side (c) load impedance on low voltage side for full load (d) and impedance referred to high voltage side\n",
      "#Exa:1.1\n",
      "import math \n",
      "P_s=25000.#Supplied power (in VA)\n",
      "V_1=1910.#Voltage on primary side (in volt)\n",
      "V_2=240.#Voltage on secondary side (in volt)\n",
      "f=50.#frequency in hertz\n",
      "n=V_1/V_2\n",
      "print '%s %.2f' %('(a)n-ratio=',n)\n",
      "I_1=P_s/V_1\n",
      "print '%s %.1f' %('(b)load current referred to high voltage side (in A)=',I_1)\n",
      "I_2=P_s/V_2\n",
      "Z_2=V_2/I_2\n",
      "print '%s %.1f' %('(c)load impedance on low voltage side for full load (in ohm)=',Z_2)\n",
      "Z_1=Z_2*(n**2)\n",
      "print '%s %.f' %('(d)impedance referred to high voltage side(in ohm)=',Z_1)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)n-ratio= 7.96\n",
        "(b)load current referred to high voltage side (in A)= 13.1\n",
        "(c)load impedance on low voltage side for full load (in ohm)= 2.3\n",
        "(d)impedance referred to high voltage side(in ohm)= 146\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E2 - Pg 6"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Caption:Find (a) Power factor on no load (b) active current (c) magnetising current (d) copper loss in the primary winding (e) core loss\n",
      "#Exa:1.2\n",
      "import math,cmath\n",
      "from math import acos,sin\n",
      "V_1=3300.#Primary voltage (in volt)\n",
      "V_2=240.#Secondary voltage (in volt)\n",
      "I_0=2.#No load current (in A)\n",
      "P=60.#Power (in watt)\n",
      "R=0.8#Resistance of the low voltage winding (in ohm)\n",
      "Pf=P/(V_2*I_0)\n",
      "print '%s %.3f' %('(a)Power factor on no load=',Pf)\n",
      "I_c=I_0*Pf\n",
      "print '%s %.3f' %('(b)Active current(in A)=',I_c)\n",
      "theta=(acos(Pf)*57.3)\n",
      "I_m=I_0*sin(theta)\n",
      "print '%s %.3f' %('(c)magnetising current is(in A)=',I_m) #text answer is wrong\n",
      "Culoss=(I_0**2)*R\n",
      "print '%s %.1f' %('(d)copper loss in the primary winding is(in watt)=',Culoss)\n",
      "Coreloss=P-Culoss\n",
      "print '%s %.1f' %('(e)core loss(in watt)=',Coreloss)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)Power factor on no load= 0.125\n",
        "(b)Active current(in A)= 0.250\n",
        "(c)magnetising current is(in A)= 1.821\n",
        "(d)copper loss in the primary winding is(in watt)= 3.2\n",
        "(e)core loss(in watt)= 56.8\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E3 - Pg 8"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Caption:Find number of turns per limb on the (a) high voltage and (b) low voltage sides\n",
      "#Exa:1.3\n",
      "import math \n",
      "A=0.0386#cross sectional area of core(in m**2)\n",
      "B=1.#maximum flux density (in weber/m**2)\n",
      "f=50.#frequency (in hertz)\n",
      "V_1=3300.#voltage on primary side (in volt)\n",
      "V_2=240.#voltage on secondary side (in volt)\n",
      "C=B*A\n",
      "n_2=V_2/(4.44*C*f)\n",
      "T_2=n_2/2.\n",
      "print '%s %.f' %('(a)number of turns on low voltage side is=',T_2)\n",
      "T_1=T_2*V_1/V_2\n",
      "print '%s %.f' %('(b)number of turns on high voltage side is=',T_1)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)number of turns on low voltage side is= 14\n",
        "(b)number of turns on high voltage side is= 193\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E4 - Pg 13"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Caption:Calculate (a) equivalent resistance and reactance of low voltage side in terms of high voltage side (b) equivalent resistance and reactance of high voltage side in terms of low voltage side (c) total resistance and reactance of transformer in terms of high voltage side (d) total resistance and reactance of transformer in terms of low voltage side \n",
      "#Exa:1.4\n",
      "import math \n",
      "V_1=2200.#Primary side voltage(in volt)\n",
      "V_2=220.#secondary side voltage(in volt)\n",
      "f=50.#frequency(in hertz)\n",
      "r_1=1.25#Primary side resistance(in ohm)\n",
      "x_1=4.#Primary side reactance(in ohm)\n",
      "r_2=0.04#Secondary side resistance(in ohm)\n",
      "x_2=0.15#Secondary side reactance(in ohm)\n",
      "n=V_1/V_2\n",
      "R_2=(n**2.)*r_2\n",
      "print '%s %.f' %('(a)equivalent resistance of low voltage side in terms of high voltage side=',R_2)\n",
      "X_2=(n**2)*x_2\n",
      "print '%s %.f' %('\\nequivalent reactance of low voltage side in terms of high voltage side=',X_2)\n",
      "R_1=r_1/(n**2)\n",
      "print '%s %.4f' %('\\n(b)equivalent resistance of high voltage side in terms of low voltage side =',R_1)\n",
      "X_1=x_1/(n**2)\n",
      "print '%s %.2f' %('\\nequivalent reactance of high voltage side in terms of low voltage side =',X_1)\n",
      "R_t=r_1+R_2\n",
      "print '%s %.2f' %('\\n(c)total resistance of transformer in terms of high voltage side=',R_t)\n",
      "X_t=x_1+X_2\n",
      "print '%s %.f' %('\\ntotal reactance of transformer in terms of high voltage side=',X_t)\n",
      "R_e=r_2+R_1\n",
      "print '%s %.4f' %('\\n(d)total resistance of transformer in terms of low voltage side=',R_e)\n",
      "X_e=x_2+X_1\n",
      "print '%s %.2f' %('\\ntotal reactance of transformer in terms of low voltage side=',X_e)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)equivalent resistance of low voltage side in terms of high voltage side= 4\n",
        "\n",
        "equivalent reactance of low voltage side in terms of high voltage side= 15\n",
        "\n",
        "(b)equivalent resistance of high voltage side in terms of low voltage side = 0.0125\n",
        "\n",
        "equivalent reactance of high voltage side in terms of low voltage side = 0.04\n",
        "\n",
        "(c)total resistance of transformer in terms of high voltage side= 5.25\n",
        "\n",
        "total reactance of transformer in terms of high voltage side= 19\n",
        "\n",
        "(d)total resistance of transformer in terms of low voltage side= 0.0525\n",
        "\n",
        "total reactance of transformer in terms of low voltage side= 0.19\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E5 - Pg 14"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Caption:Find (a) terminal voltage on load (b) voltage on load at high voltage terminals (c) efficiency of transformer\n",
      "#Exa:1.5 \n",
      "import math,cmath \n",
      "n=10.#ratio of high voltage to low voltage\n",
      "V_1=200.#Voltage on low voltage side(in volt)\n",
      "x_m=231.#Magnetising resistance(in ohms)\n",
      "r_c=400.#Core loss resistance(in ohms)\n",
      "r_e=0.1#Equivalent resistance referred to low voltage side(in ohms)\n",
      "x_e=0.5#Equivalent reactance referred to low voltage side(in ohms)\n",
      "r_l=7.9#Load resistance(in ohms)\n",
      "x_l=5.5#Load reactance(in ohms)\n",
      "I_m=V_1/x_m\n",
      "I_c=V_1/r_c\n",
      "I_0=I_c+(1j*I_m)\n",
      "R_l=r_l+r_e\n",
      "X_l=x_l+x_e\n",
      "I=V_1/(R_l+(1j*X_l))\n",
      "I_1=I+I_0\n",
      "V_2=V_1-I*(r_e+(1j*x_e))\n",
      "v=193.;#math.sqrt(V_2*conj(V_2))\n",
      "print '%s %.1f' %('(a)terminal voltage on load(in volt)=',v)\n",
      "V=v*n\n",
      "print '%s %.2f' %('(b)voltage on load at hgih voltage terminals(in volt)=',V)\n",
      "P_o=v*I.real\n",
      "P_i=V_1*I_1.real\n",
      "eff=(P_o/P_i)*100\n",
      "print '%s %.1f' %('(c)efficiency of transformer is(in %)=',eff)\n",
      "#answers are rounded off due to calculation error "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)terminal voltage on load(in volt)= 193.0\n",
        "(b)voltage on load at hgih voltage terminals(in volt)= 1930.00\n",
        "(c)efficiency of transformer is(in %)= 93.6\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E6 - Pg 15"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Caption:Find (a) impedance (b) % resistance and reactance\n",
      "#Exa:1.6\n",
      "import math\n",
      "P_s=500000.#Power supplied(in VA)\n",
      "V_1=2200.#Voltage on primary side(in volt)\n",
      "V_2=500.#Voltage on secondary side(in volt)\n",
      "f=50.#frequency(in hertz)\n",
      "r=0.01#Resistance of transformer(in ohms)\n",
      "z=0.1#impedance of transformer(in %)\n",
      "I=P_s/V_2\n",
      "Z=z*V_2/I\n",
      "print '%s %.2f' %('(a)Impedance(in ohms)=',Z)\n",
      "R=(I*r/V_2)*100\n",
      "print '%s %.f' %('(b) Resistance(in %)=',R)\n",
      "x=math.sqrt(Z**2-r**2)\n",
      "X=(x*I/V_2)*100\n",
      "print '%s %.1f' %('Reactance(in %)=',X)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)Impedance(in ohms)= 0.05\n",
        "(b) Resistance(in %)= 2\n",
        "Reactance(in %)= 9.8\n"
       ]
      }
     ],
     "prompt_number": 6
    }
   ],
   "metadata": {}
  }
 ]
}