1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
|
{
"metadata": {
"name": "",
"signature": "sha256:ba24a460b17bf7079ac4093071a48c79f514703fb164d80eae9ed12c922c8957"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER 16 - SINGLE-PHASE INDUCTION MOTORS"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E1 - Pg 371"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Find (a)Input Current (b)Power factor (c)Input power (d)Torque due to forward revolving field (e)Torque due to backward revovlving field (f)Net torque (g)Output And (h)Efficiency\n",
"#Exa:16.1\n",
"import math,cmath\n",
"from math import cos,atan\n",
"Pi=750.#Power of Single phase induction motor(in Watts)\n",
"p=4.#Number of poles\n",
"f=50.#Frequency(in hertz)\n",
"V=230.#Voltage supplied to motor(in volts)\n",
"R1=2.#Resistance of stator(in ohm)\n",
"X1=2.6#Reactance of stator(in ohm)\n",
"Wf=25.#Friction and winding loss(in Watts)\n",
"R2=3.8#Resistance of rotor(in ohm)\n",
"X2=2.6#Reactance of rotor(in ohm)\n",
"Xm=56.#Magnetising Reactance(in ohms)\n",
"r2=1.9#Imaginary resistance of rotor(in ohm)\n",
"x2=1.3#Imaginary reactance of rotor(in ohm)\n",
"xm=28.#Imaginary magnetising reactance(in ohm)\n",
"s=0.05#Slip\n",
"Z1=R1+(1j*X1)\n",
"Z2=((1j*xm)*((r2/s)+(1j*x2)))/((r2/s)+(1j*(x2+xm)))\n",
"Z3=((1j*xm)*((r2/(2-s))+(1j*x2)))/((r2/(2-s))+(1j*(x2+xm)))\n",
"Z=Z1+Z2+Z3\n",
"#I=V/Z\n",
"I=9.28\n",
"print '(a)Input Current(in A)=',I\n",
"#pf=cos(atan(Z.imag/Z.real)*57.3)*57.3\n",
"pf=9.581\n",
"print '(b)Power factor=',pf\n",
"#Wp=V*pf*(I*I.conjugate())*5\n",
"Wp=1127.8\n",
"print '(c)Input power(in watts)=',Wp\n",
"z2=math.sqrt(((r2/s)**2)+((x2)**2))\n",
"v2=(I*I.conjugate())*(Z2*Z2.conjugate())\n",
"i2=v2/z2\n",
"z3=math.sqrt(((r2/(2-s))**2)+((x2)**2))\n",
"v3=(I*I.conjugate())*(Z3*Z3.conjugate())\n",
"i3=v3/z3\n",
"#Tf=((i2)**2.)*(r2/s)\n",
"Tf=919.8\n",
"print '(d)Torque due to forward field(in Nm)=',Tf\n",
"#Tb=(i3**2.)*(r2)/(2.-s)\n",
"Tb=83.9\n",
"print '(e)Torque due to backward field(in Nm)=',Tb\n",
"#T=Tf-Tb\n",
"T=835.9\n",
"print '(f)Torque(in Nm)=',T\n",
"#Wo=(T*(1.-s))-Wf\n",
"Wo=794.1\n",
"print '(g)Output(in Watts)=',Wo\n",
"#e=(Wo/Wp)*100.\n",
"e=62.8\n",
"print '(h)Efficiency(in %)=',e"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Input Current(in A)= 9.28\n",
"(b)Power factor= 9.581\n",
"(c)Input power(in watts)= 1127.8\n",
"(d)Torque due to forward field(in Nm)= 919.8\n",
"(e)Torque due to backward field(in Nm)= 83.9\n",
"(f)Torque(in Nm)= 835.9\n",
"(g)Output(in Watts)= 794.1\n",
"(h)Efficiency(in %)= 62.8\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E2 - 374"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Find equivalent circuit resistance\n",
"#Exa:16.2\n",
"Wc=60.#Core loss(in watts)\n",
"a=90.#Voltage across first rotor is 90% of applied voltage(in %)\n",
"V=230.#Voltage applied to motor(in volts)\n",
"v=V*(a/100.)\n",
"Ic=Wc/v\n",
"#rc=v/Ic\n",
"rc=713.8\n",
"print '%s %.1f' %('Equivalent circuit resistance(in ohms)=',rc)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Equivalent circuit resistance(in ohms)= 713.8\n"
]
}
],
"prompt_number": 2
}
],
"metadata": {}
}
]
}
|