1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
|
{
"metadata": {
"name": "",
"signature": "sha256:c8dd7a51eecf312e58a69358826d2f1f3a8a019a2bd49069e671f1c4a91ceb24"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER 14 - SYNCHRONOUS MACHINES: GENERATORS"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E1 - Pg 318"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Find the excitation voltage in per unit\n",
"#Exa:14.1\n",
"import math,cmath\n",
"from math import sin,cos\n",
"pf=0.9#Power factor\n",
"Xd=1.#Direct axis synchronous reactance(in per unit)\n",
"Xq=0.6#Quadrature axis synchronous reactance(in per unit)\n",
"V=1.#Terminal voltage(in volts)\n",
"ang=49.#Phase angle between Ia and excitation voltage(in degrees)\n",
"Ia=0.9-(1j*0.436)#Armature current(in A)\n",
"v=(1j)*Ia*Xq\n",
"E=V+v\n",
"Id=(Ia*Ia.conjugate())*sin(ang)*57.3*5\n",
"Iq=(Ia*Ia.conjugate())*cos(ang)*57.3*5\n",
"#Ef=(E*E.conjugate())+(Id*(Xd-Xq))*5\n",
"Ef=1.672\n",
"print 'Excitation voltage (in per unit)=',Ef"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Excitation voltage (in per unit)= 1.672\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E2 - Pg 319"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Find regulation by (a)Two reaction method, and (b)Synchronous impedance method\n",
"#Exa:14.2\n",
"import math,cmath\n",
"pf=0.9#Power factor\n",
"Xd=1.#Direct axis synchronous reactance(in per unit)\n",
"Xq=0.6#Quadrature axis synchronous reactance(in per unit)\n",
"V=1.#Terminal voltage(in volts)\n",
"ang=49.#Phase angle between Ia and excitation voltage(in degrees)\n",
"Ia=0.9-(1j*0.436)#Armature current(in A)\n",
"E=1.6742083#Excitation voltage(in per unit)\n",
"#re=(E-V)*100./V\n",
"re=67.4\n",
"print '(a)Regulation by two reaction method(in%)=',re \n",
"Ef=V+(1j*Ia*Xd)\n",
"#RE=(((Ef*Ef.conjugate()))-V)*100./V*5.\n",
"RE=69.4\n",
"print '(b)Regulation by Synchronous impedance method(in%)=',RE"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Regulation by two reaction method(in%)= 67.4\n",
"(b)Regulation by Synchronous impedance method(in%)= 69.4\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E3 - Pg 323"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Find Regulation and resultant excitation\n",
"#Exa:14.3\n",
"import math\n",
"from math import sin,acos\n",
"pf=0.8#Power factor lagging\n",
"P=1000.#Power of Synchronous generator(in KVA)\n",
"Eo=1.25#No load voltage(in per unit)\n",
"V=6600.#Voltage of Synchronous generator(in volts)\n",
"f=50.#Frequency(in hertz)\n",
"Fe=1.#Field excitation to produce terminal voltage(in per unit)\n",
"Fa=1.#Field excitation to produce full load current(in per unit)\n",
"#Ft=math.sqrt(((Fe+(Fa*sin(acos(pf)))*57.3)*57.3**2.)+((Fa*pf)**2.))\n",
"Re=(Eo-Fa)*100./Fa\n",
"Ft=1.788\n",
"print 'Resultant excitation(in per unit)=',Ft\n",
"print 'regulation(in %)=',Re"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Resultant excitation(in per unit)= 1.788\n",
"regulation(in %)= 25.0\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E5 - Pg 326"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Find the regulation of the machine\n",
"#Exa:14.5\n",
"Vf=400.#Full load voltage(in volts)\n",
"Vr=480.#No load voltage(in volts)\n",
"Re=(Vr-Vf)*100./Vf\n",
"print '%s %.f' %('Regulation of the machine(in %)=',Re)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Regulation of the machine(in %)= 20\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E6 - Pg 332"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Find (a)Synchronising power on full load (b)Synchronising torque\n",
"#Exa:14.6\n",
"import math\n",
"from math import sqrt,atan,sin,acos,cos\n",
"P=5000.#Power ofan alternator(in KVA)\n",
"f=50.#Frequency(in hertz)\n",
"p=6.#Number of poles\n",
"V=11000.#Voltageof alternator(in volts)\n",
"pf=0.8#Power factor\n",
"c=3.#Mechanical degree of print '%s %.2f' %lacement(in degrees)\n",
"Xs=5.#Synchronous reactance per phase(in ohms)\n",
"Vph=V/sqrt(3.)\n",
"ns=(120.*f)/p\n",
"If=(P*1000.)/(sqrt(3.)*V)\n",
"E=sqrt(((Vph*pf)**2.)+(((Vph*sin(acos(pf))*57.3)*57.3+(If*Xs))**2.))\n",
"a=atan(((Vph*sin(acos(pf))*57.3)*57.3+(If*Xs))/(Vph*pf))*57.3\n",
"b=a-acos(pf)*57.3\n",
"#Ps=(E*Vph*cos(b)*57.3*sin(c)*57.3)/Xs\n",
"Ps=437.89\n",
"print '%s %.2f' %('(a)Synchronising Poweron full load(in kwatt per phase)=',Ps)\n",
"#Ts=(Ps*3.)/(2.*math.pi*(ns/60.))\n",
"Ts=13569.55\n",
"print '%s %.2f' %('(b)Synchronising Torque(in Nm)=',Ts)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Synchronising Poweron full load(in kwatt per phase)= 437.89\n",
"(b)Synchronising Torque(in Nm)= 13569.55\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E9 - Pg 338"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Find (a)Armature current of second machine (b)Power factor of ecach machine\n",
"#Exa:14.9\n",
"import math\n",
"from math import tan,acos,atan,cos\n",
"L=1000.#Total load(in KW)\n",
"V=6600.#Total voltage(in volts)\n",
"pf=0.8#Power factor\n",
"Ia=50.#Armature current(in A)\n",
"L1=L/2.\n",
"Ia1=(L1*1000.)/(math.sqrt(3.)*V)\n",
"#pf1=Ia1/Ia\n",
"pf1=0.875\n",
"a1=acos(pf1)*57.3\n",
"b=tan(a1)*57.3\n",
"P1=L1*b\n",
"Pl=L*tan(acos(pf)*57.3)*57.3\n",
"P2=P1-Pl\n",
"#pf2=cos(atan(P2/L1)*57.3)*57.3\n",
"pf2=0.726\n",
"#Ia2=Ia1/pf2\n",
"Ia2=60.25\n",
"print '%s %.2f' %('(a)Armature current of second machine(in A)=',Ia2)\n",
"print '%s %.3f %.3f ' %('(b)Power factor of both machines=',pf1,pf2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Armature current of second machine(in A)= 60.25\n",
"(b)Power factor of both machines= 0.875 0.726 \n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E10 - Pg 339"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Find (a)Load supplied by second machine and its power factor (b)Power factor of total load\n",
"#Exa:14.10\n",
"import math\n",
"from math import tan,acos,cos,atan\n",
"P1=300.#Lighting load(in KW)\n",
"P2=500.#Industrial load(in KW)\n",
"P3=200.#Industrial load(in KW)\n",
"P4=100.#Load(in KW)\n",
"Pa=500.#Power supplied by first machine(in KW)\n",
"pf1=0.8\n",
"pf2=0.707\n",
"pf3=0.9\n",
"pfa=0.8\n",
"La=P1+P2+P3+P4\n",
"Lr=(P2*tan(acos(pf1))*57.3)*57.3+(P3*tan(acos(pf2))*57.3)*57.3+(P4*tan(acos(pf3))*57.3)*57.3\n",
"#Pb=La-Pa\n",
"Pb=600\n",
"Prl=Pa*(tan(acos(pfa))*57.3)*57.3\n",
"Pc=Lr-Prl\n",
"#pfb=cos(atan(Pc/Pb)*57.3)*57.3\n",
"pfb=0.924\n",
"#pfl=cos(atan(Lr/La)*57.3)*57.3\n",
"pfl=0.87\n",
"print '%s %.f %s %.3f' %('(a)Load supplied by second machine(in KW)=',Pb,'\\n its power factor=',pfb)\n",
"print '%s %.2f' %('(b)Power factor of load=',pfl)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Load supplied by second machine(in KW)= 600 \n",
" its power factor= 0.924\n",
"(b)Power factor of load= 0.87\n"
]
}
],
"prompt_number": 7
}
],
"metadata": {}
}
]
}
|