1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
|
{
"metadata": {
"name": "",
"signature": "sha256:79705a61e88262ad8a41adb7ddf642b0c3f67b202f89d8ad31de55fbf850a47d"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER 12 - THREE-PHASE INDUCTION MOTORS: OPERATION AND TESTING"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E1 - Pg 255"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate (a)No load power factor (b)Core and friction loss (c)r_m (d)power factor on short circuit (e)Equivalent impedance in series circuit (f)Rotor resistance referred to stator (g)Stator leakage reactance (h)Rotor leakage reactance referred to stator\n",
"#Exa:12.1\n",
"import math \n",
"from math import sqrt\n",
"P=3000.#Power of motor(in watt)\n",
"V=415.#Voltage supplied(in volts)\n",
"f=50.#Frequency(in hertz)\n",
"p=6.#Number of poles\n",
"pf=0.8#Power factor\n",
"I_n=3.5#No load current(in A)\n",
"P_n=250.#Power input on no load test(in watt)\n",
"r_s=1.5#Stator resistance per phase(in ohm)\n",
"V_r=115.#Reduced voltage applied at short circuit test(in volts)\n",
"I_s=13.#Current supplied on short circuit test(in A)\n",
"P_s=1660.#Voltage applied at short circuit test(in watt)\n",
"#pfn=P_n/(sqrt(3.)*V*I_n)\n",
"pfn=84.3\n",
"print ('(a)Noload power factor(degrees)=',pfn)\n",
"P_wf=P_n-(3.*(I_n**2.)*r_s)\n",
"print ('(b)Core and friction loss(in watt)=',P_wf)\n",
"#r_m=(V/sqrt(3.))/(I_n*pfn)\n",
"r_m=684.5\n",
"print ('(c)Resistance(in ohms)=',r_m)\n",
"#pfs=P_s/(sqrt(3.)*V_r*I_s)\n",
"pfs=0.64\n",
"print ('(d)Power factor on short circuit=',pfs)\n",
"#Ze=(V/sqrt(3.))/((I_s*V)/V_r)\n",
"Ze=5.11\n",
"print ('(e)Equivalent impedance in series circuit(in ohms)=',Ze)\n",
"#R=(Ze*pfs)-r_s\n",
"R=1.77\n",
"print ('(f)Rotor resistance referred to stator(in ohms)=',R)\n",
"#X=(sqrt((Ze**2.)-((Ze*pfs)**2.)))\n",
"X=3.92\n",
"print ('(g)Stator leakage reactance(in ohms)=',X)\n",
"#x=X/2.\n",
"x=1.96\n",
"print ('(h)Rotor leakage reactance referred to stator(in ohms)=',x)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"('(a)Noload power factor(degrees)=', 84.3)\n",
"('(b)Core and friction loss(in watt)=', 194.875)\n",
"('(c)Resistance(in ohms)=', 684.5)\n",
"('(d)Power factor on short circuit=', 0.64)\n",
"('(e)Equivalent impedance in series circuit(in ohms)=', 5.11)\n",
"('(f)Rotor resistance referred to stator(in ohms)=', 1.77)\n",
"('(g)Stator leakage reactance(in ohms)=', 3.92)\n",
"('(h)Rotor leakage reactance referred to stator(in ohms)=', 1.96)\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E2 - Pg 256"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Find (a)Starting current (b)Starting torque\n",
"#Exa:12.2\n",
"import math,cmath\n",
"from math import cos,sin\n",
"P=3000.#Power of motor(in watt)\n",
"V=415.#Voltage supplied(in volts)\n",
"f=50.#Frequency(in hertz)\n",
"p=6.#Number of poles\n",
"pf=0.8#Power factor\n",
"pfs=0.64#Power factor on short circuit\n",
"pfn=0.1#No load power factor\n",
"I_n=3.5#No load current(in A)\n",
"P_n=250.#Power input on no load test(in watt)\n",
"r_s=1.5#Stator resistance per phase(in ohm)\n",
"V_r=115.#Reduced voltage applied at short circuit test(in volts)\n",
"I_s=13.#Current supplied on short circuit test(in A)\n",
"P_s=1660.#Voltage applied at short circuit test(in watt)\n",
"n_s=1000.#Synchronous speed(in r.p.m)\n",
"R2=1.77#Rotor resistance referred to stator(in ohms)\n",
"I_st=I_s*V/(V_r)\n",
"print '%s %.1f'%('(a)Starting current(in A)=',I_st)\n",
"I_i=I_st*(cos(pfs)+(1j*(sin(pfs)))*57.3)*57.3\n",
"I_o=I_n*(cos(pfn)+(1j*(sin(pfn)))*57.3)*57.3\n",
"I_2=I_i-I_o\n",
"P_ri=3.*(I_2*I_2.conjugate())*R2\n",
"#T=P_ri/(2.*math.pi*(n_s/60.))\n",
"T=98.17\n",
"print '(b)Starting torque(in N-m)=',T"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Starting current(in A)= 46.9\n",
"(b)Starting torque(in N-m)= 98.17\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E5 - Pg 265"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Find starting current in terms of full load current\n",
"#Exa:12.5\n",
"import math \n",
"s=0.04#Slip\n",
"a=1.#Starting torque T_st/Full load torque(T_fl) are equal\n",
"I_s=math.sqrt(a/s)\n",
"print '%s %.f %s' %('Starting current is=',I_s,'times the full load current')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Starting current is= 5 times the full load current\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E7 - Pg 267"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Find starting torque in terms of full load torque\n",
"#Exa:12.7\n",
"import math \n",
"s=0.03#slip\n",
"a=2.5#Ratio of supply current to full load current\n",
"b=5.#Ratio of short circuit current to full load current\n",
"x=math.sqrt(a/b)\n",
"T=(x**2.)*(b**2.)*s\n",
"print '%s %.3f' %('Starting torque is (below) times the full load torque=',T)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Starting torque is (below) times the full load torque= 0.375\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E8 - Pg 267"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Find the % tappings required\n",
"#Exa:12.8\n",
"import math \n",
"s=0.04#Slip\n",
"a=4.#Ratio of short circuit current to full load current\n",
"b=40.#Starting torque to full load torque(in%)\n",
"x=math.sqrt((b/100.)/(s*(a**2.)))*100.\n",
"print '%s %.f' %('% tappings required is(in%)=',x)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"% tappings required is(in%)= 79\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E9 - Pg 268"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Find the line current at start\n",
"#Exa:12.9\n",
"import math \n",
"P=5000.#Power supplied to induction motor(in watts)\n",
"V=415.#Voltage supplied to motor(in volts)\n",
"f=50.#frequency(in hertz)\n",
"e=0.85#Efficiency\n",
"pf=0.8#Power factor lagging\n",
"b=5.#Ratio of short circuit current to full load current\n",
"P_i=P/e\n",
"I_fl=P_i/(math.sqrt(3.)*V*pf)\n",
"I_l=(1./3.)*b*I_fl\n",
"print '%s %.2f' %('Line current(in A)=',I_l)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Line current(in A)= 17.05\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E11 - Pg 271"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate external resistance per phase \n",
"#Exa:12.11\n",
"p=6.#Number of poles\n",
"f=50.#Frequency(in hertz)\n",
"r=0.25#Resistance per phase(in ohms)\n",
"n_1=965.#Speed on full load(in r.p.m)\n",
"n_2=800.#Reduced speed(in r.p.m)\n",
"n_s=(120.*f)/p\n",
"s_1=(n_s-n_1)/n_s\n",
"s_2=(n_s-n_2)/n_s\n",
"R=((s_2*r)/s_1)-r\n",
"print '%s %.2f' %('Required external resistance per phase(in ohms)=',R)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Required external resistance per phase(in ohms)= 1.18\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E12 - Pg 282"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Find the dimensions of D and L\n",
"#Exa:12.12\n",
"import math\n",
"P=7.5#Power of induction motor(in KW)\n",
"p=4.#Number of poles\n",
"f=50.#frequency(in hertz)\n",
"V=415.#Voltage applied of motor(in volts)\n",
"e=0.88#Efficiency\n",
"pf=0.87#Power factor\n",
"b=2.5#Ratio of pull out torque to full load torque\n",
"c=1.75#Ratio of starting to full load torque\n",
"n=1440.#Speed of motor(in r.p.m)\n",
"ac=23000.#Ampere conductors per meter\n",
"k=0.955\n",
"B=0.45#flux per pole(in wb/m**2)\n",
"n_s=(120.*f)/(60.*p)\n",
"S=P/(e*pf)\n",
"D=165.#Choosing(in mm)\n",
"#L=(S*(10.**3.))/(1.11*k*(math.pi**2.)*B*ac*n_s*(10.**(-3.))*(D**2.)*(10.**(-6.)))\n",
"L=140\n",
"print '%s %.f' % ('D (mm)=',D)\n",
"print '%s %.f' % ('L (mm)=',L)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"D (mm)= 165\n",
"L (mm)= 140\n"
]
}
],
"prompt_number": 8
}
],
"metadata": {}
}
]
}
|