1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
|
{
"metadata": {
"name": "",
"signature": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter4 - Three Phase Transformer"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:4.1 page 263"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from math import ceil\n",
"#Caption:Determines the turns per phase for the HV and LV winding of the 3 phase transformer.\n",
"\n",
"F_max=0.024 #Maximum flux (in weber)\n",
"f=50 #Supply frequency(in Hz)\n",
"E_1p=11000 #Primary phase voltage(in Volts)\n",
"N_1=ceil(E_1p/(4.44*F_max*f)) #Turns per phase on primary\n",
"print 'turns per phase for the H.V. winding of the 3 phase transformer =',N_1\n",
"E_2l=400 #Secondary line voltage(in Volts)\n",
"E_2p=E_2l/(3)**(1/2) #Secondary phase voltage(in Volts)\n",
"N_2=ceil(E_2p/(4.44*F_max*f)) #turns per phase for the L.V. winding of the 3 phase transformer\n",
"print 'turns per phase for the L.V. winding of the 3 phase transformer =',N_2\n",
"# Answer wrong in the textbook."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"turns per phase for the H.V. winding of the 3 phase transformer = 2065.0\n",
"turns per phase for the L.V. winding of the 3 phase transformer = 44.0\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:4.2 page 264"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:In a three phase transformer Calculate the secondary line voltage at no load \n",
"\n",
"#when windings are star delta connected\n",
"V=3300 #the supply voltage(in Volts)\n",
"V_l1=V #Primary line voltage in star delta conection\n",
"N_1=420 #turns on the primary side of the transformer\n",
"N_2=36 #turns on the secondary side of the transformer\n",
"V_p1=V_l1/(3)**(1/2) #Primary phase voltage in star delta connection\n",
"V_p2=V_p1*(N_2/N_1) #Secondary phase voltage in star delta connection\n",
"V_l2=V_p2 #Secondary line voltage when windings are star delta connected(in Volts)\n",
"print 'Secondary line voltage when windings are star delta connected = %0.2f Volts '%V_l2 \n",
"#when windings are delta star connected\n",
"V_P1=V #Primary phase voltage(in Volts)\n",
"V_L1=V_P1 #Primary line voltage in delta star connection\n",
"V_P2=V_P1*(N_2/N_1) #Secondary phase voltage in delta star connection\n",
"V_L2=V_P2*(3)**(1/2) #Secondary line voltage when windings are delta star connected(in Volts)= \n",
"print 'Secondary line voltage when windings are delta star connected = %0.2f Volts '%V_L2 "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Secondary line voltage when windings are star delta connected = 163.31 Volts \n",
"Secondary line voltage when windings are delta star connected = 489.92 Volts \n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:4.3 page 264"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Find the secondary no load voltage and primary secondary currents in a 3 phase transformer\n",
"\n",
"V_l=11000 #Input voltage(in Volts)\n",
"V_1ph=V_l/(3)**(1/2) #Phase voltage\n",
"KVA=50*10**(3) #\n",
"#KVA=((3)**(1/2))*V_l*I_l\n",
"I_1l=KVA/(((3)**(1/2))*V_l) #Line current\n",
"I_1ph=I_1l #Star system value of phase current\n",
"print 'Value of primary phase and line current = %0.2f Amp '%I_1ph \n",
"N_1=1000 #Primary turns\n",
"N_2=90 #Secondary turns\n",
"V_2ph=(N_2/N_1)*V_1ph #secondary phase voltage(in Volts)\n",
"#V_2ph=V_2l delta system\n",
"print 'Value of secondary phase and line voltage = %0.2f Volts '%V_2ph \n",
"I_2ph=(N_1/N_2)*I_1ph #secondary phase current(in Amp)\n",
"print 'Value of secondary phase current = %0.2f Amp '%I_2ph \n",
"I_2l=I_2ph*3**(1/2) #secondary line current(in Amp)\n",
"print 'Value of secondary line current = %0.2f Amp' %I_2l"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Value of primary phase and line current = 2.62 Amp \n",
"Value of secondary phase and line voltage = 571.58 Volts \n",
"Value of secondary phase current = 29.16 Amp \n",
"Value of secondary line current = 50.51 Amp\n"
]
}
],
"prompt_number": 4
}
],
"metadata": {}
}
]
}
|