1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
|
{
"metadata": {
"name": "",
"signature": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter3 - Transformer(Single Phase)"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.1 page 167"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from math import ceil\n",
"#Caption:Calculate the number of turns on both primary and secondary winding in a single phase transformer\n",
"\n",
"E_1=500 #primary induced emf(in Volts)\n",
"E_2=250 #secondary induced emf(in Volts)\n",
"F=50 #supply frequency(in Hz)\n",
"B_max=1.2 #maximum flux density(in T)\n",
"a=0.009 #cross sectional area(in square meter)\n",
"F_x=B_max*a #maximum value of flux(in Wb)\n",
"N_1=ceil(E_1/(4.44*F*F_x)) #number of primary turns\n",
"print 'number of primary turns in transformer =',N_1 \n",
"N_2=ceil(E_2/(4.44*F*F_x)) #number of secondary turns\n",
"print 'number of secondary turns in transformer =',N_2 "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"number of primary turns in transformer = 209.0\n",
"number of secondary turns in transformer = 105.0\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.2 page 167"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:In a loss less transformer calculate \n",
"#(a)Number of turns on high voltage side (b)The primary current (c)The secondary current\n",
"\n",
"V_1=110 #primary voltage(in Volts)\n",
"V_2=220 #secondary voltage(in Volts)\n",
"N_1=130 #low voltage side turns\n",
"N_2=N_1*V_2/V_1 #high voltage side turns\n",
"print 'Number of turns on high voltage side =',N_2 \n",
"O_p=1 #Output of the transformer in KVA\n",
"I_2=O_p*1000/V_2 #Secondary current(in Amp)\n",
"I_1=O_p*1000/V_1 #Primary current(in Amp)\n",
"print 'Primary current = %0.2f Amp'%I_1\n",
"print 'Secondary current = %0.2f Amp'%I_2 "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Number of turns on high voltage side = 260.0\n",
"Primary current = 9.09 Amp\n",
"Secondary current = 4.55 Amp\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.3 Page 168"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate the secondary voltage and the volts per turn\n",
"\n",
"N_1=800 #Primary turns in a transformer\n",
"N_2=200 #Secondary turns in a transformer\n",
"V_1=100 #Primary voltage\n",
"V_2=V_1*(N_2/N_1) #Secondary voltage\n",
"print 'Secondary voltage = %0.2f Volts '%V_2 \n",
"V_n=V_1/N_1 #Volts per turn\n",
"print 'Volts per turn =',V_n "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Secondary voltage = 25.00 Volts \n",
"Volts per turn = 0.125\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.4 Page 169"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate the primary current in a single phase transformer\n",
"\n",
"V_1=230 #Primary voltage(in Volts)\n",
"V_2=460 #Secondary voltage(in Volts)\n",
"I_2=10 #secondary current(in Amp)\n",
"I_1=I_2*(V_2/V_1) #Primary current(in Amp)\n",
"print 'Primary current = %0.2f Amp'%I_1"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Primary current = 20.00 Amp\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.5 Page 169"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate (a)the approximate values of the primary and secondary currents (b)the approimate number of primary turns\n",
"\n",
"V_1=6600 #Primary voltage(in Volts)\n",
"V_2=400 #Secondary voltage(in Volts)\n",
"N_2=100 #secondary turns\n",
"O_p=200 #output of a transformer in KVA\n",
"I_1=O_p*1000/V_1 #Full load primary current(in Amp)\n",
"print 'Full load primary current = %0.1f Amp'%I_1 \n",
"I_2=O_p*1000/V_2 #Full load secondary current(in Amp)\n",
"print 'Full load secondary current = %0.f Amp '%I_2 \n",
"N_1=N_2*(V_1/V_2) #Number of primary turns\n",
"print 'Number of primary turns =',N_1 "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Full load primary current = 30.3 Amp\n",
"Full load secondary current = 500 Amp \n",
"Number of primary turns = 1650.0\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.6 page 169"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Find voltage in secondary terminal\n",
"V_1=100 #Primary voltage(in Volts)\n",
"N_1=20 #Number of primary turns\n",
"N_2=40 #Number of secondary turns\n",
"V_2=(N_2/N_1)*V_1 #voltage of the secondary terminal(in Volts)\n",
"print 'voltage of the secondary terminal = %0.2f V'%V_2"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"voltage of the secondary terminal = 200.00 V\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.7 page 170"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate the r.m.s value of the induced emf in the secondary coil.\n",
"\n",
"F_x=0.02 #Maximum value of flux(in Wb)\n",
"N_2=55 #Number of secondary turns\n",
"F=50 #Supply frequency(in Hz)\n",
"E_2=4.44*F*F_x*N_2 #r.m.s value of induced emf in the secondary (in Volts)\n",
"print 'r.m.s value of induced emf in the secondary = %0.1f Volts '%E_2 \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"r.m.s value of induced emf in the secondary = 244.2 Volts \n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.8 page 170"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:In single phase transformer Calculate (a)The maximum flux density in the core and (b)induced emf in the secondary\n",
"\n",
"N_1=80 #Primary turns\n",
"N_2=240 #secondary turns\n",
"f=50 #Supply frequency(in Hz)\n",
"E_1=240 #Supply voltage(in Volts)\n",
"F_max=E_1/(4.44*f*N_1) #Maximum value of the flux in the core\n",
"a=200 #Cross sectional area of core(in cm**2)\n",
"A=a*10**-4 #Cross sectional area of core(in m**2)\n",
"B_max=F_max/A #Peak value of flux density in the core(in T)\n",
"print 'Peak value of flux density in the core = %0.4f T '%B_max \n",
"E_2=E_1*(N_2/N_1) #Induced emf in the secondary winding(in Volts)\n",
"print 'Induced emf in the secondary winding = %0.f Volts '%E_2 "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Peak value of flux density in the core = 0.6757 T \n",
"Induced emf in the secondary winding = 720 Volts \n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.9 page 171"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate (a)Primary and secondary currents on full load (b)the maximum value of flux (c)the number of primary turns.\n",
"\n",
"O_p=200 #Rated output (in KVA)\n",
"V_1=3300 #Primary voltage (in Volts)\n",
"V_2=240 #Secondary voltage (in Volts)\n",
"N_2=100 #Secondary turns\n",
"f=50 #supply frequency(in Hz)\n",
"I_1=O_p*1000/V_1 #Primary current(in Amp)\n",
"print 'Primary current on full load = %0.2f Amp'%I_1 \n",
"I_2=O_p*1000/V_2 #secondary current(in Amp)\n",
"print 'secondary current on full load = %0.2f Amp '%I_2 \n",
"F_x=V_2/(4.44*f*N_2) #Maximum value of flux(in Wb)\n",
"print 'Maximum value of flux = %0.4f Wb '%F_x \n",
"N_1=N_2*(V_1/V_2) #Primary turns\n",
"print 'Primary turns =',N_1 \n",
"# Answer wrong in the textbook."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Primary current on full load = 60.61 Amp\n",
"secondary current on full load = 833.33 Amp \n",
"Maximum value of flux = 0.0108 Wb \n",
"Primary turns = 1375.0\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.10 page 175"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:In a single phase transformer primary side is open , Find (a)core loss, (b)loss component of current ,(c)Magnetising current.\n",
"\n",
"\n",
"O_p=50 #output (in KVA)\n",
"V_2=230 #Secondary voltage(in Volts)\n",
"P=187 #meter's power reading (in watt)\n",
"I_w=P/V_2 #Loss component of current(in Amp)\n",
"I_o=6.5 #meter's current reading (in Amp)\n",
"I_m=((I_o)**2-(I_w)**2) #Magnetising current(in Amp)\n",
"P=V_2*I_w #Core loss(in watt)\n",
"print 'Core loss = %0.2f Watt '%P \n",
"print 'Loss component of current = %0.3f Amp '%I_w \n",
"print 'Magnetising current = %0.2f Amp'%I_m "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Core loss = 187.00 Watt \n",
"Loss component of current = 0.813 Amp \n",
"Magnetising current = 41.59 Amp\n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.11 page 175"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi, degrees, acos, sin, cos\n",
"#Caption:In a transformer Calculate \n",
"#(a)Magnetising component of no load current (b)the iron loss (c)the maximum value of flux in the core.\n",
"\n",
"V_1=460 #supply voltage(in Volts)\n",
"I_o=15 #No load current (in Amp)\n",
"p=degrees(acos(0.2)) #power angle(when power factor is 0.2)\n",
"n=sin(p*pi/180) \n",
"I_m=I_o*n #Magnetising component of no load current \n",
"print 'Magnetising component of no load current = %0.2f Amp '%I_m \n",
"L_ir=V_1*I_o*cos(p*pi/180)/1000 #the iron loss in transformer(in kWatt)\n",
"print 'the iron loss in transformer = %0.2f kW '%L_ir \n",
"E_1=V_1 #at no load condition\n",
"N_1=550 #primary winding\n",
"f=50 #supply frequency (in Hz)\n",
"F_m=E_1/(4.44*N_1*f) #the maximum value of flux in the core(in Wb)\n",
"print 'the maximum value of flux in the core = %0.4f Wb'%F_m "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Magnetising component of no load current = 14.70 Amp \n",
"the iron loss in transformer = 1.38 kW \n",
"the maximum value of flux in the core = 0.0038 Wb\n"
]
}
],
"prompt_number": 22
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.12 page 176"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:In a single phase transformer, Find (a)The magnetising current (b)The iron loss current \n",
"\n",
"p=degrees(acos(0.22)) #power angle(when power factor is 0.22)\n",
"I_o=0.3 #no load current(in Amp)\n",
"I_m=I_o*sin(p*pi/180) #Magnetising current(in Amp)\n",
"print 'Magnetising current = %0.4f Amp'%I_m \n",
"I_w=I_o*cos(p*pi/180) #Iron loss current (in Amp)\n",
"print 'Iron loss current = %0.3f Amp '%I_w "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Magnetising current = 0.2926 Amp\n",
"Iron loss current = 0.066 Amp \n"
]
}
],
"prompt_number": 25
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.13 page 177"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Find the active and reactive components of a single phase transformer.\n",
"\n",
"V_1=440 #supply Voltage(in Volts)\n",
"p=degrees(acos(0.3) )#power angle when power factor is 0.3\n",
"P_o=80 #power input to the hv winding(in Watt)\n",
"I_o=P_o/(V_1*cos(p*pi/180)) #No load current (in Amp)\n",
"I_w=I_o*cos(p*pi/180) #Active component of no load current (in Amp)\n",
"print 'Active component of no load current = %0.3f Amp '%I_w \n",
"I_m=I_o*sin(p*pi/180) #Reactive component of no load current (in Amp)\n",
"print 'Reactive component of no load current = %0.3f Amp '%I_m "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Active component of no load current = 0.182 Amp \n",
"Reactive component of no load current = 0.578 Amp \n"
]
}
],
"prompt_number": 28
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.14 page 181"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:In a single phase transformer Calculate the current taken by the primary winding.\n",
"\n",
"V_1=6600 #Primary voltage(in Volts)\n",
"V_2=400 #Secondary voltage(in Volts)\n",
"I_o=0.7 #NO load current(in Amp)\n",
"p_o=0.24 #No load power factor\n",
"q_o=degrees(acos(p_o)) #power angle when no load power factor is 0.24\n",
"I_2=100 #Secondary current(in Amp)\n",
"p_2=0.8 #Secondary power factor\n",
"q_2=degrees(acos(p_2)) #power angle when secondary power factor is 0.8\n",
"K=V_2/V_1 #ratio of primary to secondary voltage\n",
"I_1=K*I_2 #primary current(in Amp)\n",
"Q=q_o-q_2 #resultant power angle\n",
"I=((I_o)**2 + (I_1)**2+2*I_o*I_1*cos(Q*pi/180))**(1/2) #Resultant current taken by the primary(in Amp)\n",
"print 'Resultant current taken by the primary = %0.2f Amp '%I "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Resultant current taken by the primary = 6.62 Amp \n"
]
}
],
"prompt_number": 29
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.15 page 182"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:In a single phase transformer Calculate the current taken by the primary winding.\n",
"\n",
"V_1=440 #Primary voltage(in Volts)\n",
"V_2=110 #Secondary voltage(in Volts)\n",
"I_o=5 #NO load current(in Amp)\n",
"p_o=0.2 #No load power factor\n",
"q_o=degrees(acos(p_o)) #power angle when no load power factor is 0.24\n",
"I_2=120 #Secondary current(in Amp)\n",
"p_2=0.8 #Secondary power factor\n",
"q_2=degrees(acos(p_2)) #power angle when secondary power factor is 0.8\n",
"K=V_2/V_1 #ratio of primary to secondary voltage\n",
"I_1=K*I_2 #primary current(in Amp)\n",
"Q=q_o-q_2 #resultant power angle\n",
"I=((I_o)**2 + (I_1)**2+2*I_o*I_1*cos(Q*pi/180))**(1/2) #Resultant current taken by the primary(in Amp)\n",
"print 'Resultant current taken by the primary = %0.2f Amp '%I "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Resultant current taken by the primary = 33.90 Amp \n"
]
}
],
"prompt_number": 30
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.16 page 187"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:In a single phase transformer Calculate Equivalent resistance \n",
"\n",
"V_1=4400 #Primary voltage (in Volts)\n",
"V_2=220 #Secondary voltage (in Volts)\n",
"R_1=3.45 #Primary resistance (in Ohm)\n",
"X_1=5.2 #Primary reactances (in Ohm)\n",
"R_2=0.009 #secondary resistance (in Ohm)\n",
"X_2=0.015 #secondary reactance (in Ohm)\n",
"K=V_2/V_1 #voltage ratio\n",
"R_o1=R_1+(R_2/K**2) #Equivalent resistance as referred to primary(in Ohm)\n",
"print 'Equivalent resistance as referred to primary = %0.2f Ohm '%R_o1 \n",
"R_o2=R_2+(R_1*K**2) #Equivalent resistance as referred to secondary(in Ohm)\n",
"print 'Equivalent resistance as referred to secondary = %0.4f Ohm '%R_o2 \n",
"X_o1=X_1+(X_2/K**2) #Equivalent reactance as referred to primary(in Ohm)\n",
"print 'Equivalent reactance as referred to primary = %0.2f Ohm'%X_o1 \n",
"X_o2=X_2+X_1*(K**2) #Equivalent reactance as referred to secondary(in Ohm)\n",
"print 'Equivalent reactance as referred to secondary = %0.3f Ohm '%X_o2 \n",
"Z_o1=((R_o1)**2 + (X_o1)**2)**(1/2) #Equivalent impedence as referred to primary(in Ohm)\n",
"print 'Equivalent impedence as referred to primary = %0.2f Ohm'%Z_o1 \n",
"Z_o2=((R_o2)**2 + (X_o2)**2)**(1/2) #Equivalent impedence as referred to secondary(in Ohm)\n",
"print 'Equivalent impedence as referred to secondary = %0.3f Ohm'%Z_o2 "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Equivalent resistance as referred to primary = 7.05 Ohm \n",
"Equivalent resistance as referred to secondary = 0.0176 Ohm \n",
"Equivalent reactance as referred to primary = 11.20 Ohm\n",
"Equivalent reactance as referred to secondary = 0.028 Ohm \n",
"Equivalent impedence as referred to primary = 13.23 Ohm\n",
"Equivalent impedence as referred to secondary = 0.033 Ohm\n"
]
}
],
"prompt_number": 34
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.17 page 190"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:In a single phase transformer Calculate the secondary terminal voltage at full load.\n",
"\n",
"V_1=2000 #Primary voltage at no load or full load(in Volts)\n",
"V_2=400 #Secondary voltage at no load (in Volts)\n",
"K=V_2/V_1 #Ratio of transformation\n",
"R_1=5 #Primary resistance(in Ohm)\n",
"R_2=0.2 #Secondary resistance(in Ohm)\n",
"X_1=12 #Primary reactance(in Ohm)\n",
"X_2=0.48 #Secondary reactance(in Ohm)\n",
"R_o2=R_2 + (K**2)*R_1 #Equivalent resistance as referred to secondary(in Ohm)\n",
"X_o2=X_2 + (K**2)*X_1 #Equivalent reactance as referred to secondary(in Ohm)\n",
"O_p=10 #Rated output(i KVA)\n",
"I_2=O_p*1000/V_2 #Full load secondary current(in Amp)\n",
"p=0.8 #power factor\n",
"a=degrees(acos(p)) #power angle\n",
"V_d=I_2*R_o2*cos(a*pi/180) + I_2*X_o2*sin(a*pi/180) #Voltage drop (in Volts)\n",
"V=V_2-V_d #Secondary terminal voltage at full load (in Volts)\n",
"print 'Secondary terminal voltage at full load = %0.2f Volts '%V "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Secondary terminal voltage at full load = 377.60 Volts \n"
]
}
],
"prompt_number": 35
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.18 page 191"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:In a single phase transformer Calculate the secondary terminal voltage at full load.\n",
"\n",
"V_1=11000 #Primary voltage at no load or full load(in Volts)\n",
"V_2=400 #Secondary voltage at no load (in Volts)\n",
"K=V_2/V_1 #Ratio of transformation\n",
"R_1=4 #Primary resistance(in Ohm)\n",
"R_2=0.2 #Secondary resistance(in Ohm)\n",
"X_1=10 #Primary reactance(in Ohm)\n",
"X_2=0.4 #Secondary reactance(in Ohm)\n",
"R_o2=R_2 + (K**2)*R_1 #Equivalent resistance as referred to secondary(in Ohm)\n",
"X_o2=X_2 + (K**2)*X_1 #Equivalent reactance as referred to secondary(in Ohm)\n",
"O_p=10 #Rated output(in KVA)\n",
"I_2=O_p*1000/V_2 #Full load secondary current(in Amp)\n",
"Z_o2=((R_o2)**2 +(X_o2)**2)**(1/2) #Equivalent impedance as referred to secondary(in Ohm)\n",
"V=V_2-I_2*Z_o2 #Secondary terminal voltage at full load (in Volts)\n",
"print 'Secondary terminal voltage at full load = %0.3f Volts '%V "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Secondary terminal voltage at full load = 388.465 Volts \n"
]
}
],
"prompt_number": 40
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.19 page 195"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:In a single phase transformer Determine equivalent resistance \n",
"\n",
"V_1=2000 #Primary voltage at no load or full load(in Volts)\n",
"V_2=400 #Secondary voltage at no load (in Volts)\n",
"K=V_2/V_1 #Ratio of transformation\n",
"R_1=5.2 #Primary resistance(in Ohm)\n",
"R_2=0.2 #Secondary resistance(in Ohm)\n",
"X_1=12.5 #Primary reactance(in Ohm)\n",
"X_2=0.5 #Secondary reactance(in Ohm)\n",
"R_o2=R_2 + (K**2)*R_1 #Equivalent resistance as referred to secondary(in Ohm)\n",
"print 'Equivalent resistance as referred to secondary = %0.2f Ohm '%R_o2 \n",
"X_o2=X_2 + (K**2)*X_1 #Equivalent reactance as referred to secondary(in Ohm)\n",
"print 'Equivalent reactance as referred to secondary = %0.2f Ohm '%X_o2 \n",
"# Answer wrong in the textbook."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Equivalent resistance as referred to secondary = 0.41 Ohm \n",
"Equivalent reactance as referred to secondary = 1.00 Ohm \n"
]
}
],
"prompt_number": 42
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.20 page 195"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Determine equivalent resistance and reactance \n",
"\n",
"V_1=2000 #Primary voltage at no load or full load(in Volts)\n",
"V_2=200 #Secondary voltage at no load (in Volts)\n",
"K=V_2/V_1 #Ratio of transformation\n",
"R_1=2 #Primary resistance(in Ohm)\n",
"R_2=0.025 #Secondary resistance(in Ohm)\n",
"X_1=4 #Primary reactance(in Ohm)\n",
"X_2=0.04 #Secondary reactance(in Ohm)\n",
"R_eq12=(K**2)*R_1 #equivalent resistance of primary referred to secondary(in Ohm)\n",
"print 'equivalent resistance of primary referred to secondary = %0.2f Ohm '%R_eq12 \n",
"X_eq12=(K**2)*X_1 #equivalent reactance of primary referred to secondary(in Ohm)\n",
"print 'equivalent reactance of primary referred to secondary = %0.2f Ohm '%X_eq12 \n",
"R_e2=(K**2)*R_1 + R_2 #total resistance of primary referred to secondary(in Ohm)\n",
"print 'total resistance of primary referred to secondary = %0.3f Ohm '%R_e2 \n",
"X_e2=(K**2)*X_1 + X_2 #total reactance of primary referred to secondary(in Ohm)\n",
"print 'total reactance of primary referred to secondary = %0.3f Ohm '%X_e2 \n",
"R_eq21=R_2/(K**2) #equivalent resistance of secondary referred to primar(in Ohm)\n",
"print 'equivalent resistance of secondary referred to primary = %0.2f Ohm '%R_eq21 \n",
"X_eq21=X_2/(K**2) #equivalent reactance of secondary referred to primar(in Ohm)\n",
"print 'equivalent reactance of secondary referred to primary = %0.2f Ohm '%X_eq21 \n",
"R_e1=R_1 + R_2/(K**2) #total resistance of secondary referred to primary(in Ohm)\n",
"print 'total resistance of secondary referred to primary = %0.2f Ohm '%R_e1 \n",
"X_e1=X_1 + X_2/(K**2) #total reactance of secondary referred to primary(in Ohm)\n",
"print 'total reactance of secondary referred to primary = %0.2f Ohm '%X_e1 "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"equivalent resistance of primary referred to secondary = 0.02 Ohm \n",
"equivalent reactance of primary referred to secondary = 0.04 Ohm \n",
"total resistance of primary referred to secondary = 0.045 Ohm \n",
"total reactance of primary referred to secondary = 0.080 Ohm \n",
"equivalent resistance of secondary referred to primary = 2.50 Ohm \n",
"equivalent reactance of secondary referred to primary = 4.00 Ohm \n",
"total resistance of secondary referred to primary = 4.50 Ohm \n",
"total reactance of secondary referred to primary = 8.00 Ohm \n"
]
}
],
"prompt_number": 45
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.21 Page 196"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Determine Primary resistance and total resistance of transformer referred to primary.\n",
"\n",
"V_1=2000 #Primary voltage at no load or full load(in Volts)\n",
"V_2=220 #Secondary voltage at no load (in Volts)\n",
"R_1=1.06 #Primary resistance(in Ohm)\n",
"R_2=0.013 #Secondary resistance(in Ohm)\n",
"K=V_2/V_1 #Ratio of transformation\n",
"R_eq1=(K**2)*R_1 #Primary resistance referred to secondary(in Ohm)\n",
"print 'Primary resistance referred to secondary = %0.4f Ohm '%R_eq1 \n",
"R_eq2=R_2/(K**2) #secondary resistance referred to primary(in Ohm)\n",
"print 'secondary resistance referred to primary = %0.4f Ohm '%R_eq2 \n",
"R_e1=R_1 + R_eq2 #total resistance of transformer referred to primary(in Ohm)\n",
"print 'total resistance of transformer referred to primary = %0.4f Ohm '%R_e1 "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Primary resistance referred to secondary = 0.0128 Ohm \n",
"secondary resistance referred to primary = 1.0744 Ohm \n",
"total resistance of transformer referred to primary = 2.1344 Ohm \n"
]
}
],
"prompt_number": 49
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.22 page 200"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:In a single phase transformer Find Full load regulation at a power factor (a) 0.8 lagging (b) unity (c) 0.8 leading.\n",
"\n",
"V_1=6600 #Primary voltage (in Volts)\n",
"V_2=250 #Secondary voltage (in Volts)\n",
"K=V_2/V_1 #Ratio of transformation\n",
"R_1=10 #Primary resistance (in Ohm)\n",
"R_2=0.02 #Secondary resistance (in Ohm)\n",
"X_o1=35 #Total leakage reactance referred to the primary winding(in Ohm)\n",
"R_o2=R_2 + R_1*(K**2) #Equivalent resistance reffered to the secondary(in Ohm)\n",
"X_o2=X_o1*(K**2) #Equivalent reactance reffered to the secondary(in Ohm)\n",
"O_p=40 #Rated output (in KVA)\n",
"I_2=O_p*1000/250 #Secondary current(in Amp)\n",
"P_1=0.8 #Power factor\n",
"q=(acos(P_1)) \n",
"V_r1=((I_2*R_o2*cos(q) + I_2*X_o2*sin(q))/V_2)*100 #Voltage regulation at 0.8 lagging power factor(in %)\n",
"print 'Voltage regulation at 0.8 lagging power factor = %0.3f %%'%V_r1 \n",
"V_r0=(I_2*R_o2/V_2)*100 #Voltage regulation at unity power factor(in %)\n",
"print 'Voltage regulation at unity power factor = %0.2f %%'%V_r0 \n",
"V_r2=((I_2*R_o2*cos(q) - I_2*X_o2*sin(q))/V_2)*100 #Voltage regulation at 0.8 leading power factor(in %)\n",
"print 'Voltage regulation at 0.8 leading power factor = %0.2f %%'%V_r2 \n",
"# Answer wrong in the textbook."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Voltage regulation at 0.8 lagging power factor = 3.687 %\n",
"Voltage regulation at unity power factor = 2.20 %\n",
"Voltage regulation at 0.8 leading power factor = -0.17 %\n"
]
}
],
"prompt_number": 56
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.23 page 201"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate the regulation of transformer\n",
"\n",
"#(I_2*R_a2/E_2)*100=1\n",
"Rs_d=1 #Percentage resistive drop\n",
"#(I_2*X_a2/E_2)*100=5\n",
"Re_d=5 #Percentage reactive drop\n",
"#power factor=cosd(q1)=0.8 (lagging)\n",
"q1=degrees(acos(0.8) )\n",
"#Voltage regulation= ((I_2*R_a2*cosd(q1)+I_2*X_a2*sind(q1))/100)*100\n",
"#V_r=(I_2*R_a2/E_2)*100*cosd(q1)+(I_2*X_a2/E_2)*100*sind(q1)\n",
"V_r1=Rs_d*cos(q1*pi/180)+Re_d*sin(q1*pi/180) #Voltage regulation when power factor is 0.8 lagging\n",
"print 'Voltage regulation when power factor is 0.8 lagging = %0.2f %%'%V_r1 \n",
"q2=-degrees(acos(0.8) )\n",
"#V_r2=(I_2*R_a2/E_2)*100*cosd(q2)+(I_2*X_a2/E_2)*100*sind(q2) #Voltage regulation when power factor is 0.8 leading\n",
"V_r2=Rs_d*cos(q2*pi/180)+Re_d*sin(q2*pi/180) #Voltage regulation when power factor is 0.8 leading\n",
"print 'Voltage regulation when power factor is 0.8 leading = %0.2f %%'%V_r2,"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Voltage regulation when power factor is 0.8 lagging = 3.80 %\n",
"Voltage regulation when power factor is 0.8 leading = -2.20 %\n"
]
}
],
"prompt_number": 57
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.25 page 208"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:In a single phase transformer Calculate the efficiency at unity power at Full load and Half load.\n",
"\n",
"P_c=400 #Full load copper loss(in Watts)\n",
"P_C=P_c/1000 #Full load copper loss(in KW)\n",
"P_i=350 #Full load iron loss(in Watts)\n",
"P_I=P_i/1000 #Full load iron loss(in KW)\n",
"P_f=1 #Power factor\n",
"KVA=25 #Rating of the transformer\n",
"O_p=KVA*P_f #Output at full load condition(in KW)\n",
"L_1=P_C+P_I #Losses at full load condition(in KW)\n",
"I_p=O_p+L_1 #Input at full load condition(in KW)\n",
"E_fL=(O_p/I_p)*100 #Efficiency in full load condition\n",
"print 'Efficiency of the tranformer at full load condition = %0.2f %%'%E_fL \n",
"#At half load condition\n",
"O_P=(1/2)*KVA*P_f #Output of the transformer at half load condition\n",
"L_2=((1/2)**2)*P_C+P_I #Losses at half load condition(in KW)\n",
"I_P=O_P+L_2 #Input at half load condition\n",
"E_hL=(O_P/I_P)*100 #Efficiency of the transformer at half load condition(in %)\n",
"print 'Efficiency of the transformer at half load condition = %0.2f %%'%E_hL "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Efficiency of the tranformer at full load condition = 97.09 %\n",
"Efficiency of the transformer at half load condition = 96.53 %\n"
]
}
],
"prompt_number": 43
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.26 page 209"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate the single phase transformer efficiency for 75% of the full load output at power factor unity and 0.8 lagging.\n",
"\n",
"P_i=1.5 #Core loss(in KW)\n",
"P_c=4.5 #Full load copper loss(in KW)\n",
"P_C=((3/4)**2)*P_c #Copper loss at 75% of full load(in KW)\n",
"P_t=P_i+P_C #Total loss at 75% of full load output(in KW)\n",
"KVA=300 #Rating of the transformer(in KVA)\n",
"P_f1=1 #power factor value when it is unity\n",
"P_f2=0.8 #power factor value when it is 0.8 lagging\n",
"O_p1=0.75*KVA*P_f1 #Output at 75% of full load and at unity power factor(in KW)\n",
"E_f1=(O_p1/(O_p1+P_t))*100 #Efficiency of the transformer for 75% of full load output at power factor unity(in %)\n",
"print 'Efficiency of the transformer for 75%% of full load output at power factor unity = %0.2f %%'%E_f1 \n",
"O_p2=0.75*KVA*P_f2 #Output at 75% of full load and at 0.8 lagging power factor(in KW)\n",
"E_f2=(O_p2/(O_p2+P_t))*100 #Efficiency of the transformer for 75% of full load output at power factor 0.8 lagging(in %)\n",
"print 'Efficiency of the transformer for 75%% of full load output at power factor 0.8 lagging = %0.2f %%' %E_f2"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Efficiency of the transformer for 75% of full load output at power factor unity = 98.24 %\n",
"Efficiency of the transformer for 75% of full load output at power factor 0.8 lagging = 97.81 %\n"
]
}
],
"prompt_number": 58
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.27 page 210"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:In a single phase transformer Calculate efficiency at full load, unity power factor. \n",
"\n",
"P_f1=1 #power factor unity\n",
"P_f2=0.8 #power factor 0.8 lagging or leading\n",
"KVA=25 #Rating of the transformer(in KVA)\n",
"O_p1=KVA*P_f1 #Output at unity power factor(in KW)\n",
"P_c=400 #copper losses(in Watt)\n",
"P_C=P_c/1000 #copper losses(in KW)\n",
"P_i=320 #iron losses(in Watt)\n",
"P_I=P_i/1000 #iron losses(in KW)\n",
"P_T=P_I+P_C #total losses(in KW)\n",
"I_p1=O_p1+P_T #Input (in KW)\n",
"E_f1=(O_p1/I_p1)*100 #Efficiency of the transformer at full load and unity power factor(in %)\n",
"print 'Efficiency of the transformer at full load and unity power factor = %0.2f %%' %E_f1\n",
"O_p2=KVA*P_f2 #output at 0.8 lagging power factor(in KW)\n",
"I_p2=O_p2+P_T #input incase of 0.8 power factor(in KW)\n",
"E_f2=(O_p2/I_p2)*100 #Efficiency of the transformer at full load and 0.8 lagging power factor(in %)\n",
"print 'Efficiency of the transformer at full load and 0.8 lagging power factor = %0.2f %%' %E_f2\n",
"E_f3=E_f2 #At 0.8 leading power factor. since there is no change in input and output, so efficiency is unchanged\n",
"print 'At 0.8 leading power factor. since there is no change in input and output, so efficiency is unchanged = %0.2f %%' %E_f3"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Efficiency of the transformer at full load and unity power factor = 97.20 %\n",
"Efficiency of the transformer at full load and 0.8 lagging power factor = 96.53 %\n",
"At 0.8 leading power factor. since there is no change in input and output, so efficiency is unchanged = 96.53 %\n"
]
}
],
"prompt_number": 59
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.28 page 210"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate the efficiency of the transformer on Half load and Full load.\n",
"KVA=100 #rating of the(in KVA)\n",
"P_f=0.8 #power factor\n",
"O_p=(1/2)*KVA*P_f #Output at half load(in KW)\n",
"P_i=700 #iron loss (in Watt)\n",
"P_i1=P_i/1000 #iron loss at half and full load(in KW)\n",
"P_c=400 #copper losses (in Watt)\n",
"P_c1=((1/2)**2)*P_c/1000 #copper losses at half load condition (in KW)\n",
"P_t=P_c1+P_i1 #Total losses in half load condition(in KW)\n",
"E_f=(O_p/(O_p+P_t))*100 #Efficiency of the transformer on half load in percentage\n",
"print 'Efficiency of the transformer on half load = %0.2f %%' %E_f\n",
"O_P=KVA*P_f #Output in case of full load(in KW)\n",
"P_c2=P_c/1000 #Copper losss at full load condition(in KW)\n",
"P_T=P_c2+P_i1 #Total losses in full load condition(in KW)\n",
"E_F=(O_P/(O_P+P_T))*100 #Efficiency of the transformer on full load condition in percentage\n",
"print 'Efficiency of the transformer on full load condition = %0.2f %%' %E_F"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Efficiency of the transformer on half load = 98.04 %\n",
"Efficiency of the transformer on full load condition = 98.64 %\n"
]
}
],
"prompt_number": 60
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.29 page 213"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:In a single phase transformer Calculate the efficiency at full load unity power factor\n",
"\n",
"KVA=25 #Rating of the transformer(in KVA)\n",
"P_c=400 #Full load copper loss(in Watt)\n",
"P_c1=P_c/1000 #Full load copper loss(in KW)\n",
"P_i=350 #Iron loss(in Watt)\n",
"P_i1=P_i/1000 #Iron loss (in KW)\n",
"P_f=1 #Power factor unity\n",
"P_f1=0.8 #Power factor 0.8 lagging\n",
"O_p1=KVA*P_f #Output at full load and unity power factor(in KW)\n",
"P_t1=P_c1+P_i1 #Total losses at full load and unity power factor(in KW)\n",
"I_p1=O_p1+P_t1 #Input at full load and unity power factor(in KW)\n",
"E_f1=(O_p1/I_p1)*100 #Efficiency of the transformer at full load and unity power factor(in KW)\n",
"print 'Efficiency of the transformer at full load and unity power factor = %0.2f kW'%E_f1 \n",
"O_p2=(1/2)*KVA*P_f1 #Output At half full load, 0.8 power factor lag.(in KW)\n",
"P_c2=((1/2)**2)*P_c1 #Copper loss At half full load, 0.8 power factor lag.(in KW)\n",
"P_t2=P_c2+P_i1 #Total loss At half full load, 0.8 power factor lag.(in KW)\n",
"I_p2=O_p2+P_t2 #Input At half full load, 0.8 power factor lag.(in KW)\n",
"E_f2=(O_p2/I_p2)*100 #Efficiency of the transformer at half full load and 0.8 lagging power factor(in KW)\n",
"print 'Efficiency of the transformer at half full load and 0.8 lagging power factor = %0.2f kW'%E_f2 \n",
"#Maximum efficiency occurs when Copper loss = Iron loss,let the maximum efficiency occcur at x times full load\n",
"x=(P_i/P_c)**(1/2) \n",
"L=x*KVA #load in KVA corresponding to maximum efficiency\n",
"print 'the load for maximum efficiency = %0.2f kVA '%L "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Efficiency of the transformer at full load and unity power factor = 97.09 kW\n",
"Efficiency of the transformer at half full load and 0.8 lagging power factor = 95.69 kW\n",
"the load for maximum efficiency = 23.39 kVA \n"
]
}
],
"prompt_number": 61
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.30 page 214"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:In a single phase transformer Calculate the efficiency of full load current\n",
"\n",
"KVA=50 #Rating of the transformer(in KVA)\n",
"V_1=6600 #Primary voltage(in Volt)\n",
"V_2=200 #Secondary voltage(in VOlt)\n",
"I_1=KVA*1000/6600 #Full load primary current(in Amp)\n",
"P_f1=1 #power factor at unity\n",
"P_f2=0.8 #Power factor at 0.8\n",
"O_p1=KVA*P_f1 #Output at unity power factor(in KW)\n",
"P_i=650 #Iron loss(in Watt)\n",
"P_i1=P_i/1000 #Iron loss (in KW)\n",
"P_c=885 #Copper loss(in Watt)\n",
"P_c1=P_c/1000 #Copper loss(in KW)\n",
"I_p1=O_p1+P_c1+P_i1 #Input at unity power factor(in KW)\n",
"E_f1=(O_p1/I_p1)*100 #Efficiency of the transformer at unity power factor\n",
"print 'Efficiency of the transformer at unity power factor = %0.f %% '%E_f1 \n",
"O_p2=KVA*P_f2 #Output at 0.8 power factor(in KW) \n",
"#Maximum efficiency occurs when Copper loss = Iron loss,let the maximum efficiency occcur at x times full load\n",
"x=(P_i1/P_c1)**(1/2) \n",
"print 'the maximum efficiency occurs at the full load of = %0.3f'%x \n",
"O_P=x*KVA*P_f2 #Output at maximum efficiency(in KW)\n",
"E_F=(O_P/(O_P+P_i1+P_c1))*100 #Maximum Efficiency of the transformer at 0.8 power factor\n",
"print 'Maximum Efficiency of the transformer = %0.2f %%' %E_F\n",
"# Answer wrong in the textbook."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Efficiency of the transformer at unity power factor = 97 % \n",
"the maximum efficiency occurs at the full load of = 0.857\n",
"Maximum Efficiency of the transformer = 95.71 %\n"
]
}
],
"prompt_number": 66
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.31 page 214"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:In the single phase transformer,find the ratio of iron and copper loss such that maximum efficiency occurs at 75% of full load.\n",
"\n",
"x=75/100 #the value of load which is 75% of full load\n",
"P_r=x**2 #Ratio of the iron loss and copper loss for maximum efficiency\n",
"print 'Ratio of the iron and copper loss for the maximum efficiency =',P_r "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Ratio of the iron and copper loss for the maximum efficiency = 0.5625\n"
]
}
],
"prompt_number": 67
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.32 page 215"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:In a single phase transformer Calculate the iron losses and the full load copper losses.\n",
"\n",
"KVA=400 #Rating of the transformer(in KVA)\n",
"E_f1=0.9877 #Transformer efficiency when delivering full load at 0.8 power factor\n",
"P_f1=0.8 #power factor at full load\n",
"P_f2=1 #power factor at half load\n",
"O_p1=KVA*P_f1 #Output on full load when power factor is 0.8(in KW)\n",
"I_p1=(O_p1/E_f1) #Input on full load when power factor is 0.8(in KW)\n",
"P_t1=I_p1-O_p1 #Total losses on full load when power factor is 0.8(in KW)\n",
"O_p2=(1/2)*KVA*P_f2 #Output at half load when power factor is 1\n",
"E_f2=0.9913 #Transformer efficiency when delivering half load at 1 power factor\n",
"I_p2=O_p2/E_f2 #Input at half load when power factor is 1\n",
"P_t2=I_p2-O_p2#Total losses at half load when power factor is 1\n",
"#P_t1=P_c+P_i\n",
"#P_t2=(1/4)P_c+P_i\n",
"P_c=(4/3)*(P_t1-P_t2) #Full load and copper losses\n",
"P_i=(1/3)*(4*P_t2-P_t1) #iron losses\n",
"print 'full load and copper losses = %0.3f kW'%P_c \n",
"print 'iron loss = %0.3f kW '%P_i "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"full load and copper losses = 2.973 kW\n",
"iron loss = 1.012 kW \n"
]
}
],
"prompt_number": 70
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.33 page 216"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import ceil\n",
"#Caption:In a transformer find all day efficiency\n",
"\n",
"KVA=15 #Rating of the transformer(in KVA)\n",
"E_f=0.98 #Efficiency of the transformer\n",
"P_F=1 #for unity power factor\n",
"O_P=KVA*P_F #Output of the transformer at unity power factor(in KW)\n",
"I_P=O_P/E_f #Input to the transformer(in KW)\n",
"P_T=I_P-O_P #Total losses(in KW)\n",
"#At Maximum efficiency\n",
"P_C=P_T/2 #copper loss for maximum efficiency(in KW)\n",
"P_I=P_C #iron losss at maximum efficiency copper loss=iron loss\n",
"L_1=2 #load for 12 hours (in KW)\n",
"L_2=12 #load for 6 hours (in KW)\n",
"L_3=18 #load for next 6 hours (in KW)\n",
"P_f1=0.5 #Power factor at L_1 load\n",
"P_f2=0.8 #Power factor at L_2 load\n",
"P_f3=0.9 #Power factor at L_3 load\n",
"T_1=12 #Time when L_1 working(in hours)\n",
"T_2=6 #Time when L_2 working(in hours)\n",
"T_3=6 #Time when L_3 working(in hours)\n",
"O_p1=L_1*T_1+L_2*T_2+L_3*T_3 #All day output(in KWh)\n",
"P_i1=P_I*24 #Iron losses for 24 hours(in KWh)\n",
"P_c1=T_1*P_C*((L_1/P_f1)/KVA)**2+T_2*P_C*((L_2/P_f2)/KVA)**2+T_3*P_C*((L_3/P_f3)/KVA)**2 #Copper loss for 24 hours(in KWh)\n",
"P_t=P_c1+P_i1 #Total losses of transformer for 24 hours(in KWh)\n",
"I_p1=O_p1+P_t #All day input(in KWh)\n",
"E_f1=(O_p1/I_p1)*100 #All day efficiency of transformer\n",
"print 'All day efficiency of transformer = %0.2f %% '%ceil(E_f1) "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"All day efficiency of transformer = 97.00 % \n"
]
}
],
"prompt_number": 73
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.34 page 217"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:In a transformer find all day efficiency\n",
"\n",
"KVA=1500 #Rating of the transformer(in KVA)\n",
"P_C=4.5 #copper loss for maximum efficiency(in KW)\n",
"P_I=3.2 #iron losss at maximum efficiency copper loss=iron loss\n",
"L_1=1200 #load for 6 hours (in KW)\n",
"L_2=900 #load for next 10 hours (in KW)\n",
"L_3=300 #load for next 4 hours (in KW)\n",
"L_4=0 #load for next 4 hours (in KW)\n",
"P_f1=0.8 #Power factor at L_1 load\n",
"P_f2=0.75 #Power factor at L_2 load\n",
"P_f3=0.8 #Power factor at L_3 load\n",
"P_f4=0 #Power factor at L_4 load\n",
"T_1=6 #Number of hours when L_1 working(in hours)\n",
"T_2=10 #Number of hours when L_2 working(in hours)\n",
"T_3=4 #Number of hours when L_3 working(in hours)\n",
"T_4=4 #Number of hours when L_4 working(in hours)\n",
"O_p1=L_1*T_1+L_2*T_2+L_3*T_3 #All day output(in KWh)\n",
"P_i1=P_I*24 #Iron losses for 24 hours(in KWh)\n",
"P_c1=T_1*P_C*((L_1/P_f1)/KVA)**2+T_2*P_C*((L_2/P_f2)/KVA)**2+T_3*P_C*((L_3/P_f3)/KVA)**2 #Copper loss for 24 hours(in KWh)\n",
"P_t=P_c1+P_i1 #Total losses of transformer for 24 hours(in KWh)\n",
"I_p1=O_p1+P_t #All day input(in KWh)\n",
"E_f1=(O_p1/I_p1)*100 #All day efficiency of transformer\n",
"print 'All day efficiency of transformer = %0.2f %%' %(E_f1)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"All day efficiency of transformer = 99.24 %\n"
]
}
],
"prompt_number": 74
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.35 page 218"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:In a transformer find all day efficiency\n",
"\n",
"KVA=15 #Rating of the transformer(in KVA)\n",
"P_c=0.35 #Full load copper loss (in KW)\n",
"P_i=0.25 #iron losss \n",
"P_I=P_i*24 #Iron loss per day\n",
"L_1=1/4 #load for 9 hours of full load\n",
"L_2=1 #load for 7 hours of full load\n",
"L_3=3/4 #load for next 6 hours of full load\n",
"P_f1=0.6 #Power factor at L_1 load\n",
"P_f2=0.8 #Power factor at L_2 load\n",
"P_f3=1 #Power factor at L_3 load\n",
"T_1=9 #Time when L_1 working(in hours)\n",
"T_2=7 #Time when L_2 working(in hours)\n",
"T_3=6 #Time when L_3 working(in hours)\n",
"P_c1=((1/4)**2)*P_c #Copper loss at 1/4 load\n",
"P_C1=9*P_c1 #Copper loss for 9 hours at 1/4 load\n",
"P_c2=P_c #Copper loss at full load\n",
"P_C2=7*P_c2 #Copper loss for 7 hours at full load\n",
"P_c3=((3/4)**2)*P_c #Copper loss at 3/4 load\n",
"P_C3=6*P_c3 #Copper loss for 6 hours at 3/4 load\n",
"P_C=P_C1+P_C2+P_C3 #Copper loss per day(in KW)\n",
"P_T=P_C+P_I #Iron loss per day(in KW)\n",
"O_P=L_1*KVA*P_f1*T_1+L_2*KVA*P_f2*T_2+L_3*KVA*P_f3*T_3 #Total output per day(in KWh)\n",
"I_P=O_P+P_T #Total input(in KWh)\n",
"E_F=(O_P/I_P)*100 #All day efficiency(in %)\n",
"print 'All day efficiency = %0.2f %%' %E_F"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"All day efficiency = 94.59 %\n"
]
}
],
"prompt_number": 75
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.36 page 225"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate the economy of copper in auto transformer and current distribution in primary\n",
"\n",
"V_1=500 #Primary voltage\n",
"V_2=400 #Secondary voltage\n",
"I_2=100 #Secondary voltage\n",
"I_1=V_2*I_2/V_1 #Primary current\n",
"print 'Current in primary winding = %0.2f Amp '%I_1\n",
"K=V_2/V_1 #Transformer ratio\n",
"S=K*100 #Saving (in %)\n",
"print 'Economy of copper = %0.2f %%'%S"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Current in primary winding = 80.00 Amp \n",
"Economy of copper = 80.00 %\n"
]
}
],
"prompt_number": 76
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.37 page 225"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:In a auto transformer determine Transformation ratio secondary current primary current\n",
"\n",
"V_1=250 #Primary voltage(in Voltage)\n",
"V_2=125 #Secondary voltage(in Voltage)\n",
"K=V_2/V_1 #Transformation ratio\n",
"N_1=250 #Primary turns\n",
"print 'Transformation ratio =',K\n",
"P_f=1 #Unity power factor\n",
"L=5 #Value of load(in KW)\n",
"I_2=L*1000/(V_2*P_f) #Secondary current(in Amp)\n",
"print 'Secondary current = %0.2f Amp '%I_2 \n",
"I_1=K*I_2 #Primary current(in Amp)\n",
"print 'Primary current = %0.2f Amp '%I_1 \n",
"N_2=K*N_1 #Secondary turns\n",
"print 'number of turns across secondary winding =',N_2 "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Transformation ratio = 0.5\n",
"Secondary current = 40.00 Amp \n",
"Primary current = 20.00 Amp \n",
"number of turns across secondary winding = 125.0\n"
]
}
],
"prompt_number": 77
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.38 page 29"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:In an auto transformer determine current in different section and KVA output and power transferred\n",
"\n",
"KVA=10 \n",
"V_1=2400 #Voltage in first winding\n",
"V_2=240 #Voltage in second winding\n",
"I_1=KVA*1000/V_1 #Current rating of 2400 Volts winding\n",
"I_2=KVA*1000/V_2 #Current rating of 240 Volts winding\n",
"I_l=I_1+I_2 #Total load current\n",
"print 'Current rating of 2400 Volts winding = %0.2f Amp '%I_1 \n",
"print 'Current rating of 240 Volts winding = %0.2f Amp '%I_2 \n",
"print 'Total load current = %0.2f Amp '%I_l \n",
"KVA_r=V_1*I_l/1000 #KVA output rating\n",
"print 'KVA output rating = %0.2f KVA '%KVA_r \n",
"P_i=V_1*I_1 #power transferred inductively\n",
"P_c=V_1*I_2 #power transferred conductively\n",
"print 'power transferred inductively = %0.2f VA '%P_i \n",
"print 'power transferred conductively = %0.2f VA '%P_c \n",
"N_1=2640 #Number Primary winding in case of two winding transformer\n",
"N_2=2400 #Number Secondary winding in case of two winding transformer\n",
"K=N_1/N_2 #Transformer ratio\n",
"Saving=(1/K)*100 #Saving in copper\n",
"print 'Saving in copper = %0.2f %%'%Saving \n",
"# Answer wrong in the textbook."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Current rating of 2400 Volts winding = 4.17 Amp \n",
"Current rating of 240 Volts winding = 41.67 Amp \n",
"Total load current = 45.83 Amp \n",
"KVA output rating = 110.00 KVA \n",
"power transferred inductively = 10000.00 VA \n",
"power transferred conductively = 100000.00 VA \n",
"Saving in copper = 90.91 %\n"
]
}
],
"prompt_number": 79
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:3.39 Page 230"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:In a transformer calculate Power output and power transformed and power conducted\n",
"KVA=25 \n",
"V_s=2200 #Source voltage\n",
"V_1=2200 #Voltage in first winding\n",
"V_2=220 #Voltage in second winding\n",
"I_1=KVA*1000/V_1 #Current rating of 2200 V winding\n",
"I_2=KVA*1000/V_2 #Current rating of 220 V winding\n",
"V_o=V_1+V_2 #Output voltage\n",
"I_l=I_1+I_2 #Input line current\n",
"I_o=I_2 #Output current of auto transformer\n",
"KVA_r=V_o*I_2/1000 #KVA rating\n",
"P_f1=0.8 #\n",
"P_o=KVA*P_f1 #Power output at full load and 0.8 power factor\n",
"KVA_t=V_1*I_1/1000 #KVA transformed \n",
"print 'KVA transformed = %0.2f kVA'%KVA_t\n",
"P_t=KVA_t*P_f1 #Power transformed(in KW)\n",
"print 'Power transformed = %0.2f kW'%P_t\n",
"KVA_c=V_s*I_o/1000 #KVA conducted(in KVA)\n",
"P_c=KVA_c*P_f1 #Power conducted(in KW)\n",
"print 'Power conducted = %0.2f kW'%P_c\n",
"#E_f=Output/(Output+Losses)\n",
"#Losses=((1/E_f)-1)*Output\n",
"E_f=0.9 #Efficiency of the two winding transformer\n",
"P_f2=0.85 #New power factor of the two einding transformer\n",
"O_p1=KVA_t*1000*P_f2 #Output of the two winding transformer\n",
"L=((1/E_f)-1)*O_p1 #losses in a 2-winding transformer\n",
"#Losses in auto transformer=losses in 2-winding transformer\n",
"O_P=KVA_r*1000*P_f2 #output of the auto transformer\n",
"E_F=(O_P/(O_P+L))*100 #Efficiency of the auto transformer(in %)\n",
"print 'Efficiency of the auto transformer = %0.2f %%'%E_F\n",
"# Answer wrong in the textbook."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"KVA transformed = 25.00 kVA\n",
"Power transformed = 20.00 kW\n",
"Power conducted = 200.00 kW\n",
"Efficiency of the auto transformer = 99.00 %\n"
]
}
],
"prompt_number": 81
}
],
"metadata": {}
}
]
}
|