1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
|
{
"metadata": {
"name": "",
"signature": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter2 - DC Machines"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.3 page 60"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"#Caption:Find the current per path of armature\n",
"\n",
"I_a=200 #rated armature current(in Amp)\n",
"P=12 #number of poles in machine\n",
"A_1=2 #number of parallel paths with wave winding\n",
"A_2=P #number of parallel paths with lap winding\n",
"I_1=I_a/A_1 #current per path in case of wave winding(in Amp)\n",
"print 'current per path in case of wave winding = %0.2f A'%I_1\n",
"I_2=I_a/A_2 #current per path in case of lap winding(in Amp)\n",
"print 'current per path in case of lap winding = %0.2f A'%I_2"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"current per path in case of wave winding = 100.00 A\n",
"current per path in case of lap winding = 16.67 A\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.4 page 60"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate the induced emf in machine \n",
"N_1=500 #starting speed of machine(in rpm)\n",
"E_1=200 #emf of the machine at N_1 (in V)\n",
"N_2=600 #new speed of machine(in rpm)\n",
"E_2=E_1*N_2/N_1 #emf of the machine atN_2 (in V)\n",
"print 'induced emf while the machine is running at 600 rpm = %0.2f V '%E_2 "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"induced emf while the machine is running at 600 rpm = 240.00 V \n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.5 page 61"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:calculate the generated emf\n",
"S_1=80 #Number of armature slots \n",
"S_2=6 #Number of conductor per slot\n",
"Z=S_1*S_2 #Number of armature conductors\n",
"F=50 #Flux per pole(in mWb)\n",
"F_1=F*10**-3 #(in Wb)\n",
"P=6 #Number of poles\n",
"A=P #Number of parallel paths\n",
"N=1200 #armature speed(in rpm)\n",
"E_g=F_1*Z*N*P/(60*A) #EMF generated in 6 pole lap wound dc generator (in Volts)\n",
"print 'EMF generated in 6 pole lap wound dc generator = %0.2f V'%E_g"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"EMF generated in 6 pole lap wound dc generator = 480.00 V\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.6 page 61"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate the voltage generated in 4 pole generator\n",
"\n",
"S_1=51 #Number of slots \n",
"S_2=20 #Number of conductor per slot\n",
"Z=S_1*S_2 #number of armature conductors\n",
"F=7 #flux per pole(in mWb) \n",
"F_1=F*10**-3 #flux per pole(in Wb)\n",
"P=4 #Number of poles\n",
"A=2 #Number of parallel paths (armature is wave wound)\n",
"N=1500 #speed of the machine(in rpm)\n",
"E_g=F_1*Z*N*P/(60*A) #generated emf\n",
"print 'voltage generated in machine = %0.2f V'%E_g"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"voltage generated in machine = 357.00 V\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.7 page 61"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Find out the speed for 6 pole machine \n",
"F=60 #flux per pole(in m Wb)\n",
"F_1=F*10**-3 #flux per pole(in Wb)\n",
"Z=480 #Number of armature conductors\n",
"P=6 #Number of poles\n",
"A=2 #Number of parallel paths(Armature wave wound)\n",
"E_g=320 #generated emf (in V)\n",
"N=E_g*60*A/(F_1*Z*P) #speed(in rpm)\n",
"print 'speed of the machine = %0.2f rpm '%N "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"speed of the machine = 222.22 rpm \n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.8 page 62"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import ceil\n",
"#Caption:calculate the suitable number of conductor per slot hence determine the actual value of flux\n",
"\n",
"F_1=0.05 #flux per pole(in Wb )\n",
"N=350 #speed(in rpm)\n",
"P=8 #no of poles\n",
"A=P #no of parallel path\n",
"E_g=240 #voltage generated (in V)\n",
"Z_1=E_g*60*A/(F_1*N*P) #total no of armature conductor required\n",
"C_s=ceil(Z_1/120) #number of conductor per slot\n",
"print 'number of conductor per slot =' ,C_s\n",
"A_s=120 #armature slots \n",
"Z_2=A_s*C_s #total conductors in armature slot\n",
"F_2=E_g*60*A/(N*Z_2*P) #Actual value of flux(in Wb)\n",
"print 'Actual value of flux = %0.4f Wb '%F_2 "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"number of conductor per slot = 7.0\n",
"Actual value of flux = 0.0490 Wb \n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.9 page 62"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate the emf if the speed is 1500 rpm\n",
"\n",
"P=8 #Number of poles\n",
"F=2 #flux per pole (in mWb)\n",
"F_1=2*10**-2 #flux per pole (in Wb)\n",
"Z=960 #number of conductor\n",
"A=P #Number of parallel paths(lap winding)\n",
"N=1500 #speed (in rpm)\n",
"E_g=P*F*1e-2*Z*N/(60*A) #emf generated (in Volts)\n",
"print 'emf generated = %0.f V'%E_g"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"emf generated = 480 V\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.10 page 63"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate the increase of main field flux in percentage\n",
"\n",
"N_1=750 #speed of dc machine(in rpm)\n",
"E_1=220 #induced emf in dc machine when running at N_1\n",
"N_2=700 #speed of dc machine second time (in rpm)\n",
"E_2=250 #induced emf in dc machine when running at N_2\n",
"F=E_2*N_1/(E_1*N_2) \n",
"Inc=(F-1) \n",
"print 'increase in main field flux of the dc machine = %0.2f %%'%(Inc*100) "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"increase in main field flux of the dc machine = 21.75 %\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.11 page 63"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#caption: a)find the emf generated in a 6 pole machine b)find speed at which machine generated 550 V emf\n",
"\n",
"F_1=0.06 #Flux per pole(in Wb)\n",
"N_1=250 #speed of the rotor(in rpm)\n",
"A=2 #number of parllel (paths armature wave wound)\n",
"P=6 #poles in machine\n",
"Z=664 #total conductor in machine\n",
"E_g=P*F_1*N_1*Z/(60*A) #emf generated\n",
"print 'emf generated in machine = %0.2f V'%E_g\n",
"E_2=550 #new emf generating machine(in V)\n",
"F_2=0.058 #flux per pole (in Wb) for generating E_2\n",
"N_2=60*E_2*A/(P*F_2*Z) #new speed at which machine generating E_2(in rpm)\n",
"print 'new speed of the rotor = %0.2f rpm '%N_2 "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"emf generated in machine = 498.00 V\n",
"new speed of the rotor = 285.63 rpm \n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.12 page 66"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption :determine the value of torque in Nw-m\n",
"\n",
"F=24 #flux per pole (in m Wb)\n",
"F_1=F*10**-3 #flux per pole (in Wb)\n",
"Z=760 #number of conductors in armature\n",
"P=4 #number of pole\n",
"A=2 #number of parallel paths\n",
"I_a=50 #armature cuurrent(in Amp)\n",
"T_a=0.159*F_1*Z*P*I_a/A #torque develope(in Nw-m)\n",
"print 'torque developed in machine = %0.f Nw-m '%T_a "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"torque developed in machine = 290 Nw-m \n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.13 page 67"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption: calculate the total torque in Nw-m\n",
"\n",
"P=6 #poles \n",
"A=P #number of parallel paths\n",
"S=60 #slots in motor\n",
"C_s=12 #conductor per slot\n",
"Z=S*C_s #total conductor in machine\n",
"I_a=50 #armature current(in Amp)\n",
"F_1=20#flux per pole(in m Wb)\n",
"F_2=F_1*10**-3 #flux per pole)(in Wb)\n",
"T=0.15924*F_2*Z*P*I_a/A #total torque (in Nw-m)\n",
"print 'total torque by motor = %0.2f Nw-m '%T"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"total torque by motor = 114.65 Nw-m \n"
]
}
],
"prompt_number": 22
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.14 page 67"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate the drop in speed when motor takes 51 Amp\n",
"\n",
"V=220 #supply voltage(in V)\n",
"R_sh=220 #shunt field resistance(in Ohm)\n",
"R_a=0.2 #armature resistance(in Ohm)\n",
"I_sh=V/R_sh #shunt field current(in Amp)\n",
"N_1=1200 #starting speed of the motor(in rpm)\n",
"I_1=5.4 #at N_1 speed current in motor(in Amp)\n",
"I_a1=I_1-I_sh #armature current at speed N_1(in Amp)\n",
"E_b1=V-I_a1*R_a #emf induced due to I_a1(in V)\n",
"I_2=51 #new current which motor taking(in Amp)\n",
"I_a2=I_2-I_sh #armature current at I_2(in Amp)\n",
"E_b2=V-I_a2*R_a #emf induced due to I_a2(in V)\n",
"N_2=E_b2*N_1/E_b1 #speed of the motor when taking I_2 current(in rpm)\n",
"N_r=ceil(N_1-N_2) #reduction in speed(in rpm)\n",
"print 'reduction in speed = %0.2f rpm '%N_r "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"reduction in speed = 50.00 rpm \n"
]
}
],
"prompt_number": 23
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.15 page 68"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:In a dc machine Calculate (a)induced emf (b)Electro magnetic torque (c)armature copper loss \n",
"\n",
"V=220 #voltage at the armature of dc motor\n",
"I_a=15 #current through armature(in Amp)\n",
"R_a=1 #armature resistance(in Ohm)\n",
"w=100 #speed of the machine(in radian/sec)\n",
"E=V-I_a*R_a #induced emf(in V)\n",
"print 'induced emf = %0.2f V '%E \n",
"T=E*I_a/w #electro magnentic torque developed(in Nw-m)\n",
"print 'electro magnentic torque developed = %0.2f Nw-m '%T \n",
"L=(I_a**2)*R_a #Armature copper loss(in Watt)\n",
"print 'Armature copper loss = %0.2f Watt' %L"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"induced emf = 205.00 V \n",
"electro magnentic torque developed = 30.75 Nw-m \n",
"Armature copper loss = 225.00 Watt\n"
]
}
],
"prompt_number": 75
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.16 page 69"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate the electro magnetic torque\n",
"\n",
"E=250 #emf induced in dc machine(in V)\n",
"I_a=20 #current flowing through the armature(in Amp)\n",
"N=1500 #speed(in rpm)\n",
"T_e=0.1591*E*I_a*60/N #torque developed in machine(in Nw-m)\n",
"print 'electro magnetic torque developed in dc machine = %0.2f Nw-m '%T_e "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"electro magnetic torque developed in dc machine = 31.82 Nw-m \n"
]
}
],
"prompt_number": 24
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.17 page 69"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:calculate the gross torque in dc machine\n",
"\n",
"P=4 #number of poles \n",
"Z=1600 #number of armature conductor\n",
"F=0.027 #flux per pole(in Wb)\n",
"A=2 #number of parallel paths (wave wound)\n",
"I=75 #current in machine(in Amp)\n",
"N=1000 #speed of the motor(in rpm)\n",
"T=0.1591*P*F*Z*I/A #torque generate in machine(in Nw-m)\n",
"print 'Torque generated in machine = %0.2f Nw-m '%T "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Torque generated in machine = 1030.97 Nw-m \n"
]
}
],
"prompt_number": 25
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.18 page 75"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate the value of back emf\n",
"\n",
"V=230 #applied voltage (in V)\n",
"R_a=0.1 #armature resistance(in Ohm)\n",
"I_a=60 #armature current (in Amp)\n",
"E_b=V-I_a*R_a #back emf(in Volts)\n",
"print 'back emf produced by machine = %0.2f V '%E_b "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"back emf produced by machine = 224.00 V \n"
]
}
],
"prompt_number": 27
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.19 page 75"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Capyion:find the change in back emf from no load to load\n",
"\n",
"V=220 #given voltage to machine(in V)\n",
"R_a=0.5 #armature circuit resistance(in ohm)\n",
"I_1=25 #full load armature current(in Amp)\n",
"I_2=5 #no load armature current(in Amp)\n",
"E_1=V-I_1*R_a #back emf at full load(in V)\n",
"E_2=V-I_2*R_a #back emf at no load(in V)\n",
"E=E_2-E_1 #change in back emf no load to load\n",
"print 'change in back emf from no load to load = %0.2f Volts '%E "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"change in back emf from no load to load = 10.00 Volts \n"
]
}
],
"prompt_number": 28
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.20 page 76\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption: Determine the back emf in dc shunt motor\n",
"\n",
"V=220 #voltage(in V)\n",
"R_a=0.7 #Armature resistance(in Ohm)\n",
"R_f=200 #field resistant(in Ohm)\n",
"P_1=8*10**3 #motor output power(in Watt)\n",
"P_2=8*10**3/0.8 #motor input power(in Watt)\n",
"I_m=P_2/V #motor input current(in Amp)\n",
"I_sh=V/R_f #shunt field current (in Amp)\n",
"I_a=I_m-I_sh #Armature current(in Amp)\n",
"E_b=V-I_a*R_a #Back emf (in V)\n",
"print 'Back emf produced in motor = %0.2f Volts '%E_b "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Back emf produced in motor = 188.95 Volts \n"
]
}
],
"prompt_number": 29
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:21 page 76"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption :Determine the total armature power developed when working as a)Generator b)motor\n",
"\n",
"P=25*10**3 #output generator power(in Watt)\n",
"V=250 #output generator voltage(in V)\n",
"R_f=125 #field resistance(in Ohm)\n",
"R_a=0.05 #armature resistance(in Ohm)\n",
"I_sh=V/R_f #shunt field current(in Amp)\n",
"#IN case of generator\n",
"I_o=P/V #output generator current(in Amp)\n",
"I_a1=I_o+I_sh #armature current for a generator(in Amp)\n",
"E_a1=250+I_a1*R_a #generated emf in armature(in V)\n",
"P_a1=E_a1*I_a1 #generated power in armature when working as a generator(in Watt)\n",
"P_g=P_a1*10**-3 #generated power in armature when working as a generator(in kW)\n",
"print 'power developed in armature when working as a generator = %0.2f kW '%P_g \n",
"#IN case of motor\n",
"I_in=P/V #motor input current(in Amp)\n",
"I_a2=I_in-I_sh #armature current for a motor(in Amp)\n",
"E_a2=250-I_a2*R_a #generated emf in armature when working as a motor(in V)\n",
"P_a2=E_a2*I_a2 #generated power in armature when working as a motor(in Watt)\n",
"P_m=P_a2*10**-3 #generated power in armature when working as a motor(in KW)\n",
"print 'power developed in armature when working as a motor = %0.2f kW '%P_m "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"power developed in armature when working as a generator = 26.02 kW \n",
"power developed in armature when working as a motor = 24.02 kW \n"
]
}
],
"prompt_number": 30
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.22 page 83"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption :Calculated power developed in armature when machine running as (a)Generator (b)Motor\n",
"\n",
"V=250 #line voltage(in V)\n",
"R_sh=125 #shunt field resistance(in Ohm)\n",
"I_sh=V/R_sh #shunt field current(in Amp)\n",
"I_l=80 #line current(in Amp)\n",
"R_a=0.1 #armature resistance(in Ohm)\n",
"#As A Generator\n",
"I_a1=I_l+I_sh #armature current in generator(in Amp)\n",
"E_g=V+I_a1*R_a #generated emf(in V)\n",
"P_1=E_g*I_a1*10**-3 #power developed in armature (in KW)\n",
"print 'power developed in armature when machine running as a generator = %0.2f kW '%P_1 \n",
"#As A Motor\n",
"I_a2=I_l-I_sh #armature current in motor(in Amp)\n",
"E_b=V-I_a2*R_a #back emf in motor(in V)\n",
"P_2=E_b*I_a2*10**-3 #power developed in armature (in KW)\n",
"print 'power developed in armature when machine running as a Motor = %0.2f kW'%P_2 "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"power developed in armature when machine running as a generator = 21.17 kW \n",
"power developed in armature when machine running as a Motor = 18.89 kW\n"
]
}
],
"prompt_number": 31
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.23 page 83"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculated speed of the motor when the current is 10 Amp\n",
"\n",
"V=230 #supply voltage(in V)\n",
"R_a=0.8 #armature resistance(in Ohm)\n",
"R_f=0.8#field resistance(in Ohm)\n",
"I_1=20 #dc motor taking current from supply(in Amp)\n",
"E_1=V-R_a*I_1 #emf generated due to I_1(in V)\n",
"N_1=600 #speed of the motor due to I_1\n",
"I_2=10 #current(in Amp) at which speed of the motor need to calculate\n",
"E_2=V-R_a*I_2 #emf generated due to I_2(in Volts)\n",
"N_2=E_2*I_1*N_1/(E_1*I_2) #speed of the motor when machine drawing 10(in Amp) current\n",
"print 'speed of the motor when machine drawing 10 Amp current = %0.0f rpm '%N_2 "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"speed of the motor when machine drawing 10 Amp current = 1245 rpm \n"
]
}
],
"prompt_number": 33
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.24 page 84"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Percentage change in speed of a d.c. motor\n",
"\n",
"V=240 #supply voltage(in V)\n",
"R_a=0.5 #armature resistance(in Ohm)\n",
"I_1=100 #armature current (in Amp)\n",
"I_2=50 #changed armature current(in Amp)\n",
"E_1=V-R_a*I_1 #induced emf(in V)\n",
"E_2=V-R_a*I_2 #changed induced emf due to I_2\n",
"#flux per pole is constant\n",
"N_r=E_2/E_1 #ratio of speed in machine due to voltage change\n",
"N_rp=(N_r-1)*100 #Percentage change in speed of d.c. motor\n",
"print 'Percentage change in speed of d.c. motor =',round(N_rp ,2)\n",
"# Answer wrong in the textbook."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Percentage change in speed of d.c. motor = 13.16\n"
]
}
],
"prompt_number": 50
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.25 page 100"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Find the speed at which motor will run when connected in series with a 4 Ohm resistance\n",
"\n",
"V=200 #supply voltage (in V)\n",
"R_m=1 #motor resistance b/w terminals(in Ohm)\n",
"I_1=15 #motor input current(in Amp)\n",
"N_1=800 #speed of the motor (in rpm)\n",
"E_1=V-(I_1*R_m) #back emf developed(in V)\n",
"R=4 #resistance connected in series with motor (in Ohm)\n",
"I_2=I_1 #when resistance of 4 Ohm connected in series with the motor ,motor input current is same\n",
"E_2=V-I_2*(R_m+R) #back emf developed when R connected in series with motor(in V)\n",
"N_2=E_2*N_1/E_1 #speed of the motor when it connected in series with a 4 Ohm resistance(in rpm)\n",
"print 'speed of the motor when it connected in series with a 4 Ohm resistance = %0.1f rpm '%N_2 "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"speed of the motor when it connected in series with a 4 Ohm resistance = 540.5 rpm \n"
]
}
],
"prompt_number": 52
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.26 page 100"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Determine the speed when armature current is 75 Amp and the excitation is increased by 15 %\n",
"\n",
"V=220 #supply voltage(in V)\n",
"R_a=0.03 #armature resistance(in Ohm)\n",
"R_se=0.07 #field resistance(in Ohm)\n",
"I_a1=40 #armature current in first case(in Amp)\n",
"N_1=900 #motor running speed at 40 Amp armature current(in rpm)\n",
"E_1=V-I_a1*(R_a+R_se) #induced emf due to 40 Amp armature current (in V)\n",
"I_a2=75 #armature current in second case(in Amp)\n",
"E_2=V-I_a2*(R_a+R_se) #induced emf due to 75 Amp armature current (in V)\n",
"#Flux is F_1 when I_a1 and F_2 when I_a2. F_2=1.15*F_1 because Excitation is increased by 15% so F=(F_1/F_2)\n",
"F=1.15 #Ratio of F_2/F_1\n",
"N_2=ceil(N_1*E_2/(F*E_1)) #motor speed when armature current is 75 Amp and the excitation is increased by 15 %(in rpm)\n",
"print 'motor speed when armature current is 75 Amp and the excitation is increased by 15 %% = %0.2f rpm'%N_2 "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"motor speed when armature current is 75 Amp and the excitation is increased by 15 % = 770.00 rpm\n"
]
}
],
"prompt_number": 53
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.27 page 101"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate H.P. is being transmitted by the shaft of motor\n",
"\n",
"V=220 #supply voltage(in V)\n",
"N=900 #running speed of a shunt motor(in rpm)\n",
"T=1000 #torque exerted by motor (in Nw-m)\n",
"w=2*3.14159*N/60 #angular speed(in rad/sec)\n",
"P=w*T #power transmitted (in Watt)\n",
"H_p=P/735.5 #power transmitted in H.P.(metric)\n",
"print 'power transmitted by the shaft of motor = %0.1f H.P.(metric)' %H_p"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"power transmitted by the shaft of motor = 128.1 H.P.(metric)\n"
]
}
],
"prompt_number": 55
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.28 page 102"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate the torque\n",
"\n",
"P_1=70 #power transmitted by the shaft of a motor in H.P(metric)\n",
"P_2=P_1*735.5 #power (in Watts)\n",
"N=500 #speed of the motor(in rpm)\n",
"w=2*3.1416*N/60 #angular speed (in radian/sec)\n",
"T=P_2/w #torque in motor (in Nw-m)\n",
"print 'torque in motor = %0.1f Nw-m '%T "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"torque in motor = 983.3 Nw-m \n"
]
}
],
"prompt_number": 57
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.29 page 102"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Find the speed when the armature takes 70 Amp \n",
"\n",
"V=400 #voltage for a shunt motor (in V)\n",
"R_a=0.2 #armature resistance(in Ohm)\n",
"I_a1=100 #starting armature current(in Amp)\n",
"N_1=1000 #speed of the motor when I_a1 armature current flows in armature\n",
"E_1=V-I_a1*R_a #emf induced at I_a1 armature current (in V)\n",
"I_a2=70 #changed armature current(in Amp)\n",
"E_2=V-I_a2*R_a #emf induced for I_a2 current(in V)\n",
"#flux is constant\n",
"N_2=ceil(E_2*N_1/E_1) #speed of the motor when 70 Amp current flowing through armature\n",
"print 'speed of the motor when 70 Amp current flowing through armature = %0.1f rpm'%N_2 "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"speed of the motor when 70 Amp current flowing through armature = 1016.0 rpm\n"
]
}
],
"prompt_number": 59
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.30 page 103"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:resistance required to be connected in series to reduced speed of machine to 800 rpm (in Ohm)\n",
"\n",
"V=400 #voltage applied across the motor(in V)\n",
"R_sh=100 #shunt resistance of motor(in Ohm)\n",
"I=70 #total current flowing through motor(in Amp)\n",
"I_sh=V/R_sh #current flowing through the shunt resistance(in Amp)\n",
"I_a1=I-I_sh #current flowing through the armature(in Amp)\n",
"R_a1=0.03 #resistance of armature(in Ohm)\n",
"R_se=0.5 #series resistance with armature(in Ohm)\n",
"R_a=R_a1+R_se #total resistance in armature circuit(in Ohm)\n",
"E_1=V-I_a1*R_a #emf induced due to this R_a resistance(in V) \n",
"N_1=900 #given speed of the motor(in r.p.m.)\n",
"N_2=800 #desired speed of the motor(in r.p.m.)\n",
"E_2=E_1*(N_2/N_1) #emf induced due to armature resistance when motor spped is 800(in V)\n",
"R_a2=(400-E_2)/66 #resistance required to be connected in series(in Ohm)\n",
"print 'net resistance of armature which reduce speed of the machine to 800 rpm = %0.3f Ohm '%R_a2 \n",
"R=R_a2-R_a1 #additional resistance required to be connected in series to reduced speed of machine to 800 rpm (in Ohm)\n",
"print 'additional resistance required to be connected in series to reduced speed of machine to 800 rpm = %0.3f Ohm '%R "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"net resistance of armature which reduce speed of the machine to 800 rpm = 1.145 Ohm \n",
"additional resistance required to be connected in series to reduced speed of machine to 800 rpm = 1.115 Ohm \n"
]
}
],
"prompt_number": 62
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.31 page 104"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Motor speed at full load\n",
"\n",
"V=230 #supply voltage\n",
"I_a1=2 #no load current(in Amp)\n",
"N_1=1500 #speed of the motor at no load\n",
"R_a=0.3 #Armature resistance(in Ohm)\n",
"I_a2=50 #full load current(in Amp)\n",
"E_1=V-I_a1*R_a #emf generated at no load\n",
"E_2=V-I_a2*R_a #emf generated at full load\n",
"N_2=(E_2/E_1)*N_1 #full load speed (flux assumed constant)\n",
"print 'D.c. motor speed at full load when flux assumed constant = %0.2f rpm '%ceil(N_2) "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"D.c. motor speed at full load when flux assumed constant = 1406.00 rpm \n"
]
}
],
"prompt_number": 63
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.32 page 104"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:calculate the speed of a d.c. shunt generator when it running as d.c. motor and taking 50 KW power at 250 volt\n",
"\n",
"#calculation when machine is running as generator\n",
"V=250 #applied voltage to d.c. shunt generator\n",
"P_1=50000 #power delivers by d.c. shunt generator at V_1\n",
"N_1=400 #generator running at V_1 ,P_1\n",
"R_a=0.02 #armature resistance(in Ohm)\n",
"R_sh=50 #field resistance(in Ohm)\n",
"I_l=P_1/V #load current(in Amp)\n",
"I_sh=V/R_sh #field current(in Amp)\n",
"I_a1=I_l+I_sh #armature current when machine working as a generator(in Amp)\n",
"C_d=1 #contact drop (in volt per brush)\n",
"E_1=V+I_a1*R_a+2*C_d #induced emf by machine when working as a generator(in V)\n",
"#calculation when machine is running as motor\n",
"I_a2=I_l-I_sh#armature current when machine working as a motor(in Amp)\n",
"E_2=V-I_a2*R_a-2*C_d #induced emf by machine when working as a motor(in V)\n",
"N_2=(E_2/E_1)*N_1 #speed of the machine when running as shunt motor(in r.p.m.)\n",
"print 'speed of the machine when running as shunt motor and taking 50 KW power at 250 volt = %0.2f r.p.m. '%N_2 "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"speed of the machine when running as shunt motor and taking 50 KW power at 250 volt = 381.26 r.p.m. \n"
]
}
],
"prompt_number": 92
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.33 page 105"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate the value of resistance to be connected in series with the armature to reduce the speed to 750 r.p.m.\n",
"\n",
"V=220 #applied voltage to shunt motor(in V)\n",
"I_a1=40 #armature current in first case(in Amp)\n",
"R_a=0.5 #armature circuit resistance(in Ohm)\n",
"N_1=900 #speed of the motor at I_a1 (in rpm)\n",
"E_b1=V-I_a1*R_a #emf generated in armature circuit due to I_a1(in V)\n",
"N_2=750 #desired motor speed (in rpm)\n",
"I_a2=30 #armature current in case of N_2 motor speed(in Amp)\n",
"E_b2=(N_2/N_1)*E_b1 #emf generated in second case when motor speed is N_2\n",
"#R resistance added in series with the armature circuit to reduced the speed of motor \n",
"R=(205-E_b2)/30 #resistance added in series with the armature circuit to reduced the speed of motor\n",
"print 'resistance added in series with the armature circuit to reduced the speed of motor = %0.2f Ohm '%R "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"resistance added in series with the armature circuit to reduced the speed of motor = 1.28 Ohm \n"
]
}
],
"prompt_number": 64
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.34 page 106"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:what resistance should be placed in series with armature to reduced the speed of the motor to 700 rpm\n",
"\n",
"V=220 #applied voltage to shunt motor(in V)\n",
"R_a=0.3 #armature circuit resistance(in Ohm)\n",
"I_a=15 #armature current(in Amp)\n",
"E_b1=V-I_a*R_a #emf generated in armature circuit(in V)\n",
"N_1=1000 #motor speed when E_b1 generated(in rpm) \n",
"N_2=700 #desired motor speed (in rpm)\n",
"E_b2=(N_2/N_1)*E_b1 #emf generated in second case when motor speed is N_2\n",
"R=(215.5-E_b2)/15 #resistance added in series with the armature circuit to reduced the speed of motor (in Ohm)\n",
"print 'resistance added in series with the armature circuit to reduced the speed of motor = %0.2f Ohm '%R "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"resistance added in series with the armature circuit to reduced the speed of motor = 4.31 Ohm \n"
]
}
],
"prompt_number": 65
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.35 page 107"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:In a shunt motor find the resistance required in series with the armature circuit to reduce the speed of motor by 50 percent\n",
"\n",
"I_a1=40 #Armature current(in Amp)\n",
"R_a=0.6 #Armature circuit resistance(in Ohm)\n",
"#T_1/T_2=I_a1/I_a2 \n",
"#T_1=T_2\n",
"V=220 \n",
"I_a2=I_a1 #current when speed reduced 50%\n",
"E_b1=V-(R_a*I_a1) #emf induced in circuit\n",
"N_r=0.5 #Ratio of speed (N_2/N_1)\n",
"#E_b2=V-I_a2*R\n",
"#R is a total armature resistance in the second case\n",
"#N_2/N_1=E_b2/E_b1\n",
"#N_r=(V-I_a2*R)/E_b1\n",
"R=(V-(N_r*E_b1))/I_a2-R_a #the resistance required in series with the armature circuit to reduce the speed of motor 50%\n",
"print 'the resistance required in series with the armature circuit to reduce the speed of motor by 50%% = %0.1f Ohm' % R"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the resistance required in series with the armature circuit to reduce the speed of motor by 50% = 2.4 Ohm\n"
]
}
],
"prompt_number": 75
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.36 page 107"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate the induced emf in a D.C. machine for speed of 600 rpm \n",
"#assuming the flux is constant\n",
"N_1=500 #primary speed of the motor(in rpm)\n",
"E_1=180 #induced emf in d.c. machine when running at N_1 (in V)\n",
"N_2=600 #secondary speed of the motor (in rpm)\n",
"E_2=(N_2/N_1)*E_1 #induced emf in d.c. machine when running at N_2 (in V)\n",
"print 'the emf induced in a D.C. machine when machine running at 600 rpm speed = %0.2f V '% E_2 "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the emf induced in a D.C. machine when machine running at 600 rpm speed = 216.00 V \n"
]
}
],
"prompt_number": 76
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.37 page 108"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:In a dc machine calculate speed at which the induced emf will be 250 Volts\n",
"\n",
"E_1=220 #Primary emf(in Volts)\n",
"N_1=750 #Speed of the machine at 220 Volts\n",
"E_2=250 #Secondary emf(in Volts)\n",
"N_2=(E_2/E_1)*N_1 #Speed of the machine at which emf will be 250 Volts\n",
"print 'Speed of the machine at which emf will be 250 Volts = %0.f'%N_2 \n",
"N_3=700 #Speed of the machine when main field flux increase\n",
"E_3=250 #induced emf when flux increase(in Volts)\n",
"F_x=(E_3/E_2)*(N_2/N_3) #Ratio of flux when speed is N_3 and N_2\n",
"F=(F_x-1)*100 #Percentage change in flux for induced emf of 250 Volts and speed 700 rpm(in %)\n",
"print 'Percentage change in flux when induced emf 250 Volts and speed 700 rpm = %0.2f %%'% F "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Speed of the machine at which emf will be 250 Volts = 852\n",
"Percentage change in flux when induced emf 250 Volts and speed 700 rpm = 21.75 %\n"
]
}
],
"prompt_number": 78
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.38 page 109"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate induced emf when running at speed of 1380 rpm.\n",
"\n",
"P=4 #Poles in d.c. machine\n",
"Z=594 #number of conductor in d.c. machine\n",
"F=0.0075 #flux per pole(in Wb)\n",
"N=1380 #speed of the motor\n",
"A=2 #number of parallel paths \n",
"E=P*F*N*Z/(60*A) #emf generated in machine when running at speed of 1380 rpm.\n",
"print 'emf generated in machine when running at speed of 1380 rpm = %0.2f V '%ceil(E) "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"emf generated in machine when running at speed of 1380 rpm = 205.00 V \n"
]
}
],
"prompt_number": 79
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.39 page 109"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate the speed and calculate the electro magnetic torque.\n",
"\n",
"V_1=230 #supply voltage(in V)\n",
"I_a1=100 #motor taking current from supply(in Amp)\n",
"N_1=600 #speed of the motor when I_a1 current taking from supply(in rpm)\n",
"R_a=0.12 #resistance of armature circuit(in Ohm)\n",
"R_f=0.03 #resistance of series winding(in Ohm)\n",
"R=R_a+R_f #total resistance(in Ohm)\n",
"I_a2=50 #desired current of the motor\n",
"E_1=V_1-I_a1*R #emf induced when current I_a1 flowing\n",
"E_2=V_1-I_a2*R #emf induced when current I_a2 flowing\n",
"N_2=(E_2/E_1)*(I_a1/I_a2)*N_1 #speed of the motor when 50 Amp current taking from supply(in rpm)\n",
"print 'speed of the motor when 50 Amp current taking from supply = %0.2f rpm '%N_2 \n",
"T_1=E_1*I_a1*60/(2*3.14*N_1) #electro-magnetic torque generated when motor running at 600 rpm(in Nw-m)\n",
"print 'electro-magnetic torque generatedwhen motor running at 600 rpm = %0.2f Nw-m '%T_1 \n",
"T_2=E_2*I_a2*60/(2*3.14*N_2) #electro-magnetic torque generated in second case(in Nw-m)\n",
"print 'electro-magnetic torque generated in second case = %0.2f Nw-m '%T_2\n",
"# Answer in the textbok are not accurate."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"speed of the motor when 50 Amp current taking from supply = 1241.86 rpm \n",
"electro-magnetic torque generatedwhen motor running at 600 rpm = 342.36 Nw-m \n",
"electro-magnetic torque generated in second case = 85.59 Nw-m \n"
]
}
],
"prompt_number": 81
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.40 page 110"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:What resistance must be inserted in series with the armature to reduce the speed to 500 rpm\n",
"\n",
"V=250 #applied voltage to a shunt motor(in V)\n",
"I_a=20 #armature current(in Amp)\n",
"R_a=0.5 #armature resistance(in Ohm)\n",
"N_1=1000 #speed of the motor due to these readings(in rpm)\n",
"E_1=V-I_a*R_a #emf induced in machine(in V)\n",
"N_2=500 #desired speed of the motor(in rpm)\n",
"E_2=(N_2/N_1)*E_1 #emf in case of motor speed N_2\n",
"#R_1 additional resistance added to reduce the speed to 500 rpm\n",
"R_1=(V-E_2)/I_a-R_a #resistance applied in series with armature to reduce the speed to 500 rpm\n",
"print 'resistance applied in series with armature to reduce the speed to 500 rpm = %0.2f Ohm '%R_1 \n",
"# Answer wrong in the textbook."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"resistance applied in series with armature to reduce the speed to 500 rpm = 6.00 Ohm \n"
]
}
],
"prompt_number": 83
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.41 page 129"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Determine the torque in Kgm.,H.P. & efficiency of the motor.\n",
"\n",
"W_1=75 #load on one side of the brake(in Kg)\n",
"W_2=5 #load on other side of the brake(in Kg)\n",
"W=W_1-W_2 #effective force(in Kg)\n",
"R=1 #radius of the brake pulley (in m)\n",
"T=W*R #torque(in Kg-m)\n",
"N=1200 #speed of the small shunt motor(in rpm)\n",
"H=(2*3.14)*(N*T)/33000 #torque in H.P.\n",
"print 'torque = %0.2f H.P. '% H \n",
"H_P=735.5 #value of one H.P.\n",
"O_p=H*H_P #output power(in Watt)\n",
"I_c=80 #input current(in Amp)\n",
"V=250 #input voltage(in V)\n",
"I_p=I_c*V #input power(in Watt)\n",
"E=(O_p/I_p)*100 #efficiency of the motor\n",
"print 'efficiency of the motor = %0.2f %%'%E \n",
"# 2nd part Answer wrong in the textbook."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"torque = 15.99 H.P. \n",
"efficiency of the motor = 58.79 %\n"
]
}
],
"prompt_number": 86
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.42 page 129\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Determine the torque in Kgm.,output in Watts & efficiency of the motor.\n",
"\n",
"W_1=40 #load on one side of the brake(in Kg)\n",
"W_2=5 #load on other side of the brake(in Kg)\n",
"W=W_1-W_2 #effective force(in Kg)\n",
"R=0.5 #radius of the brake pulley (in m)\n",
"T=W*R #torque(in Kg-m)\n",
"N=1500 #speed of the small shunt motor(in rpm)\n",
"O=(2*3.14)*(N*T)/60 #output (in Kg-m/sec)\n",
"O_p=O*9.81 #output (in watts)\n",
"print 'output = %0.2f watts'%ceil(O_p) \n",
"I_c=80 #input current(in Amp)\n",
"V=400 #input voltage(in V)\n",
"I_p=I_c*V #input power(in Watt)\n",
"E=(O_p/I_p)*100 #efficiency of the motor\n",
"print 'efficiency of the motor = %0.1f %%'%E "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"output = 26953.00 watts\n",
"efficiency of the motor = 84.2 %\n"
]
}
],
"prompt_number": 88
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.43 page 129"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate the efficiency of the motor\n",
"\n",
"W=10 #Spring reading (in Kg)\n",
"R=0.8 #brake arm length (in m)\n",
"T=W*R #torque (in kg-m)\n",
"N=1200 #speed of the small shunt motor(in rpm)\n",
"O=(2*3.14)*(N*T)/60 #output (in Kg-m/sec)\n",
"O_p=O*9.81 #output (in watts)\n",
"V=250 #input voltage(in V)\n",
"I=50 #input current(in Amp)\n",
"I_p=V*I #input power(in watts)\n",
"E=(O_p/I_p)*100 #efficiency of the motor\n",
"print 'efficiency of the motor = %0.2f %%'%E "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"efficiency of the motor = 78.86 %\n"
]
}
],
"prompt_number": 89
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.44 page 130"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Estimate the output and efficiency of a shunt motor when the input current is 20Amp and 100Amp\n",
"\n",
"V=500 #applied voltage(in V)\n",
"R_sh=500 #field resistance (in Ohm)\n",
"R_a=0.2 #armature resistance(in Ohm)\n",
"I_o=4 #no load current (in Amp)\n",
"I_sh=V/R_sh #field current(in Amp)\n",
"I_a=I_o-I_sh #armature current(in Amp)\n",
"L_cf=V*I_sh #copper losses in field(in watts)\n",
"L_ca=(I_a**2)*R_a #copper losses in armature(in watts)\n",
"L_tc=L_cf+L_ca #total copper losses\n",
"L_t=V*I_o #input power to motor on no load(in watts)\n",
"L_m=L_t-L_tc #iron & mechanical losses(in watts)\n",
"L_c=L_m+L_cf #constant losses(in watts)\n",
"#(a) when input current is 20 Amp\n",
"I_l1=20 #input current(in Amp)\n",
"I_a1=I_l1-I_sh #armature current when I_l1 input current(in Amp)\n",
"L_ca1=(I_a1**2)*R_a #copper losses in armature when I_l1 input current(in watts)\n",
"L_T1=L_c+L_ca1 #total losses at this load(in watts)\n",
"I_p=V*I_l1 #input power(in watts)\n",
"O_p1=I_p-L_T1 #output power when input current is 20 Amp(in watts)\n",
"print 'output power when input current is 20 Amp = %0.2f Watts '%O_p1 \n",
"E_1=(O_p1/I_p)*100 #efficiency of the shunt motor when input current is 20 Amp\n",
"print 'efficiency of the shunt motor when input current is 20 Amp = %0.3f %%'%E_1 \n",
"#(b) when input current is 100 Amp\n",
"I_l2=100 #input current(in Amp)\n",
"I_a2=I_l2-I_sh #armature current when I_l2 input current(in Amp)\n",
"L_ca2=(I_a2**2)*R_a #copper losses in armature when I_l2 input current(in watts)\n",
"L_T2=L_c+L_ca2 #total losses at this load(in watts)\n",
"I_p=V*I_l2 #input power(in watts)\n",
"O_p2=I_p-L_T2 #output power when input current is 100 Amp(in watts)\n",
"print 'output power when input current is 100 Amp = %0.2f Watts '%O_p2 \n",
"E_2=(O_p2/I_p)*100 #efficiency of the shunt motor when input current is 100 Amp\n",
"print 'efficiency of the shunt motor when input current is 100 Amp = %0.2f %%'%E_2 "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"output power when input current is 20 Amp = 7929.60 Watts \n",
"efficiency of the shunt motor when input current is 20 Amp = 79.296 %\n",
"output power when input current is 100 Amp = 46041.60 Watts \n",
"efficiency of the shunt motor when input current is 100 Amp = 92.08 %\n"
]
}
],
"prompt_number": 91
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.45 page 131"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate the motor output, H.P. and efficiency when the total current taken from the mains is 35 Amp\n",
"\n",
"V=230 #applied voltage(in V)\n",
"R_sh=230 #field resistance (in Ohm)\n",
"R_a=0.3 #armature resistance(in Ohm)\n",
"I_o=2.5 #no load current (in Amp)\n",
"I_sh=V/R_sh #field current(in Amp)\n",
"I_a=I_o-I_sh #armature current(in Amp)\n",
"L_cf=V*I_sh #copper losses in field(in watts)\n",
"L_ca=(I_a**2)*R_a #copper losses in armature(in watts)\n",
"L_tc=L_cf+L_ca #total copper losses\n",
"L_t=V*I_o #input power to motor on no load(in watts)\n",
"L_m=L_t-L_tc #iron & mechanical losses(in watts)\n",
"L_c=L_m+L_cf #constant losses(in watts)\n",
"# when input current is 35 Amp(On load condition)\n",
"I_l=35 #input current(in Amp)\n",
"I_a1=I_l-I_sh #armature current when I_l input current(in Amp)\n",
"L_ca1=(I_a1**2)*R_a #copper losses in armature when I_l input current(in watts)\n",
"L_T1=L_c+L_ca1 #total losses at this load(in watts)\n",
"I_p=V*I_l #input power(in watts)\n",
"O_p=I_p-L_T1 #output power(in watts)\n",
"print 'output power of motor = %0.3f Watts '%O_p \n",
"Hp=O_p/746 #the shunt motor H.P\n",
"print 'the shunt motor H.P.= %0.2f'%Hp \n",
"E_1=(O_p/I_p)*100 #efficiency of the shunt motor when input current is 35 Amp\n",
"print 'efficiency of the shunt motor when input current is 35 Amp = %0.1f %%'%E_1 "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"output power of motor = 7128.875 Watts \n",
"the shunt motor H.P.= 9.56\n",
"efficiency of the shunt motor when input current is 35 Amp = 88.6 %\n"
]
}
],
"prompt_number": 95
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.46 page 132"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate the full load motor output and its efficiency\n",
"\n",
"V=500 #applied voltage(in V)\n",
"R_sh=250 #field resistance (in Ohm)\n",
"R_a=0.2 #resistance of armature including brushes(in Ohm)\n",
"I_o=5 #no load current (in Amp)\n",
"I_sh=V/R_sh #shunt field current(in Amp)\n",
"I_a=I_o-I_sh #armature current(in Amp)\n",
"L_a=(I_a**2)*R_a #armature brush drop(in watts)\n",
"L_t=V*I_o #input to motor on no load(in watts)\n",
"L_c=L_t-L_a #constant losses(in watts)\n",
"#On full load condition\n",
"I_l=52 #input current(in Amp)\n",
"I_a1=I_l-I_sh #armature current when I_l1 input current(in Amp)\n",
"L_a1=(I_a1**2)*R_a #losses in armature when I_l1 input current(in watts)\n",
"L_T1=L_c+L_a1 #total losses at this load(in watts)\n",
"I_p=V*I_l #input power(in watts)\n",
"O_p=I_p-L_T1 #output power(in watts)\n",
"print 'output of the motor = %0.2f Watts '%O_p \n",
"Hp=O_p/735.5 #the shunt motor H.P\n",
"print 'the shunt motor H.P.= %0.2f' %Hp\n",
"E_1=(O_p/I_p)*100 #efficiency of the full load shunt motor when input current is 52 Amp\n",
"print 'efficiency of the full load shunt motor when input current is 52 Amp = %0.1f %%'%E_1 "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"output of the motor = 23001.80 Watts \n",
"the shunt motor H.P.= 31.27\n",
"efficiency of the full load shunt motor when input current is 52 Amp = 88.5 %\n"
]
}
],
"prompt_number": 98
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.47 page 132"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Determine the input in Watts & efficiency of the generator\n",
"\n",
"O_p=50 #output of a machine (in KW)\n",
"O_p1=50*(10)**3 #output (in watts)\n",
"L_i=4000 #internal losses(in watts)\n",
"I_p=O_p1+L_i #input(in watts)\n",
"print 'input = %0.f Watts '%I_p \n",
"E=(O_p1/I_p)*100 #efficiency of the generator\n",
"print 'efficiency of the generator = %0.2f %%'% E "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"input = 54000 Watts \n",
"efficiency of the generator = 92.59 %\n"
]
}
],
"prompt_number": 100
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.48 page 133"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Determine the internal losses,torque & efficiency of the motor\n",
"\n",
"V=240 #supply voltage(in V)\n",
"I=80 #motor taking current(in Amp)\n",
"Hp=20 #motor giving H.P.\n",
"I_p=V*I #input (in watts)\n",
"O_p=Hp*735.5 #output (in watts)\n",
"L_i=I_p-O_p #internal losses(in watts)\n",
"print 'internal losses in motor = %0.2f Watts '%L_i \n",
"N=1300 #motor speed (in rpm)\n",
"T=O_p*60/(2*3.14*N) #torque generated in motor(in Nw-m)\n",
"print 'torque generated in motor = %0.f Nw-m '% T \n",
"E=(O_p/I_p)*100 #efficiency of the motor\n",
"print 'efficiency of the motor = %0.1f %%' %E"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"internal losses in motor = 4490.00 Watts \n",
"torque generated in motor = 108 Nw-m \n",
"efficiency of the motor = 76.6 %\n"
]
}
],
"prompt_number": 103
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.49 page 133"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Find the copper losses,iron& friction losses and commerical efficiency.\n",
"\n",
"V=250 #supply voltage(in V)\n",
"R_sh=100 #shunt field resistance(in Ohm)\n",
"R_a=0.1 #armature resistance(in Ohm)\n",
"I_sh=V/R_sh #field current(in Amp)\n",
"I_l=197.5 #motor taking current(in Amp)\n",
"I_a=I_l+I_sh #Armature current(in Amp)\n",
"E=V+I_a*R_a #E.M.F generated(in V)\n",
"Hp=80 #motor giving H.P.\n",
"P_m=Hp*735.5 #mechanical power input (in watts)\n",
"P_a=E*I_a #electrical power developed in armature(in watts)\n",
"L_i=P_m-P_a #iron & friction losses(in watts)\n",
"print 'iron & friction losses in motor = %0.2f Watts '%L_i \n",
"O_p=V*I_l #electrical power output\n",
"L_c=P_a-O_p #copper losses(in watts)\n",
"print 'copper losses in a shunt generator = %0.2f Watts '%L_c \n",
"L_t=L_i+L_c #Total losses(in Watts)\n",
"I_p=O_p+L_t #Input(in Watts)\n",
"E_f=(O_p/I_p)*100 #Commerical efficiency\n",
"print 'commerical efficiency = %0.2f %%'%E_f \n",
"# 3rd part Answer wrong in the textbook."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"iron & friction losses in motor = 4840.00 Watts \n",
"copper losses in a shunt generator = 4625.00 Watts \n",
"commerical efficiency = 83.91 %\n"
]
}
],
"prompt_number": 105
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.50 page 134"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Determine Copper losses and total losses and Output and BHP of the motor and efficiency of the motor\n",
"\n",
"V=230 #supply voltage(in V)\n",
"I_l=200 #line current(in Amp)\n",
"I_p=V*I_l #input power (in watts)\n",
"R_sh=50 #shunt field resistance(in Ohm)\n",
"R_a=0.04 #armature resistance (in ohm)\n",
"I_sh=V/R_sh #shunt field currrent(in Amp)\n",
"I_a=I_l-I_sh #armature current(in Amp)\n",
"L_cf=V*I_sh #copper losses in the field(in watts)\n",
"L_ca=(I_a**2)*R_a #copper loses in armature(in watts)\n",
"L_ct=L_cf+L_ca #Total copper losses(in watts)\n",
"print 'copper losses of the motor = %0.2f Watts '%L_ct \n",
"L_s=1500 #Stray losses (in watts)\n",
"L_t=L_ct+L_s #total losses(in watts)\n",
"print 'total losses of the motor = %0.2f Watts '%L_t \n",
"O_p=I_p-L_t #output of the motor(in watts)\n",
"print 'Output of the motor = %0.2f Watts'%O_p \n",
"Bhp=O_p/735.5 #B.H.P. of the motor (in H.P.)\n",
"print 'B.H.P. of the motor = %0.3f H.P. '%Bhp \n",
"E=(O_p/I_p)*100 #efficiency of the motor(in %)\n",
"print 'efficiency of the motor = %0.2f %%'%E "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"copper losses of the motor = 2585.25 Watts \n",
"total losses of the motor = 4085.25 Watts \n",
"Output of the motor = 41914.75 Watts\n",
"B.H.P. of the motor = 56.988 H.P. \n",
"efficiency of the motor = 91.12 %\n"
]
}
],
"prompt_number": 107
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Exam:2.51 page 135"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate the speed and BHP of the motor\n",
"\n",
"V=250 #applied emf(in V)\n",
"R_sh=0.05 #field resistance (in Ohm)\n",
"R_a=0.1 #armature resistance(in Ohm)\n",
"I=80 #motor current(in Amp)\n",
"A_s=240 #armature slots \n",
"C_s=4 #number of conductor per slot\n",
"Z=A_s*C_s #total number of conductor\n",
"E_b=V-I*(R_a+R_sh) #Back emf(in V)\n",
"A=2 #number of parallel paths for wave wound\n",
"P=6 #poles\n",
"F=1.75 #flux per pole (in megalines)\n",
"F_1=1.75*10**-2 #flux per pole (in Wb)\n",
"N=E_b*60*A/(F_1*Z*P) #speed of the motor (in rpm)\n",
"print 'speed of the motor = %0.f rpm '%N \n",
"I_p=V*I #input to the motor(in watts)\n",
"L_c=(I**2)*(R_a+R_sh) #copper losses(in watts)\n",
"L_i=900 #iron and friction losses(in watts)\n",
"L_t=L_c+L_i #total losses(in watts)\n",
"O_p=I_p-L_t #output(in watts)\n",
"BHP=O_p/746 #B.H.P. of the motor\n",
"print 'B.H.P. of the motor = %0.1f H.P'% BHP "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"speed of the motor = 283 rpm \n",
"B.H.P. of the motor = 24.3 H.P\n"
]
}
],
"prompt_number": 111
}
],
"metadata": {}
}
]
}
|