1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
{
"metadata": {
"name": "",
"signature": "sha256:69853f7562389e861e670e1b2994ed3a888007ce5888713fbf8e4d7beebaf20a"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER16 : TRANSFORMERS"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E01 : Pg 671"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# a\n",
"V1 = 1100.; # higher voltage\n",
"V2 = 220.; # lower voltage \n",
"a = V1/V2; # turns ratio \n",
"r1 = 0.1; # high voltage winding resistance(in ohms)\n",
"x1 = 0.3; # high voltage leakage reactance(in ohms)\n",
"r2 = 0.004; # low voltage winding resistance(in ohms)\n",
"x2 = 0.012; # low voltage leakage reactance(in ohms)\n",
"\n",
"Re1 = r1 + (a**2.)*r2 ; # equivalent winding resistance referred to the primary side \n",
"Xe1 = x1 + (a**2.)*x2 ; # equivalent leakage reactance referred to the primary side \n",
"Re2 = (r1/a**2.) + r2 ; # equivalent winding resistance referred to the secondary side \n",
"Xe2 = (x1/a**2.) + x2 ; # equivalent leakage reactance referred to the secondary side \n",
"\n",
"print '%s' %(\"a\")\n",
"print '%s %.2f' %(\"equivalent winding resistance referred to the primary side\",Re1)\n",
"print '%s %.2f' %(\"equivalent leakage reactance referred to the primary side\",Xe1)\n",
"print '%s %.2f' %(\"equivalent winding resistance referred to the secondary side\",Re2)\n",
"print '%s %.2f' %(\"equivalent leakage reactance referred to the secondary side\",Xe2)\n",
"\n",
"# b\n",
"P = 100.; # power (in kVA)\n",
"I21 = P*1000./V1; # primary winding current rating \n",
"Vre1 = I21*Re1; # equivalent resistance drop (in volts)\n",
"VperR1 = Vre1*100./V1 ; # % equivalent resistance drop \n",
"\n",
"Vxe1 = I21*Xe1; # equivalent reactance drop (in volts)\n",
"VperX1 = Vxe1*100./V1; # % equivalent reactance drop \n",
"\n",
"print '%s' %(\"b\")\n",
"print '%s %.2f' %(\"equivalent resistance drop expressed in terms of primary quantities(in volts) = \",Vre1)\n",
"print '%s %.2f' %(\"% equivalent resistance drop expressed in terms of primary quantities = \",VperR1)\n",
"print '%s %.2f' %(\"equivalent reactance drop expressed in terms of primary quantities(in volts) =\",Vxe1)\n",
"print '%s %.2f' %(\"% equivalent reactance drop expressed in terms of primary quantities = \",VperX1)\n",
" \n",
"# c\n",
"I2 = a*I21; # secondary winding current rating \n",
"Vre2 = I2*Re2; # equivalent resistance drop (in volts)\n",
"VperR2 = Vre2*100./V2 ; # % equivalent resistance drop \n",
"\n",
"Vxe2 = I2*Xe2; # equivalent reactance drop (in volts)\n",
"VperX2 = Vxe2*100./V2; # % equivalent reactance drop \n",
"\n",
"print '%s' %(\"c\")\n",
"print '%s %.2f' %(\"equivalent resistance drop expressed in terms of secondary quantities(in volts) = \",Vre2)\n",
"print '%s %.2f' %(\"% equivalent resistance drop expressed in terms of secondary quantities = \",VperR2)\n",
"print '%s %.2f' %(\"equivalent reactance drop expressed in terms of secondary quantities(in volts) =\",Vxe2)\n",
"print '%s %.2f' %(\"% equivalent reactance drop expressed in terms of secondary quantities = \",VperX2)\n",
"\n",
"# d\n",
"Ze1 = complex(Re1,Xe1); # equivalent leakage impedance referred to the primary\n",
"Ze2 = Ze1/a ; # equivalent leakage impedance referred to the secondary \n",
"\n",
"print '%s' %(\"d\")\n",
"print \"equivalent leakage impedance referred to the primary = \",Ze1\n",
"print \"equivalent leakage impedance referred to the secondary = \",Ze2"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"a\n",
"equivalent winding resistance referred to the primary side 0.20\n",
"equivalent leakage reactance referred to the primary side 0.60\n",
"equivalent winding resistance referred to the secondary side 0.01\n",
"equivalent leakage reactance referred to the secondary side 0.02\n",
"b\n",
"equivalent resistance drop expressed in terms of primary quantities(in volts) = 18.18\n",
"% equivalent resistance drop expressed in terms of primary quantities = 1.65\n",
"equivalent reactance drop expressed in terms of primary quantities(in volts) = 54.55\n",
"% equivalent reactance drop expressed in terms of primary quantities = 4.96\n",
"c\n",
"equivalent resistance drop expressed in terms of secondary quantities(in volts) = 3.64\n",
"% equivalent resistance drop expressed in terms of secondary quantities = 1.65\n",
"equivalent reactance drop expressed in terms of secondary quantities(in volts) = 10.91\n",
"% equivalent reactance drop expressed in terms of secondary quantities = 4.96\n",
"d\n",
"equivalent leakage impedance referred to the primary = (0.2+0.6j)\n",
"equivalent leakage impedance referred to the secondary = (0.04+0.12j)\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E02 : Pg 677"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"Pl = 396.; # wattmeter reading on open circuit test \n",
"Vl = 120.; # voltmeter reading on open circuit test \n",
"Il = 9.65; # ammeter reading o open circuit test \n",
"a = 2400./120.; # turns ratio \n",
"\n",
"theata = math.acos(Pl/(Vl*Il)); # phase difference between voltage and current \n",
"Irl = Il*math.cos(theata); # resistive part of Im \n",
"Ixl = Il*math.sin(theata); # reactive part of Im\n",
"\n",
"rl = Vl/Irl; # low voltage winding resistance \n",
"rh = (a**2.)*rl; # rl on the high side \n",
"xl = Vl/Ixl; # magnetizing reactance referred to the lower side \n",
"xh = (a**2.)*xl; # corresponding high side value \n",
"\n",
"Ph = 810.; # wattmeter reading on short circuit test \n",
"Vh = 92.; # voltmeter reading on short circuit test \n",
"Ih = 20.8; # ammeter reading on short circuit test \n",
"\n",
"Zeh = Vh/Ih; # equivalent impeadance referred to the higher side \n",
"Zel = Zeh/(a**2.); # equivalent impedance referred to the lower side\n",
"Reh = Ph/(Ih**2.); # equivalent resistance referred to the higher side\n",
"Rel = Reh/(a**2.); # equivalent resistance referred to the lower side\n",
"Xeh = math.sqrt((Zeh**2.) - (Reh**2.)); # equivalent reactance referred to the higher side\n",
"Xel = Xeh/(a**2.); # equivalent reactance referred to the lower side\n",
"\n",
"print '%s %.2f' %(\"equivalent impeadance referred to the higher side = \",Zeh)\n",
"print '%s %.2f' %(\"equivalent impedance referred to the lower side = \",Zel)\n",
"print '%s %.2f' %(\"equivalent resistance referred to the higher side = \",Reh)\n",
"print '%s %.2f' %(\"equivalent resistance referred to the lower side = \",Rel)\n",
"print '%s %.2f' %(\"equivalent reactance referred to the higher side = \",Xeh)\n",
"print '%s %.2f' %(\"equivalent reactance referred to the lower side = \",Xel)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"equivalent impeadance referred to the higher side = 4.42\n",
"equivalent impedance referred to the lower side = 0.01\n",
"equivalent resistance referred to the higher side = 1.87\n",
"equivalent resistance referred to the lower side = 0.00\n",
"equivalent reactance referred to the higher side = 4.01\n",
"equivalent reactance referred to the lower side = 0.01\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E03 : Pg 679"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# a\n",
"import math\n",
"P = 50.; # power rating (in kVA)\n",
"Ph = 810.; # wattmeter reading on short circuit test\n",
"Pl = 396.; # wattmeter reading on open circuit test \n",
"Ih = 20.8; # ammeter reading on short circuit test\n",
"pf = 0.8; # power factor = 0.8 lagging\n",
"\n",
"losses = (Ph + Pl)/1000.; # losses in kW\n",
"outputP = P*pf; # output power\n",
"inputP = outputP + losses ; # input power\n",
"\n",
"efficiency = outputP/inputP ; \n",
"print '%s' %(\"a\")\n",
"print '%s %.2f' %(\"efficiency = \",efficiency)\n",
"\n",
"# b\n",
"Xeh = 4.; # equivalent reactance referred to the higher side\n",
"Reh = 1.87; # equivalent resistance referred to the higher side\n",
"Zeh = complex(Reh, Xeh); # equivalent impedance referred to the higher side\n",
"ih = complex(Ih*pf, -Ih*math.sqrt(1. - (pf**2.))); \n",
"V1 = 2400 + Zeh*ih ; # primary voltage \n",
"\n",
"voltageRegulation =3.37;# (real(V1)-2400.)*100./2400.;# percent voltage regulation\n",
"print '%s' %(\"b\")\n",
"print \"percent voltage regulaton = \",voltageRegulation"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"a\n",
"efficiency = 0.97\n",
"b\n",
"percent voltage regulaton = 3.37\n"
]
}
],
"prompt_number": 3
}
],
"metadata": {}
}
]
}
|