1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
|
{
"metadata": {
"name": "",
"signature": "sha256:7879febd57e90b9a18589786b4cd69033cefdde9f9003a10376af967492a8b6b"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER15 : MAGNETIC CIRCUIT COMPUTATIONS"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E01 : Pg 634"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# a\n",
"import math \n",
"phi = 6.*10.**-4.; # given magnetic flux (in Wb)\n",
"A = 0.001; # cross sectional area (in meter square)\n",
"B = phi/A ; # \n",
"Ha = 10.; # magnetic field intensity of material a needed to establish the given magnetic flux \n",
"Hb = 77.; # magnetic field intensity of material b\n",
"Hc = 270.; # magnetic field intensity of material c\n",
"La = 0.3; # arc length of material a (in meters)\n",
"Lb = 0.2; # arc length of material b (in meters) \n",
"Lc = 0.1; # arc length of material c (in meters)\n",
"\n",
"F = Ha*La + Hb*Lb + Hc*Lc; # magnetomotive force\n",
"print '%s' %(\"a\")\n",
"print '%s %.2f' %(\"magnetomotive force needed to establish a flux of 6*10**-4(in At) = \",F)\n",
"\n",
"# b\n",
"N = 100.; # no. of turns \n",
"I = F/N; # current in amps\n",
"print '%s' %(\"b\")\n",
"print '%s %.2f' %(\"current that must be made to flow through the coil(in amps) = \",I)\n",
"\n",
"# c\n",
"MU0 = 4.*math.pi*10.**-7.; \n",
"MUa = B/Ha; # permeability of material a\n",
"MUb = B/Hb; # permeability of material b\n",
"MUc = B/Hc; # permeability of material c\n",
"\n",
"MUra = MUa/MU0; # relative permeability of material a\n",
"MUrb = MUb/MU0; # relative permeability of material b\n",
"MUrc = MUc/MU0; # relative permeability of material c\n",
"\n",
"Ra = Ha*La/phi; # reluctance of material a \n",
"Rb = Hb*Lb/phi; # reluctance of material b\n",
"Rc = Hc*Lc/phi; # reluctance of material c\n",
"\n",
"print '%s' %(\"c\")\n",
"print '%s %.2f' %(\"relative permeability of material a = \",MUra)\n",
"print '%s %.2f' %(\"relative permeability of material b = \",MUrb)\n",
"print '%s %.2f' %(\"relative permeability of material c = \",MUrc)\n",
"print '%s %.2f' %(\"reluctance of material a = \",Ra)\n",
"print '%s %.2f' %(\"reluctance of material b = \",Rb)\n",
"print '%s %.2f' %(\"reluctance of material c = \",Rc)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"a\n",
"magnetomotive force needed to establish a flux of 6*10**-4(in At) = 45.40\n",
"b\n",
"current that must be made to flow through the coil(in amps) = 0.45\n",
"c\n",
"relative permeability of material a = 47746.48\n",
"relative permeability of material b = 6200.84\n",
"relative permeability of material c = 1768.39\n",
"reluctance of material a = 5000.00\n",
"reluctance of material b = 25666.67\n",
"reluctance of material c = 45000.00\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E03 : Pg 637"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"mu0 = 4.*math.pi*10.**-7.;\n",
"A = 0.0025; # cross sectional area of the coil\n",
"# dimensions of the coil (in meters)\n",
"Lg = 0.002; # air gap length (in meters)\n",
"Lbd = 0.025; \n",
"Lde = 0.1;\n",
"Lef = 0.025;\n",
"Lfk = 0.2;\n",
"Lbc = 0.175;\n",
"Lcab = 0.5;\n",
"\n",
"Lbghc = 2.*(Lbd + Lde + Lef + (Lfk/2.)) - Lg;# length of the ferromagnetic material involved here\n",
"\n",
"phig = 4.*10.**-4.; # air gap flux (in Wb)\n",
"Bg = phig/A ; # air gap flux density (in tesla)\n",
"Hg = Bg/mu0 ; # feild intensity of the air gap \n",
"mmfg = Hg*Lg ; # mmf produced in the air gap (in At)\n",
"\n",
"Bbc = 1.38 ; # flux density corresponding to cast steel\n",
"\n",
"Hbghc = 125.; # field intensity corresponding to flux density of 0.16T in the steel\n",
"mmfbghc = Hbghc*Lbghc ; # mmf corresponding to bghc\n",
"\n",
"mmfbc = mmfg + mmfbghc ; # mmf across path bc\n",
"Hbc = mmfbc/Lbc;\n",
"phibc = Bbc*A ; # flux produced in bc \n",
"\n",
"phicab = phig + phibc; # total fiux existing in leg cab \n",
"Bcab = phicab/0.00375; # flux density\n",
"Hcab = 690.; \n",
"mmfcab = Hcab*Lcab; # mmf in leg cab\n",
"\n",
"mmf = mmfbc + mmfcab ; # mmf produced by the coil\n",
"\n",
"print '%s %.2f' %(\"mmf produced by the coil(in At) = \",mmf)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"mmf produced by the coil(in At) = 661.90\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E05 : Pg 646"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# b\n",
"import math \n",
"mu0 = 4.*math.pi*10.**-7. ;\n",
"# plunger magnet dimensions (in meters)\n",
"x = 0.025; \n",
"h = 0.05;\n",
"a = 0.025;\n",
"g = 0.00125; \n",
"\n",
"mmf = 1414.; # (in At)\n",
"\n",
"F = math.pi*a*mu0*(mmf**2.)*(h**2.)*(1./(x + h)**2.)/g; # magnitude of the force\n",
"print '%s %.2f' %(\"magnitude of the force (in Newtons) = \",F)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"magnitude of the force (in Newtons) = 70.16\n"
]
}
],
"prompt_number": 3
}
],
"metadata": {}
}
]
}
|