summaryrefslogtreecommitdiff
path: root/Electrical_Circuit_Theory_And_Technology/chapter_39.ipynb
blob: 6edb57738736d1eb5f54185554e2f718e4e5a019 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
{
 "metadata": {
  "name": "",
  "signature": "sha256:1ec371cb843067028dd1e055f435f5ad6cdc4ce9c5ed963c08c525b60770abca"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h1>Chapter 39: Dielectrics and dielectric loss</h1>"
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 1, page no. 717</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "Rs  =  1.5;#  in  ohms\n",
      "Cs  =  400E-12;#  in  Farads\n",
      "f  =  8E6;#  in  Hz\n",
      "\n",
      "#calculation:  \n",
      " #for  a  series  equivalent  circuit,\n",
      " #tan(del)  =  Rs*w*Cs\n",
      " #loss  angle,\n",
      "de  =  math.atan(Rs*Cs*(2*math.pi*f))\n",
      " #power  factor\n",
      "pf  =  math.cos(de)\n",
      " #the  Q-factor\n",
      "Q  =  1/math.tan(de)\n",
      " #dissipation  factor,\n",
      "D  =  1/Q\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)loss  angle  \",round(de,2),\"  rad.\"\n",
      "print  \"\\n  (b)power  factor  \",round(de,2),\"  rad.\"\n",
      "print  \"\\n  (c)Q-factor  is  \",round(Q,2)\n",
      "print  \"\\n  (d)dissipation  factor  \",round(D,2),\"  rad.\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)loss  angle   0.03   rad.\n",
        "\n",
        "  (b)power  factor   0.03   rad.\n",
        "\n",
        "  (c)Q-factor  is   33.16\n",
        "\n",
        "  (d)dissipation  factor   0.03   rad."
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 2, page no. 718</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "de  =  0.025;#  in  rad.\n",
      "V  =  5000;#  in  Volts\n",
      "PL  =  20;#  power  loss\n",
      "f  =  50;#  in  Hz\n",
      "\n",
      "#calculation:  \n",
      " #power  loss  =  w*C*V**2*tan(del)\n",
      "Cp  =  PL/(2*math.pi*f*V*V*math.tan(de))\n",
      " #for  a  parallel  equivalent  circuit,\n",
      " #tan(del)  =  1/(Rp*w*Cp)\n",
      "Rp  =  1/(2*math.pi*f*Cp*math.tan(de))\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  capacitance  C  \",round(Cp*1E6,2),\"uF  and  parallel  resistance  \",round(Rp,2),\"ohm.\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  capacitance  C   0.1 uF  and  parallel  resistance   1250000.0 ohm."
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 3, page no. 718</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "P  =  500E-6;#  in  Watt\n",
      "C  =  2000E-12;#  in  Farads\n",
      "V  =  20;#  in  Volts\n",
      "f  =  10000;#  in  Hz\n",
      "\n",
      " #calculation:  \n",
      " #power  loss  =  w*C*V**2*tan(del)\n",
      " #loss  angle\n",
      "de =  math.atan(P/(2*math.pi*f*V*V*C))\n",
      " #for  an  equivalent  series  circuit,\n",
      " #tan(del)  =  (Rs*w*Cs)\n",
      "Cs  =  C\n",
      "Rs  =  (math.tan(de))/(2*math.pi*f*Cs)\n",
      " #for  an  equivalent  parallel  circuit\n",
      " #tan(del)  =  1/(Rp*w*Cp)\n",
      "Cp  =  C\n",
      "Rp  =  1/(2*math.pi*f*Cp*math.tan(de))\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)loss  angle  \",round(de*180/math.pi,2),\"deg\"\n",
      "print  \"\\n  (b)series  resistance  \",round(Rs,2),\"  ohm.\"\n",
      "print  \"\\n  (c)parallel  resistance  \",round(Rp/1000,2),\"Kohm.\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)loss  angle   0.57 deg\n",
        "\n",
        "  (b)series  resistance   79.16   ohm.\n",
        "\n",
        "  (c)parallel  resistance   800.0 Kohm."
       ]
      }
     ],
     "prompt_number": 1
    }
   ],
   "metadata": {}
  }
 ]
}