summaryrefslogtreecommitdiff
path: root/Electrical_Circuit_Theory_And_Technology/chapter_34-checkpoint_1.ipynb
blob: ce641b05a10ae25444ba59db3c3dc395cbd35bc1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h1>Chapter 34: Delta-star and star-delta transformations</h1>"
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 1, page no. 605</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Replace the delta-connected network by an equivalent star connection.\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "ZA  =  20;#  in  ohm\n",
      "ZB  =  10 + 10j;#  in  ohm\n",
      "ZC  =  -20j;#  in  ohm\n",
      "\n",
      "#calculation:\n",
      "Z1 = ZA*ZB/(ZA+ZB+ZC)\n",
      "Z2 = ZB*ZC/(ZA+ZB+ZC)\n",
      "Z3 = ZA*ZC/(ZA+ZB+ZC)\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  the  Resistances of equivalent star connection are, Z1 =\",round(Z1.real,2),\"  +  (\",round(Z1.imag,2),\")i  ohmn, Z2 =\",round(Z2.real,2),\"  +  (\",round(Z2.imag,2),\")i  Ohm and Z3 =\",round(Z3.real,2),\"  +  (\",round(Z3.imag,2),\")i  Ohm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  the  Resistances of equivalent star connection are, Z1 = 4.0   +  ( 8.0 )i  ohmn, Z2 = 8.0   +  ( -4.0 )i  Ohm and Z3 = 4.0   +  ( -12.0 )i  Ohm"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 2, page no. 606</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#determine (a) the equivalent circuit impedance across terminals AB,\n",
      "#(b) supply current I and (c) the power dissipated in the 10 ohm resistor\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "rv  =  40;#  in  volts\n",
      "thetav  =  0;#  in  degrees\n",
      "ZA  =  10j;#  in  ohm\n",
      "ZB  =  15j;#  in  ohm\n",
      "ZC  =  25j;#  in  ohm\n",
      "ZD  =  -8j;#  in  ohm\n",
      "ZE  =  10;#  in  ohm\n",
      "\n",
      " #calculation:  \n",
      " #voltage\n",
      "V  =  rv*math.cos(thetav*math.pi/180)  +  1j*rv*math.sin(thetav*math.pi/180)\n",
      " #The  network  of  Figure  34.7  is  redrawn,  as  in  Figure  34.8,  \n",
      "    #showing  more  clearly  the  part  of  the  network  1,  2,  3  forming  a  delta  connection   \n",
      "    #This  may  he  transformed  into  a  star  connection  as  shown  in  Figure  34.9.\n",
      "Z1  =  ZA*ZB/(ZA  +  ZB  +  ZC)\n",
      "Z2  =  ZC*ZB/(ZA  +  ZB  +  ZC)\n",
      "Z3  =  ZA*ZC/(ZA  +  ZB  +  ZC)\n",
      " #The  equivalent  network  is  shown  in  Figure  34.10  and  is  further  simplified  in  Figure  34.11\n",
      " #(ZE  +  Z3)  in  parallel  with  (Z1  +  ZD)  gives  an  equivalent  impedance  of\n",
      "z  =  (ZE  +  Z3)*(Z1  +  ZD)/(Z1  +  ZD  +  ZE  +  Z3)\n",
      " #Hence  the  total  circuit  equivalent  impedance  across  terminals  AB  is  given  by\n",
      "Zab  =  z  +  Z2\n",
      " #Supply  current  I\n",
      "I  =  V/Zab\n",
      "I1  =  ((Z1  +  ZD)/(Z1  +  ZD  +  ZE  +  Z3))*I\n",
      "I1mag  =  abs(I1)\n",
      " #Power  P  dissipated  in  the  10  ohm  resistance  of  Figure  34.7  is  given  by\n",
      "Pr10  =  ZE*I1mag**2\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)the  equivalent  circuit  impedance  across  terminals  AB  is  \",round(Zab.real,2),\"  +  (\",round(Zab.imag,2),\")i  ohm\"\n",
      "print  \"\\n  (b)supply  current  I  is  \",round(I.real,2),\"  +  (\",round(I.imag,2),\")i  A\"\n",
      "print  \"\\n  (c)power  P  dissipated  in  the  10  ohm  resistor  is  \",round(Pr10,2),\"  W\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)the  equivalent  circuit  impedance  across  terminals  AB  is   2.5   +  ( 2.5 )i  ohm\n",
        "\n",
        "  (b)supply  current  I  is   8.0   +  ( -8.0 )i  A\n",
        "\n",
        "  (c)power  P  dissipated  in  the  10  ohm  resistor  is   320.0   W\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 3, page no. 607</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#(a) the value of the single equivalent resistance that replaces the network between terminals A and B, \n",
      "#(b) the current supplied by the 52 V source, and (c) the current flowing in the 8 ohm resistance\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "V  =  52;#  in  volts\n",
      "ZA  =  8;#  in  ohm\n",
      "ZB  =  16;#  in  ohm\n",
      "ZC  =  40;#  in  ohm\n",
      "ZD  =  1;#  in  ohm\n",
      "ZE  =  4;#  in  ohm\n",
      "\n",
      " #calculation:  \n",
      " #In  Figure  34.12,  no  resistances  are  directly  in  parallel  or  directly  in  series  with  each  other.  \n",
      "    #However,  ACD  and  BCD  are  both  delta  connections  and  either  may  be  converted  into  an  equivalent  star  connection.  The  delta  network  BCD  is  redrawn  in  Figure  34.13(a)  and  is  transformed  into  an  equivalent  star  connection  as  shown  in  Figure  34.13(b),  where\n",
      "Z1  =  ZA*ZB/(ZA  +  ZB  +  ZC)\n",
      "Z2  =  ZC*ZB/(ZA  +  ZB  +  ZC)\n",
      "Z3  =  ZA*ZC/(ZA  +  ZB  +  ZC)\n",
      " #The  network  of  Figure  34.12  may  thus  be  redrawn  as  shown  in  Figure  34.14.  \n",
      "    #The  Z1  and  ZE  are  in  series  with  each  other,  as  are  the  ZD  and  Z3  resistors.  \n",
      "    #Hence  the  equivalent  network  is  as  shown  in  Figure  34.15.  \n",
      "    #The  total  equivalent  resistance  across  terminals  A  and  B  is  given  by\n",
      "Zab  =  (Z1  +  ZE)*(ZD  +  Z3)/(Z1  +  ZE  +  ZD  +  Z3)  +  Z2\n",
      " #Current  supplied  by  the  source,  i.e.,  current  I  in  Figure  34.15,  is  given  by\n",
      "I  =  V/Zab\n",
      " #From  Figure  34.15,  current  I1\n",
      "I1  =  ((ZD  +  Z3)/(Z1  +  ZE  +  ZD  +  Z3))*I\n",
      " #current  I2\n",
      "I2  =  I  -  I1\n",
      " #From  Figure  34.14,  p.d.  across  AC,\n",
      "Vac  =  I1*ZE\n",
      " #p.d.  across  AD\n",
      "Vad  =  I2*ZD\n",
      " #Hence  p.d.  between  C  and  D  is  given\n",
      "Vcd  =  Vac  -  Vad\n",
      " #current  in  the  8  ohm  resistance\n",
      "Ir8  =  Vcd/ZA\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)the  equivalent  circuit  impedance  across  terminals  AB  is  \",round(Zab,2),\"ohm\"\n",
      "print  \"\\n  (b)the  current  supplied  by  the  52  V  source  is  \",round(I,2),\"    A\"\n",
      "print  \"\\n  (c)the  current  flowing  in  the  8  ohm  resistance  is  \",round(Ir8,2),\"  A\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)the  equivalent  circuit  impedance  across  terminals  AB  is   13.0 ohm\n",
        "\n",
        "  (b)the  current  supplied  by  the  52  V  source  is   4.0     A\n",
        "\n",
        "  (c)the  current  flowing  in  the  8  ohm  resistance  is   0.75   A"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 4, page no. 608</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#(b)determine the values of RX and LX at balance.\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "R2  =  1000;#  in  ohm\n",
      "R3  =  1000;#  in  ohm\n",
      "R4  =  500;#  in  ohm\n",
      "R5  =  200;#  in  ohm\n",
      "C = 2E-6; # in Farad\n",
      "\n",
      "#calculation:\n",
      "Rx = R2*R4/R3\n",
      "Lx = R2*C*(R4 + R5 + R4*R5/R3)\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (b)Rx is  \",round(Rx,2),\"ohm, Lx is  \",round(Lx,2),\"H\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (b)Rx is   500.0 ohm, Lx is   1.6 H"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 5, page no. 610</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#determine (a) the current flowing in the j10 ohm impedance, and \n",
      "#(b) the power dissipated in the \u000720 ohm impedance.\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "rv  =  120;#  in  volts\n",
      "thetav  =  0;#  in  degrees\n",
      "ZA  =  25  - 5j;#  in  ohm\n",
      "ZB  =  15  + 10j;#  in  ohm\n",
      "ZC  =  20  - 30j;#  in  ohm\n",
      "ZD  =  20  + 0j;#  in  ohm\n",
      "ZE  =  0  +  10j;#  in  ohm\n",
      "ZF  =  2.5  - 5j;#  in  ohm\n",
      "\n",
      "#calculation:  \n",
      " #voltage\n",
      "V  =  rv*math.cos(thetav*math.pi/180)  +  1j*rv*math.sin(thetav*math.pi/180)\n",
      " #The  network  may  initially  be  simplified  by  transforming  the  delta  PQR  to  its  equivalent  star  connection  \n",
      "    #as  represented  by  impedances  Z1,  Z2  and  Z3  in  Figure  34.21.  From  equation  (34.7),\n",
      "Z1  =  ZA*ZB/(ZA  +  ZB  +  ZC)\n",
      "Z2  =  ZC*ZB/(ZA  +  ZB  +  ZC)\n",
      "Z3  =  ZA*ZC/(ZA  +  ZB  +  ZC)\n",
      " #The  network  is  shown  redrawn  in  Figure  34.22  and  further  simplified  in  Figure  34.23,  from  which,\n",
      "Zab  =  ((Z3  +  ZE)*(ZD  +  Z2)/(Z2  +  ZE  +  ZD  +  Z3))  +  (Z1  +  ZF)\n",
      " #Current  I1\n",
      "I1  =  V/Zab\n",
      " #current  I2\n",
      "I2  =  ((ZE  +  Z3)/(Z2  +  ZE  +  ZD  +  Z3))*I1\n",
      " #current  I3\n",
      "I3  =  I1  -  I2\n",
      " #The  power  P  dissipated  in  the  ZD  impedance  of  Figure  34.20  is  given  by\n",
      "Pzd  =  ZD*I2**2\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)the  current  flowing  in  the  (0+i10)  ohm  impedance  is  \",round(abs(I3),2),\"    A\"\n",
      "print  \"\\n  (b)  the  power  dissipated  in  the  (20  +  i0)  ohm  impedance  is  \",round(abs(Pzd),2),\"  W\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)the  current  flowing  in  the  (0+i10)  ohm  impedance  is   6.0     A\n",
        "\n",
        "  (b)  the  power  dissipated  in  the  (20  +  i0)  ohm  impedance  is   80.0   W\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 6, page no. 613</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determine the delta-connected equivalent network for the star-connected impedances.\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "Z1  =  10;#  in  ohm\n",
      "Z2  =  20;#  in  ohm\n",
      "Z3  =  5j;#  in  ohm\n",
      "\n",
      "#calculation:\n",
      "ZA = (Z1*Z2 + Z2*Z3 + Z3*Z1)/Z2\n",
      "ZB = (Z1*Z2 + Z2*Z3 + Z3*Z1)/Z3\n",
      "ZC = (Z1*Z2 + Z2*Z3 + Z3*Z1)/Z1\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  the  Resistances of equivalent Delta connection are, ZA =\",round(ZA.real,2),\"  +  (\",round(ZA.imag,2),\")i  ohmn, ZB =\",round(ZB.real,2),\"  +  (\",round(ZB.imag,2),\")i  Ohm and ZC =\",round(ZC.real,2),\"  +  (\",round(ZC.imag,2),\")i  Ohm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  the  Resistances of equivalent Delta connection are, ZA = 10.0   +  ( 7.5 )i  ohmn, ZB = 30.0   +  ( -40.0 )i  Ohm and ZC = 20.0   +  ( 15.0 )i  Ohm"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 7, page no. 613</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Convert the star to an equivalent delta connection\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "Z1r  =  100;#  in  ohm\n",
      "Z1a = 0; # in Deg\n",
      "Z2r  =  63.25;#  in  ohm\n",
      "Z2a = 18.43; # in Deg\n",
      "Z3r  =  100;#  in  ohm\n",
      "Z3a = -90; # in Deg\n",
      "\n",
      "#calculation\n",
      "Z1  =  Z1r*math.cos(Z1a*math.pi/180)  +  1j*Z1r*math.sin(Z1a*math.pi/180)\n",
      "Z2  =  Z2r*math.cos(Z2a*math.pi/180)  +  1j*Z2r*math.sin(Z2a*math.pi/180)\n",
      "Z3  =  Z3r*math.cos(Z3a*math.pi/180)  +  1j*Z3r*math.sin(Z3a*math.pi/180)\n",
      "\n",
      "ZA = (Z1*Z2 + Z2*Z3 + Z3*Z1)/Z2\n",
      "ZB = (Z1*Z2 + Z2*Z3 + Z3*Z1)/Z3\n",
      "ZC = (Z1*Z2 + Z2*Z3 + Z3*Z1)/Z1\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  the  Resistances of equivalent Delta connection are, ZA =\",round(ZA.real,0),\"  +  (\",round(ZA.imag,0),\")i  ohmn, ZB =\",round(ZB.real,0),\"  +  (\",round(ZB.imag,0),\")i  Ohm and ZC =\",round(ZC.real,0),\"  - (\",round(ZC.imag,0),\")i  Ohm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  the  Resistances of equivalent Delta connection are, ZA = 50.0   +  ( -250.0 )i  ohmn, ZB = 140.0   +  ( 80.0 )i  Ohm and ZC = 80.0   - ( -140.0 )i  Ohm"
       ]
      }
     ],
     "prompt_number": 3
    }
   ],
   "metadata": {}
  }
 ]
}