summaryrefslogtreecommitdiff
path: root/Electrical_Circuit_Theory_And_Technology/chapter_32-checkpoint_2.ipynb
blob: 985a6ce1de75b9da6d44cfd6f04924cfcc6a237b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h1>Chapter 32: The superposition theorem</h1>"
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 1, page no. 564</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determine using the superposition theorem, the current in the 20 ohm load and the current in each voltage source.\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "rv1  =  100;#  in  volts\n",
      "rv2  =  50;#  in  volts\n",
      "thetav1  =  0;#  in  degrees\n",
      "thetav2  =  90;#  in  degrees\n",
      "r1  =  25;#  in  ohm\n",
      "R  =  20;#  in  ohm\n",
      "r2  =  10;#  in  ohm\n",
      "\n",
      " #calculation:\n",
      " #voltage\n",
      "V1  =  rv1*math.cos(thetav1*math.pi/180)  +  1j*rv1*math.sin(thetav1*math.pi/180)\n",
      "V2  =  rv2*math.cos(thetav2*math.pi/180)  +  1j*rv2*math.sin(thetav2*math.pi/180)\n",
      " #The  circuit  diagram  is  shown  in  Figure  32.7.  Following  the  above  procedure:\n",
      " #The  network  is  redrawn  with  the  50/_90\u00b0  V  source  removed  as  shown  in  Figure  32.8\n",
      " #Currents  I1,  I2  and  I3  are  labelled  as  shown  in  Figure  32.8.\n",
      "I1  =  V1/(r1  +  r2*R/(R  +  r2))\n",
      "I2  =  (r2/(r2  +  R))*I1\n",
      "I3  =  (R/(r2  +  R))*I1\n",
      " #The  network  is  redrawn  with  the  100/_0\u00b0  V  source  removed  as  shown  in  Figure  32.9\n",
      " #Currents  I4,  I5  and  I6  are  labelled  as  shown  in  Figure  32.9.\n",
      "I4  =  V2/(r2  +  r1*R/(r1  +  R))\n",
      "I5  =  (r1/(r1  +  R))*I4\n",
      "I6  =  (R/(r1  +  R))*I4\n",
      " #Figure  32.10  shows  Figure  32.9  superimposed  on  Figure  32.8,  giving  the  currents  shown.\n",
      " #Current  in  the  20  ohm  load,\n",
      "I20  =  I2  +  I5\n",
      " #Current  in  the  100/_0\u00b0  V  source\n",
      "IV1  =  I1  -  I6\n",
      " #Current  in  the  50/_90\u00b0  V  source\n",
      "IV2  =  I4  -  I3\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)current  in  the  20  ohm  load  is  \",round(I20.real,2),\"  +  (\",round(I20.imag,2),\")i  A\"\n",
      "print  \"\\n  (b)Current  in  the  100/_0deg  V  source  is  \",round(IV1.real,2),\"  +  (\",round(IV1.imag,2),\")i  A\"\n",
      "print  \"\\n  (b)Current  in  the  50/_90deg  V  source  is  \",round(IV2.real,2),\"  +  (\",round(IV2.imag,2),\")i  A\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)current  in  the  20  ohm  load  is   1.05   +  ( 1.32 )i  A\n",
        "\n",
        "  (b)Current  in  the  100/_0deg  V  source  is   3.16   +  ( -1.05 )i  A\n",
        "\n",
        "  (b)Current  in  the  50/_90deg  V  source  is   -2.11   +  ( 2.37 )i  A"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 2, page no. 566</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Use the superposition theorem to determine the current in the 4 ohm resistor of the network\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "V1  =  12;#  in  volts\n",
      "V2  =  20;#  in  volts\n",
      "R1  =  5;#  in  ohm\n",
      "R2  =  4;#  in  ohm\n",
      "R3  =  2.5;#  in  ohm\n",
      "R4  =  6;#  in  ohm\n",
      "R5  =  2;#  in  ohm\n",
      "\n",
      "#calculation:\n",
      " #Removing  the  20  V  source  gives  the  network  shown  in  Figure  32.12.\n",
      " #Currents  I1  and  I2  are  shown  labelled  in  Figure  32.12\n",
      "Re1  =  (R4*R5/(R4  +  R5))  +  R3\n",
      "Re2  =  Re1*R2/(Re1    +  R2)  +  R1\n",
      "I1  =  V1/Re2\n",
      "I2  =  (R2/(Re1  +  R2))*I1\n",
      " #Removing  the  12  V  source  from  the  original  network  gives  the  network  shown  in  Figure  32.14.\n",
      " #Currents  I3,  I4  and  I5  are  shown  labelled  in  Figure  32.14.\n",
      "Re3  =  (R1*R2/(R1  +  R2))  +  R3\n",
      "Re4  =  Re3*R4/(Re3  +  R4)  +  R5\n",
      "I3  =  V2/Re4\n",
      "I4  =  (R4/(Re3  +  R4))*I3\n",
      "I5  =  (R1/(R1  +  R2))*I4\n",
      " #Superimposing  Figure  32.14  on  Figure  32.12  shows  that  the  current  flowing  in  the  4  ohm  resistor  is  given  by\n",
      "Ir4  =  I5  -  I2\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\ncurrent  in  the  4  ohm  resistor  of  the  network  is  \",round(Ir4,2),\"  A\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "current  in  the  4  ohm  resistor  of  the  network  is   0.48   A"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 3, page no. 567</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Use the superposition theorem to obtain the current flowing in the \u0005(4 + j3) ohm impedance\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "rv1  =  30;#  in  volts\n",
      "rv2  =  30;#  in  volts\n",
      "thetav1  =  45;#  in  degrees\n",
      "thetav2  =  -45;#  in  degrees\n",
      "R1  =  4;#  in  ohm\n",
      "R2  =  4;#  in  ohm\n",
      "R3  =  1j*3;#  in  ohm\n",
      "R4  =  -1j*10;#  in  ohm\n",
      "\n",
      " #calculation:\n",
      " #voltage\n",
      "V1  =  rv1*math.cos(thetav1*math.pi/180)  +  1j*rv1*math.sin(thetav1*math.pi/180)\n",
      "V2  =  rv2*math.cos(thetav2*math.pi/180)  +  1j*rv2*math.sin(thetav2*math.pi/180)\n",
      " #The  network  is  redrawn  with  V2  removed,  as  shown  in  Figure  32.17.\n",
      " #Current  I1  and  I2  are  shown  in  Figure  32.17.  From  Figure  32.17,\n",
      "Re1  =  R4*(R2  +  R3)/(R4  +  R3  +  R2)\n",
      "Re2  =  Re1  +  R1\n",
      " #current\n",
      "I1  =  V1/Re2\n",
      "I2  =  (R4/(R2  +  R3  +  R4))*I1\n",
      " #The  original  network  is  redrawn  with  V1  removed,  as  shown  in  Figure  32.18\n",
      " #Currents  I3  and  I4  are  shown  in  Figure  32.18.  From  Figure  32.18,\n",
      "Re3  =  R1*(R2  +  R3)/(R1  +  R3  +  R2)\n",
      "Re4  =  Re3  +  R4\n",
      "I3  =  V2/Re4\n",
      "I4  =  (R1/(R2  +  R3  +  R1))*I3\n",
      " #If  the  network  of  Figure  32.18  is  superimposed  on  the  network  of  Figure  32.17,  \n",
      "    #it  can  be  seen  that  the  current  in  the  (4+i3)  ohm  impedance  is  given  by\n",
      "Ir4i3  =  I2  -  I4\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"current  in  (4  +  i3)  ohm  impedance  of  the  network  is  \",round(Ir4i3.real,2),\"  +  (\",round(  Ir4i3.imag,2),\")i  A\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "current  in  (4  +  i3)  ohm  impedance  of  the  network  is   2.15   +  ( 0.42 )i  A\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 4, page no. 568</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#determine, using the superposition theorem, \n",
      "#(a) the current in each branch,\n",
      "#(b) the magnitude of the voltage across the \u0005(6 + j8) ohm\u0006 impedance,\n",
      "#and (c) the total active power delivered to the network.\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "E1  =  5  +  0j;#  in  volts\n",
      "E2  =  2  +  4j;#  in  volts\n",
      "Z1  =  3  +  4j;#  in  ohm\n",
      "Z2  =  2  -  5j;#  in  ohm\n",
      "Z3  =  6  +  8j;#  in  ohm\n",
      "\n",
      "#calculation:\n",
      " #The  original  network  is  redrawn  with  E2  removed,  as  shown  in  Figure  32.20.\n",
      " #Currents  I1,  I2  and  I3  are  labelled  as  shown  in  Figure  32.20.\n",
      "Ze1  =  Z3*Z2/(Z3  +  Z2)\n",
      "Ze2  =  Ze1  +  Z1\n",
      " #current\n",
      "I1  =  E1/Ze2\n",
      "I2  =  (Z2/(Z3  +  Z2))*I1\n",
      "I3  =  (Z3/(Z3  +  Z2))*I1\n",
      " #The  original  network  is  redrawn  with  E1  removed,  as  shown  in  Figure  32.22\n",
      " #Currents  I4,  I5  and  I6  are  shown  labelled  in  Figure  32.22  \n",
      "    #with  I4  flowing  away  from  the  positive  terminal  of  the  E2  source.\n",
      "Ze3  =  Z3*Z1/(Z3  +  Z1)\n",
      "Ze4  =  Ze3  +  Z2\n",
      "I4  =  E2/Ze4\n",
      "I5  =  (Z1/(Z3  +  Z1))*I4\n",
      "I6  =  (Z3/(Z3  +  Z1))*I4\n",
      " #If  the  network  of  Figure  32.18  is  superimposed  on  the  network  of  Figure  32.17,  \n",
      "    #it  can  be  seen  that  the  current  in  the  (4+i3)  ohm  impedance  is  given  by\n",
      "i1  =  I1  +  I6\n",
      "i2  =  I3  +  I4\n",
      "i3  =  I2  -  I5\n",
      " #magnitude\n",
      "i1mag  =  abs(i1)\n",
      "i2mag  =  abs(i2)\n",
      "E1mag  =  abs(E1)\n",
      "E2mag  =  abs(E2)\n",
      " #phase\n",
      "phi1  =  cmath.phase(complex(i1.real,i1.imag))\n",
      "phi2  =  cmath.phase(complex(i2.real,i2.imag))\n",
      " #voltage  across  the(6  +  i8)  ohm  impedance\n",
      "V6i8  =  i3*Z3\n",
      "V6i8m  =  abs(V6i8)\n",
      " #power\n",
      "P  =  (E1mag*i1mag*math.cos(phi1))  +  (E2mag*i2mag*math.cos(phi2  -  cmath.phase(complex(E2.real,E2.imag))))\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n(a)currents  are: \\n \",round(i1.real,2),\"  +  (\",round(  i1.imag,2),\")i  A, \\n \",round(i2.real,2),\"  +  (\",round(i2.imag,2),\")i  A \\n and  \",round(i3.real,2),\"  +  (\",round(i3.imag,2),\")i  A\"\n",
      "print  \"\\n(b)current  in  the  (6  +  i8)  ohm  resistor  of  the  network  is  \",round(V6i8m,2),\"  V\"\n",
      "print  \"\\n(c)the  total  active  power  delivered  to  the  network  is  \",round(P,2),\"  W\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "(a)currents  are: \n",
        "  0.57   +  ( 0.62 )i  A, \n",
        "  0.56   +  ( 1.33 )i  A \n",
        " and   0.01   +  ( -0.71 )i  A\n",
        "\n",
        "(b)current  in  the  (6  +  i8)  ohm  resistor  of  the  network  is   7.09   V\n",
        "\n",
        "(c)the  total  active  power  delivered  to  the  network  is   9.29   W"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 5, page no. 571</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#determine,(a) the magnitude of the current flowing in the capacitor, \n",
      "#(b) the p.d. across the 5 ohm resistance, (c) the active power dissipated in the 20 ohm resistance and \n",
      "#(d) the total active power taken from the supply.\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "rv1  =  50;#  in  volts\n",
      "rv2  =  30;#  in  volts\n",
      "thetav1  =  0;#  in  degrees\n",
      "thetav2  =  90;#  in  degrees\n",
      "R1  =  20;#  in  ohm\n",
      "R2  =  5;#  in  ohm\n",
      "R3  =  -1j*3;#  in  ohm\n",
      "R4  =  8;#  in  ohm\n",
      "R5  =  8;#  in  ohm\n",
      "\n",
      "#calculation:\n",
      " #voltage\n",
      "V1  =  rv1*math.cos(thetav1*math.pi/180)  +  1j*rv1*math.sin(thetav1*math.pi/180)\n",
      "V2  =  rv2*math.cos(thetav2*math.pi/180)  +  1j*rv2*math.sin(thetav2*math.pi/180)\n",
      " #The  network  is  redrawn  with  the  V2  source  removed,  as  shown  in  Figure  32.26.\n",
      " #Currents  I1  to  I5  are  shown  labelled  in  Figure  32.26.  \n",
      " #current\n",
      "Re1  =  R4*R5/(R5  +  R4)  +  R3\n",
      "Re2  =  Re1*R2/(R2  +  Re1)\n",
      "I1  =  V1/(Re2  +  R1)\n",
      "I2  =  (Re1/(R2  +  Re1))*I1\n",
      "I3  =  (R2/(Re1  +  R2))*I1\n",
      "I4  =  (R4/(R4  +  R5))*I3\n",
      "I5  =  I3  -  I4\n",
      " #The  original  network  is  redrawn  with  the  V1  source  removed,  as  shown  in  Figure  32.27.\n",
      " #Currents  I6  to  I10  are  shown  labelled  in  Figure  32.27\n",
      "Re3  =  R1*R2/(R1  +  R2)\n",
      "Re4  =  Re3  +  R3\n",
      "Re5  =  Re4*R4/(Re4  +  R4)\n",
      "Re6  =  Re5    +  R5\n",
      "I6  =  V2/Re6\n",
      "I7  =  (Re4/(Re4  +  R4))*I6\n",
      "I8  =  (R4/(Re4  +  R4))*I6\n",
      "I9  =  (R1/(R1  +  R2))*I8\n",
      "I10  =  (R2/(R1  +  R2))*I8\n",
      " #current  flowing  in  the  capacitor  is  given  by\n",
      "Ic  =  I3  -  I8\n",
      " #magnitude  of  the  current  in  the  capacitor\n",
      "Icmag  =  abs(Ic)\n",
      "\n",
      "i1  =  I2  +  I9\n",
      "i1mag  =  abs(i1)\n",
      " #magnitude  of  the  p.d.  across  the  5  ohm  resistance  is  given  by\n",
      "Vr5m  =  i1mag*R2\n",
      " #Active  power  dissipated  in  the  20  ohm  resistance  is  given  by\n",
      "i2  =  I1  -  I10\n",
      "i2mag  =  abs(i2)\n",
      "phii2  =  cmath.phase(complex(i2.real,i2.imag))\n",
      "Pr20  =  R1*(i2mag)**2\n",
      " #Active  power  developed  by  the  V1\n",
      "P1  =  rv1*i2mag*math.cos(phii2)\n",
      " #Active  power  developed  by  V2  source\n",
      "i3  =  I6  -  I5\n",
      "i3mag  =  abs(i3)\n",
      "phii3  =  cmath.phase(complex(i3.real,i3.imag))\n",
      "P2  =  rv2*i3mag*math.cos(phii3  -  (thetav2*math.pi/180))\n",
      " #Total  power  developed\n",
      "P  =  P1  +  P2\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n(a)the  magnitude  of  the  current  flowing  in  the  capacitor  is  \",round(Icmag,2),\"  A\"\n",
      "print  \"\\n(b)  the  p.d.  across  the  5  ohm  resistance  is  \",round(Vr5m,2),\"  V\"\n",
      "print  \"\\n(c)the  active  power  dissipated  in  the  20  ohm  resistance  is  \",round(Pr20,0),\"  W\"\n",
      "print  \"\\n(d)the  total  active  power  taken  from  the  supply  is  \",round(P,1),\"  W\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "(a)the  magnitude  of  the  current  flowing  in  the  capacitor  is   2.11   A\n",
        "\n",
        "(b)  the  p.d.  across  the  5  ohm  resistance  is   5.85   V\n",
        "\n",
        "(c)the  active  power  dissipated  in  the  20  ohm  resistance  is   111.0   W\n",
        "\n",
        "(d)the  total  active  power  taken  from  the  supply  is   191.9   W"
       ]
      }
     ],
     "prompt_number": 1
    }
   ],
   "metadata": {}
  }
 ]
}