1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h1>Chapter 30: Introduction to network analysis</h1>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 1, page no. 536</h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#find the current flowing in each branch of the network\n",
"from __future__ import division\n",
"import math\n",
"import cmath\n",
"#initializing the variables:\n",
"rv1 = 100;# in volts\n",
"rv2 = 50;# in volts\n",
"thetav1 = 0;# in degrees\n",
"thetav2 = 90;# in degrees\n",
"R1 = 25;# in ohm\n",
"R2 = 20;# in ohm\n",
"R3 = 10;# in ohm\n",
"\n",
"#calculation:\n",
" #voltage\n",
"V1 = rv1*math.cos(thetav1*math.pi/180) + 1j*rv1*math.sin(thetav1*math.pi/180)\n",
"V2 = rv2*math.cos(thetav2*math.pi/180) + 1j*rv2*math.sin(thetav2*math.pi/180)\n",
" #The branch currents and their directions are labelled as shown in Figure 30.4\n",
" #Two loops are chosen. loop ABEF, and loop BCDE\n",
" #using kirchoff rule in 3 loops\n",
" #two eqns obtained\n",
" #(R1 + R2)*I1 + R2*I2 = V1\n",
" #R2*I1 + (R2 + R3)*I2 = V2\n",
"I1 = (3*V1 - 2*V2)/(3*(R1 + R2) - 2*(R2))\n",
"I2 = (V2 - R2*I1)/(R2 + R3)\n",
"I = I1 + I2\n",
"\n",
"\n",
"#Results\n",
"print \"\\n\\n Result \\n\\n\"\n",
"print \"\\n current, I1 is \",round(I1.real,2),\" + (\",round( I1.imag,2),\")i A, \\n current, I2 is \",round(I2.real,2),\" + (\",round( I2.imag,2),\")i A and \"\n",
"print \" total current, I is \",round(I.real,2),\" + (\",round( I.imag,2),\")i A\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"\n",
" Result \n",
"\n",
"\n",
"\n",
" current, I1 is 3.16 + ( -1.05 )i A, \n",
" current, I2 is -2.11 + ( 2.37 )i A and \n",
" total current, I is 1.05 + ( 1.32 )i A\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 2, page no. 537</h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Determine the current flowing in the 2 ohm resistor of the circuit\n",
"#find the power dissipated in the 3 ohm resistance.\n",
"from __future__ import division\n",
"import math\n",
"import numpy\n",
"#initializing the variables:\n",
"V = 8;# in volts\n",
"R1 = 1;# in ohm\n",
"R2 = 2;# in ohm\n",
"R3 = 3;# in ohm\n",
"R4 = 4;# in ohm\n",
"R5 = 5;# in ohm\n",
"R6 = 6;# in ohm\n",
"\n",
"#calculation:\n",
" #Currents and their directions are assigned as shown in Figure 30.6.\n",
" #Three loops are chosen since three unknown currents are required. The choice of loop directions is arbitrary.\n",
" #loop ABCDE, and loop EDGF and loop DCHG\n",
" #using kirchoff rule in 3 loops\n",
" #three eqns obtained\n",
" #R5*I1 + (R6 + R4)*I2 - R4*I3 = V\n",
" #-1*R1*I1 + (R6 + R1)*I2 + R2*I3 = 0\n",
" # R3*I1 - (R3 + R4)*I2 + (R2 + R3 + R4)*I3 = 0\n",
"#using determinants\n",
"d1 = [[V, (R6 + R4), -1*R4],[0, (R6 + R1), R2], [0, (-1*(R3 + R4)), (R2 + R3 + R4)]]\n",
"D1 = numpy.linalg.det(d1)\n",
"d2 = [[R5, V, -1*R4],[-1*R1, 0, R2],[ R3, 0, (R2 + R3 + R4)]]\n",
"D2 = numpy.linalg.det(d2)\n",
"d3 = [[R5, (R6 + R4), V],[-1*R1, (R6 + R1), 0],[ R3, (-1*(R3 + R4)), 0]]\n",
"D3 = numpy.linalg.det(d3)\n",
"d = [[R5, (R6 + R4), -1*R4],[-1*R1, (R6 + R1), R2],[ R3, (-1*(R3 + R4)), (R2 + R3 + R4)]]\n",
"D = numpy.linalg.det(d)\n",
"I1 = D1/D\n",
"I2 = D2/D\n",
"I3 = D3/D \n",
"#Current in the 2 ohm resistance\n",
"I = I1 - I2 + I3\n",
"#power dissipated in the 3 ohm resistance\n",
"P3 = R3*I**2\n",
"\n",
"\n",
"#Results\n",
"print \"\\n\\n Result \\n\\n\"\n",
"print \"\\n (a)current through 2 ohm resistor is \",round(I2,3),\" A\"\n",
"print \"\\n (b)power dissipated in the 3 ohm resistor is \",round(P3,3),\"W\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"\n",
" Result \n",
"\n",
"\n",
"\n",
" (a)current through 2 ohm resistor is 0.203 A\n",
"\n",
" (b)power dissipated in the 3 ohm resistor is 1.267 W"
]
}
],
"prompt_number": 4
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 3, page no. 539</h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#determine the current flowing in each branch using Kirchhoff\u2019s laws.\n",
"from __future__ import division\n",
"import math\n",
"import cmath\n",
"#initializing the variables:\n",
"E1 = 5 + 0j;# in volts\n",
"E2 = 2 + 4j;# in volts\n",
"Z1 = 3 + 4j;# in ohm\n",
"Z2 = 2 - 5j;# in ohm\n",
"Z3 = 6 + 8j;# in ohm\n",
"\n",
"#calculation:\n",
" #Currents I1 and I2 with their directions are shown in Figure 30.8.\n",
" #Two loops are chosen with their directions both clockwise.loop ABEF and loop BCDE,\n",
" #using kirchoff rule in 3 loops\n",
" #two eqns obtained\n",
" #(Z1 + Z3)*I1 - Z3*I2 = E1\n",
" #-1*Z3*I1 + (Z2 + Z3)*I2 = E2\n",
"I1 = ((Z2 + Z3)*E1 + Z3*E2)/((Z2 + Z3)*(Z1 + Z3) - Z3*Z3)\n",
"I2 = -1*(E1 - (Z1 + Z3)*I1)/Z3\n",
"I3 = I1 - I2\n",
"\n",
"\n",
"#Results\n",
"print \"\\n\\n Result \\n\\n\"\n",
"print \"current, I1 is \",round(I1.real,2),\" + (\",round( I1.imag,2),\")i A,\\n current, I2 is \",round(I2.real,2),\" + (\",round( I2.imag,2),\")i A and \"\n",
"print \" current, I3 is \",round(I3.real,2),\" + (\",round( I3.imag,2),\")i A\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"\n",
" Result \n",
"\n",
"\n",
"current, I1 is 0.57 + ( 0.62 )i A,\n",
" current, I2 is 0.56 + ( 1.33 )i A and \n",
" current, I3 is 0.01 + ( -0.71 )i A\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3>Example 4, page no. 541</h3>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#determine the magnitude of the current in the (4 + j3)impedance.\n",
"from __future__ import division\n",
"import math\n",
"import numpy\n",
"import cmath\n",
"#initializing the variables:\n",
"rv1 = 10;# in volts\n",
"rv2 = 12;# in volts\n",
"rv3 = 15;# in volts\n",
"thetav1 = 0;# in degrees\n",
"thetav2 = 0;# in degrees\n",
"thetav3 = 0;# in degrees\n",
"R1 = 4;# in ohm\n",
"R2 = -5j;# in ohm\n",
"R3 = 8;# in ohm\n",
"R4 = 4;# in ohm\n",
"R5 = 3j;# in ohm\n",
"\n",
"#calculation:\n",
" #voltages\n",
"V1 = rv1*math.cos(thetav1*math.pi/180) + 1j*rv1*math.sin(thetav1*math.pi/180)\n",
"V2 = rv2*math.cos(thetav2*math.pi/180) + 1j*rv2*math.sin(thetav2*math.pi/180)\n",
"V3 = rv3*math.cos(thetav3*math.pi/180) + 1j*rv3*math.sin(thetav3*math.pi/180)\n",
" #Currents I1, I2 and I3 with their directions are shown in Figure 30.10.\n",
" #Three loops are chosen. The choice of loop directions is arbitrary. loop ABGH, and loopBCFG and loop CDEF\n",
"Z4 = R4 + R5\n",
" #using kirchoff rule in 3 loops\n",
" #three eqns obtained\n",
" #R1*I1 + R2*I2 = V1 + V2\n",
" #-1*R3*I1 + (R3 + R2)*I2 + R3*I3 = V2 + V3\n",
" # -1*R3*I1 + R3*I2 + (R3 + Z4)*I3 = V3\n",
" #using determinants\n",
"d1 = [[(V1 + V2), R2, 0],[(V2 + V3), (R3 + R2), R3],[V3, R3, (R3 + Z4)]]\n",
"D1 = numpy.linalg.det(d1)\n",
"d2 = [[R1, (V1 + V2), 0],[-1*R3, (V2 + V3), R3],[-1*R3, V3, (R3 + Z4)]]\n",
"D2 = numpy.linalg.det(d2)\n",
"d3 = [[R1, R2, (V1 + V2)],[-1*R3, (R3 + R2), (V2 + V3)],[-1*R3, R3, V3]]\n",
"D3 = numpy.linalg.det(d3)\n",
"d = [[R1, R2, 0],[-1*R3, (R3 + R2), R3],[-1*R3, R3, (R3 + Z4)]]\n",
"D = numpy.linalg.det(d)\n",
"I1 = D1/D\n",
"I2 = D2/D\n",
"I3 = D3/D \n",
"I3mag = abs(I3)\n",
"\n",
"\n",
"#Results\n",
"print \"\\n\\n Result \\n\\n\"\n",
"print \"\\n magnitude of the current through (4 + i3)ohm impedance is \",round(I3mag,2),\" A\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"\n",
" Result \n",
"\n",
"\n",
"\n",
" magnitude of the current through (4 + i3)ohm impedance is 1.84 A"
]
}
],
"prompt_number": 8
}
],
"metadata": {}
}
]
}
|