summaryrefslogtreecommitdiff
path: root/Electrical_Circuit_Theory_And_Technology/chapter_29-checkpoint.ipynb
blob: d6dbd49345d09081d51cdb8b6d480dca6a714e4c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h1>Chapter 29: parallel resonance and Q-factor</h1>"
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 1, page no. 521</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determine (a) the resonant frequency, (b) the dynamic resistance, \n",
      "#(c) the current at resonance, and (d) the circuit Q-factor at resonance.\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "R  =  10;#  in  ohms\n",
      "L  =  0.005;#  IN  Henry\n",
      "C  =  0.25e-6;#  IN  fARADS\n",
      "V  =  50;#in  volts\n",
      "\n",
      "#calculation:\n",
      " #Resonant  frequency,  for  parallel\n",
      "fr  =  ((1/(L*C)  -  ((R**2)/(L**2)))**0.5)/(2*math.pi)\n",
      " #dynamic  resistance\n",
      "Rd  =  L/(C*R)\n",
      " #Current  at  resonance\n",
      "Ir  =  V/Rd\n",
      "wr  =  2*math.pi*fr\n",
      " #Q-factor  at  resonance,  Q  =  wr*L/R\n",
      "Qr  =  wr*L/R\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)Resonance  frequency  is  \",round(fr,2),\"  Hz\\n\"\n",
      "print  \"\\n  (b)dynamic  resistance  \",round(Rd,2),\"  ohm\\n\"\n",
      "print  \"\\n  (c)Current  at  resonance,  Ir  is  \",round(Ir,2),\"  A\\n\"\n",
      "print  \"\\n  (d)Q-factor  at  resonance  is  \",round(Qr,2),\"\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)Resonance  frequency  is   4490.31   Hz\n",
        "\n",
        "\n",
        "  (b)dynamic  resistance   2000.0   ohm\n",
        "\n",
        "\n",
        "  (c)Current  at  resonance,  Ir  is   0.02   A\n",
        "\n",
        "\n",
        "  (d)Q-factor  at  resonance  is   14.11 \n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 2, page no. 521</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determine the resonant frequency for the network\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "RL1  =  0;#  in  ohms\n",
      "RL2  =  30;#  in  ohms\n",
      "L  =  0.100;#  IN  Henry\n",
      "C  =  40e-6;#  IN  fARADS\n",
      "V  =  50;#in  volts\n",
      "\n",
      "#calculation:\n",
      " #for  RL1\n",
      " #Resonant  frequency,\n",
      "wr1  =  (1/(L*C))**0.5\n",
      "fr1  =  wr1/(2*math.pi)\n",
      " #for  RL2\n",
      " #Resonant  frequency,\n",
      "wr2  =  (1/(L*C)  -  ((RL2**2)/(L**2)))**0.5\n",
      "fr2  =  wr2/(2*math.pi)\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)Resonance  frequency  at  RL  =  0  is  \",round(fr1,2),\"  Hz\"\n",
      "print  \"\\n  (b)Resonance  frequency  at  RL  =  30  ohm  is  \",round(fr2,2),\"  Hz\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)Resonance  frequency  at  RL  =  0  is   79.58   Hz\n",
        "\n",
        "  (b)Resonance  frequency  at  RL  =  30  ohm  is   63.66   Hz\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 3, page no. 523</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determine for the condition when the supply current is a minimum, \n",
      "#(a) the capacitance of the capacitor, (b) the dynamic resistance, \n",
      "#(c) the supply current, (d) the Q-factor, (e) the bandwidth,\n",
      "#(f) the upper and lower \u00033 dB frequencies, and (g) the value of the circuit impedance at the \u00033 dB frequencies\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "R  =  150;#  in  ohms\n",
      "L  =  0.120;#  IN  Henry\n",
      "V  =  20;#in  volts\n",
      "fr  =  4000;#  in  Hz\n",
      "\n",
      "#calculation:\n",
      " #capacitance,  C\n",
      "C  =  1/(L*((2*math.pi*fr)**2  +  ((R**2)/(L**2))))\n",
      "Rd  =  L/(C*R)\n",
      " #Current  at  resonance\n",
      "Ir  =  V/Rd\n",
      "wr  =  2*math.pi*fr\n",
      " #Q-factor  at  resonance,  Q  =  wr*L/R\n",
      "Qr  =  wr*L/R\n",
      " #bandwidth,.(f2  \u2212  f1)\n",
      "bw  =  fr/Qr\n",
      " #upper  half-power  frequency,  f2\n",
      "f2  =  (bw  +  ((bw**2)  +  4*(fr**2))**0.5)/2\n",
      " #lower  half-power  frequency,  f1\n",
      "f1  =  f2  -  bw\n",
      " #impedance  at  the  \u22123  dB  frequencies\n",
      "Z  =  Rd/(2**0.5)\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)the  capacitance  of  the  capacitor,C  is  \",round(C*1E6,2),\"uF\"\n",
      "print  \"\\n  (b)dynamic  resistance  \",round(Rd,2),\"ohm\\n\"\n",
      "print  \"\\n  (c)Current  at  resonance,  Ir  is  \",round(Ir*1000,2),\"mA\\n\"\n",
      "print  \"\\n  (d)Q-factor  at  resonance  is  \",round(Qr,2),\"\\n\"\n",
      "print  \"\\n  (e)bandwidth  is  \",round(bw,2),\"  Hz\\n\"\n",
      "print  \"\\n  (f)the  upper  half-power  frequency,  f2  is  \",round(f2,2),\"  Hz  and \"\n",
      "print   \" the  lower  half-power  frequency,  f1  is  \",round(f1,2),\"  Hz\\n\"\n",
      "print  \"\\n  (g)impedance  at  the  -3  dB  frequencies  is  \",round(Z,2),\" ohm\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)the  capacitance  of  the  capacitor,C  is   0.01 uF\n",
        "\n",
        "  (b)dynamic  resistance   60788.85 ohm\n",
        "\n",
        "\n",
        "  (c)Current  at  resonance,  Ir  is   0.33 mA\n",
        "\n",
        "\n",
        "  (d)Q-factor  at  resonance  is   20.11 \n",
        "\n",
        "\n",
        "  (e)bandwidth  is   198.94   Hz\n",
        "\n",
        "\n",
        "  (f)the  upper  half-power  frequency,  f2  is   4100.71   Hz  and \n",
        " the  lower  half-power  frequency,  f1  is   3901.76   Hz\n",
        "\n",
        "\n",
        "  (g)impedance  at  the  -3  dB  frequencies  is   42984.21  ohm\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 4, page no. 525</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determine the resonant frequency of the network.\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "RL  =  5;#  in  ohms\n",
      "L  =  0.002;#  IN  Henry\n",
      "C  =  25e-6;#  IN  fARADS\n",
      "Rc  =  3;#  in  ohms\n",
      "\n",
      "#calculation:\n",
      " #Resonant  frequency,  for  parallel\n",
      "fr  =  (1/(2*math.pi*((L*C)**0.5)))*((RL**2  -  (L/C))/(Rc**2  -  (L/C)))**0.5\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  resonant  frequency,  fr  is  \",round(fr,2),\"  Hz\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  resonant  frequency,  fr  is   626.45   Hz"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 5, page no. 525</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determine for the parallel network the values of inductance L\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "RL  =  3;#  in  ohms\n",
      "fr  =  1000;#  in  Hz\n",
      "Xc  =  10;#  IN  ohms\n",
      "Rc  =  4;#  in  ohms\n",
      "\n",
      "#calculation:\n",
      "XL1  =  (((Rc**2  +  Xc**2)/Xc)  +  ((((Rc**2  +  Xc**2)/Xc)**2)  -  4*(RL**2))**0.5)/2\n",
      "XL2  =  (((Rc**2  +  Xc**2)/Xc)  -  ((((Rc**2  +  Xc**2)/Xc)**2)  -  4*(RL**2))**0.5)/2\n",
      "wr  =  2*math.pi*fr\n",
      " #inductance\n",
      "L1  =  XL1/wr\n",
      "L2  =  XL2/wr\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  inductance  is  either  \",round(L1*1000,2),\"mH  or  \",round(L2*1000,2),\"mH\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  inductance  is  either   1.71 mH  or   0.13 mH"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 6, page no. 526</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determine the overall Q-factor of the parallel combination.\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "QL  =  60;#  Q-factor\n",
      "Qc  =  300;#  Q-factor\n",
      "\n",
      "#calculation:\n",
      "QT  =  QL*Qc/(QL  +  Qc)\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  the  overall  Q-factor  is  \",round(QT,2)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  the  overall  Q-factor  is   50.0"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 7, page no. 527</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determine for the circuit (a) the Q-factor, (b) the dynamic resistance, and\n",
      "#(c) the magnitude of the impedance when the supply frequency is 0.4% greater than the tuned frequency.\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "C  =  10.61E-9;#  in  Farad\n",
      "bw  =  500;#  in  Hz\n",
      "fr  =  150000;#  in  Hz\n",
      "x  =  0.004\n",
      "\n",
      "#calculation:\n",
      " #Q-factor\n",
      "Q  =  fr/bw\n",
      "wr  =  2*math.pi*fr\n",
      " #dynamic  resistance,  RD\n",
      "Rd =  Q/(C*wr)\n",
      "de =  x\n",
      "Z  =  Rd/(1  +  (2*de*Q*1j))\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)Q-factor  \",round(Q,2),\"\"\n",
      "print  \"\\n  (b)dynamic  resistance  \",round(Rd,2),\"ohm\"\n",
      "print  \"\\n  (c)magnitude  of  the  impedance  \",round(abs(Z),2),\"ohm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)Q-factor   300.0 \n",
        "\n",
        "  (b)dynamic  resistance   30000.93 ohm\n",
        "\n",
        "  (c)magnitude  of  the  impedance   11538.82 ohm"
       ]
      }
     ],
     "prompt_number": 8
    }
   ],
   "metadata": {}
  }
 ]
}