summaryrefslogtreecommitdiff
path: root/Electrical_Circuit_Theory_And_Technology/chapter_27-checkpoint_2.ipynb
blob: 4d37718b73d3920eff83dd11f56477e696ff7774 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h1>Chapter 27: A.c. bridges</h1>"
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 1, page no. 485</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#determine the values of Rx and Cx at balance.\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "R2  =  2500;#  in  ohms\n",
      "C2  =  0.2E-6;#  IN  fARADS\n",
      "R3 = 1;\n",
      "R4 = 1;\n",
      "w = 2000*math.pi;\n",
      "#calculation:\n",
      "Rx = R4*(1 + w*w*C2*C2*R2*R2)/(R2*R3*w*w*C2*C2)\n",
      "Cx = R3*C2/(R4*(1 + w*w*C2*C2*R2*R2))\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)Resistance  Rx  = R4(1 + w*w*C2*C2*R2*R2)/(R2*R3*w*w*C2*C2) and Capacitance Cx = R3*C2/(R4*(1 + w*w*C2*C2*R2*R2))\"\n",
      "print  \"\\n  (b)at balance Rx = \",round(Rx/1000,2),\"KOhm and Cx = \", round(Cx*1E9,2),\"nF\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)Resistance  Rx  = R4(1 + w*w*C2*C2*R2*R2)/(R2*R3*w*w*C2*C2) and Capacitance Cx = R3*C2/(R4*(1 + w*w*C2*C2*R2*R2))\n",
        "\n",
        "  (b)at balance Rx =  2.75 KOhm and Cx =  18.4 nF"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 2, page no. 487</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determine, when the bridge is balanced, (a) the value of resistance R1, and (b) the frequency of the bridge.\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "R2  =  30000;#  in  ohms\n",
      "R3  =  30000;#  in  ohms\n",
      "R4  =  1000;#  in  ohms\n",
      "C2  =  1e-9;#  IN  fARADS\n",
      "C3  =  1e-9;#  IN  fARADS\n",
      "\n",
      "#calculation:\n",
      " #the  bridge  is  balanced\n",
      "R1  =  R4/((R3/R2)  +  (C2/C3))\n",
      " #frequency,  f\n",
      "f  =  1/(2*math.pi*((C2*C3*R2*R3)**0.5))\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)Resistance  R1  =  \",R1,\"  ohm\\n\"\n",
      "print  \"\\n  (b)frequency,  f  is  \",round(f,2),\"Hz\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)Resistance  R1  =   500.0   ohm\n",
        "\n",
        "\n",
        "  (b)frequency,  f  is   5305.16 Hz"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 3, page no. 487</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#determine, when the bridge is balanced, \n",
      "#(a) the value of resistance Rx, (b) the value of capacitance Cx,\n",
      "#(c) the phase angle of the unknown arm, (d) the power factor of the unknown arm and (e) its loss angle.\n",
      "from __future__ import division\n",
      "import math\n",
      "import cmath\n",
      "#initializing  the  variables:\n",
      "R3  =  600;#  in  ohms\n",
      "R4  =  200;#  in  ohms\n",
      "C2  =  0.2e-6;#  IN  fARADS\n",
      "C3  =  4000e-12;#  IN  fARADS\n",
      "f  =  1500;#in  Hz\n",
      "\n",
      "#calculation:\n",
      " #the  bridge  is  balanced\n",
      " #Resistance,  Rx\n",
      "Rx  =  R4*C3/C2\n",
      " #Capacitance,  Cx\n",
      "Cx  =  C2*R3/R4\n",
      " #Phase  angle\n",
      "phi  =  math.atan(1/(2*math.pi*f*Cx*Rx))\n",
      "phid  =  phi*180/math.pi#  in  degrees\n",
      " #Power  factor  of  capacitor\n",
      "Pc  =  math.cos(phi)\n",
      " #Loss  angle,\n",
      "de  =  90  -  phid\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)Resistance  Rx  =  \",round(Rx,2),\"  ohm\\n\"\n",
      "print  \"\\n  (b)capacitance,  Cx  is  \",round(Cx*1E9,2),\"pFarad\\n\"\n",
      "print  \"\\n  (c)phasor  diagram  =  \",round(phid,2),\"deg lead \"\n",
      "print  \"\\n  (d)power  factor  is  \",round(Pc,2),\"  \\n\"\n",
      "print  \"\\n  (e)Loss  angle  =  \",round(de,2),\"deg\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)Resistance  Rx  =   4.0   ohm\n",
        "\n",
        "\n",
        "  (b)capacitance,  Cx  is   600.0 pFarad\n",
        "\n",
        "\n",
        "  (c)phasor  diagram  =   88.7 deg lead \n",
        "\n",
        "  (d)power  factor  is   0.02   \n",
        "\n",
        "\n",
        "  (e)Loss  angle  =   1.3 deg\n"
       ]
      }
     ],
     "prompt_number": 1
    }
   ],
   "metadata": {}
  }
 ]
}