summaryrefslogtreecommitdiff
path: root/Electrical_Circuit_Theory_And_Technology/chapter_22-checkpoint_1.ipynb
blob: 4bad277312ba669c69f38c1202c88ca4b64dd360 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h1>Chapter 22: Three-phase induction motors</h1>"
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 1, page no. 389</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determine the synchronous speed of the motor in rev/min.\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "f  =  50;#  in  Hz\n",
      "p  =  2/2;#  number  of  pairs  of  poles\n",
      "\n",
      "#calculation:\n",
      " #ns  is  the  synchronous  speed,  \n",
      "    #f  is  the  frequency  in  hertz  of  the  supply  to  the  stator  and \n",
      "    #p  is  the  number  of  pairs  of  poles.\n",
      "ns  =  f/p\n",
      "nsrpm  =  ns*60\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\nsynchronous  speed  of  the  motor  is  \",nsrpm,\"  rev/min\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "synchronous  speed  of  the  motor  is   3000.0   rev/min"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 2, page no. 389</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determine the number of poles.\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "f  =  60;#  in  Hz\n",
      "ns  =  900/60;#  in  rev/sec\n",
      "\n",
      "#calculation:\n",
      " #ns  is  the  synchronous  speed,  f  is  the  frequency  in  hertz  of  the  supply  to  the  stator  and  \n",
      "    #p  is  the  number  of  pairs  of  poles.\n",
      "p  =  f/ns\n",
      "np  =  p*2\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\nnumber  of  poles  is  \", round(np,2)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "number  of  poles  is   8.0"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 3, page no. 390</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate the frequency of the supply voltage.\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "p  =  2/2;#  number  of  pairs  of  poles\n",
      "ns  =  6000/60;#  in  rev/sec\n",
      "\n",
      "#calculation:\n",
      " #ns  is  the  synchronous  speed,  f  is  the  frequency  in  hertz  of  the  supply  to  the  stator  and \n",
      "    #\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"frequency  is  \",f,\"  Hz\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "frequency  is   100.0   Hz"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 4, page no. 391</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determine (a) the synchronous speed and (b) the slip at full load.\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "p  =  4/2;#  number  of  pairs  of  poles\n",
      "f  =  50;#  in  Hz\n",
      "nr  =  1455/60;#  in  rev/sec\n",
      "\n",
      "#calculation:\n",
      " #ns  is  the  synchronous  speed,  f  is  the  frequency  in  hertz  of  the  supply  to  the  stator  and \n",
      "    #p  is  the  number  of  pairs  of  poles.\n",
      "ns  =  f/p\n",
      " #The  slip,  s\n",
      "s  =  ((ns  -  nr)/ns)*100#  in  percent\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n(a)  synchronous  speed  is  \",ns,\"  rev/sec\"\n",
      "print  \"\\n(b)  slip  is  \",s,\"  percent\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "(a)  synchronous  speed  is   25.0   rev/sec\n",
        "\n",
        "(b)  slip  is   3.0   percent"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 5, page no. 392</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#determine (a) the synchronous speed,\n",
      "#(b) the speed of the rotor and (c) the frequency of the induced e.m.f.\u2019s in the rotor\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "p  =  2/2;#  number  of  pairs  of  poles\n",
      "f  =  60;#  in  Hz\n",
      "s  =  0.02;#  slip\n",
      "\n",
      "#calculation:\n",
      " #ns  is  the  synchronous  speed,  f  is  the  frequency  in  hertz  of  the  supply  to  the  stator  and \n",
      "    #p  is  the  number  of  pairs  of  poles.\n",
      "ns  =  f/p\n",
      " #The  the  rotor  runs  at\n",
      "nr  =  ns*(1  -  s)\n",
      " #frequency  of  the  e.m.f.  induced  in  the  rotor  bars  is\n",
      "fr  =  ns  -  nr\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n(a)  synchronous  speed  is  \",ns,\"  rev/sec\"\n",
      "print  \"\\n(b)  rotor  speed  is  \",nr,\"  rev/sec\"\n",
      "print  \"\\n(c)  frequency  of  the  e.m.f. induced  in  the  rotor  bars  is  is  \",fr,\"  Hz\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "(a)  synchronous  speed  is   60.0   rev/sec\n",
        "\n",
        "(b)  rotor  speed  is   58.8   rev/sec\n",
        "\n",
        "(c)  frequency  of  the  e.m.f. induced  in  the  rotor  bars  is  is   1.2   Hz"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 6, page no. 392</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determine the synchronous speed.\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "f  =  50;#  in  Hz\n",
      "nr  =  1200/60;#  in  rev/min\n",
      "s  =  0.04;#  slip\n",
      "\n",
      "#calculation:\n",
      " #the  synchronous  speed.\n",
      "ns  =  nr/(1  -  s)\n",
      "nsrpm  =  ns*60\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  synchronous  speed  is  \",nsrpm,\"  rev/min\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  synchronous  speed  is   1250.0   rev/min"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 7, page no. 394</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determine (a) the slip, and (b) the rotor speed.\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "p  =  8/2;#  number  of  pairs  of  poles\n",
      "f  =  50;#  in  Hz\n",
      "fr  =  3;#  in  Hz\n",
      "\n",
      "#calculation:\n",
      " #ns  is  the  synchronous  speed,  f  is  the  frequency  in  hertz  of  the  supply  to  the  stator  and  \n",
      "    #p  is  the  number  of  pairs  of  poles.\n",
      "ns  =  f/p\n",
      " #fr  =  s*f\n",
      "s  =  (fr/f)\n",
      " #the  rotor  speed.\n",
      "nr  =  ns*(1  -  s)\n",
      "nrrpm  =  nr*60\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n(a)  slip  is  \",s*100,\"  percent\"\n",
      "print  \"\\n  (b)  rotor  speed  is  \",nrrpm,\"  rev/min\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "(a)  slip  is   6.0   percent\n",
        "\n",
        "  (b)  rotor  speed  is   705.0   rev/min"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 8, page no. 396</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#determine (a) the rotor copper loss, \n",
      "#(b) the total mechanical power developed by the rotor,\n",
      "#(c) the output power of the motor if friction and windage losses are 750 W, and \n",
      "#(d) the efficiency of the motor, neglecting rotor iron loss.\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "Psi  =  32000;#  in  Watts\n",
      "Psl  =  1200;#  in  Watts\n",
      "s  =  0.05;#  slip\n",
      "Pfl  =  750;#  in  Watts\n",
      "\n",
      "#calculation:\n",
      " #Input  power  to  rotor  =  stator  input  power  -\u0006  stator  losses\n",
      "Pi  =    Psi  -  Psl\n",
      " #slip  =  rotor  copper  loss/rotor  input\n",
      "Pl  =  s*Pi\n",
      " #Total  mechanical  power  developed  by  the  rotor  =  rotor  input  power  -\u0006  rotor  losses\n",
      "Pr  =  Pi  -  Pl\n",
      " #Output  power  of  motor  =  power  developed  by  the  rotor  -\u0006  friction  and  windage  losses\n",
      "Po  =  Pr  -  Pfl\n",
      " #Efficiency  of  induction  motor  =  (output  power/input  power)*100\n",
      "eff  =  (Po/Psi)*100#  in  percent\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n(a)  rotor  copper  loss  is  \",Pl,\"  Watt\"\n",
      "print  \"\\n(b)  Total  mechanical  power  developed  by  the  rotor  is  \",Pr,\"  W\"\n",
      "print  \"\\n(c)  Output  power  of  motor  is  \",Po,\"  Watt\"\n",
      "print  \"\\n(d)  efficiency  of  induction  motor  is  \",round(eff,2),\"  percent\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "(a)  rotor  copper  loss  is   1540.0   Watt\n",
        "\n",
        "(b)  Total  mechanical  power  developed  by  the  rotor  is   29260.0   W\n",
        "\n",
        "(c)  Output  power  of  motor  is   28510.0   Watt\n",
        "\n",
        "(d)  efficiency  of  induction  motor  is   89.09   percent"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 9, page no. 397</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#determine (a) the rotor copper loss, and (b) the efficiency of the motor.\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "Psi  =  32000;#  in  Watts\n",
      "Psl  =  1200;#  in  Watts\n",
      "Pfl  =  750;#  in  Watts\n",
      "x  =  0.35;\n",
      "\n",
      "#calculation:\n",
      " #The  slip,  s\n",
      "s  =  1-x\n",
      " #Input  power  to  rotor  =  stator  input  power  -  stator  losses\n",
      "Pi  =    Psi  -  Psl\n",
      " #slip  =  rotor  copper  loss/rotor  input\n",
      "Pl  =  s*Pi\n",
      " #Total  mechanical  power  developed  by  the  rotor  =  rotor  input  power  -\u0006  rotor  losses\n",
      "Pr  =  Pi  -  Pl\n",
      " #Output  power  of  motor  =  power  developed  by  the  rotor  -\u0006  friction  and  windage  losses\n",
      "Po  =  Pr  -  Pfl\n",
      " #Efficiency  of  induction  motor  =  (output  power/input  power)*100\n",
      "eff  =  (Po/Psi)*100#  in  percent\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n(a)  rotor  copper  loss  is  \",Pl,\"  Watt\"\n",
      "print  \"\\n(b)  efficiency  of  induction  motor  is  \",round(eff,2),\"  percent\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "(a)  rotor  copper  loss  is   20020.0   Watt\n",
        "\n",
        "(b)  efficiency  of  induction  motor  is   31.34   percent"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 10, page no. 398</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate (a) the synchronous speed, (b) the slip, \n",
      "#(c) the full load torque, (d) the power output if mechanical losses amount to 770 W, \n",
      "#(e) the maximum torque, (f) the speed at which maximum torque occurs,\n",
      "#and (g) the starting torque.\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "V  =  415;#  in  Volts\n",
      "f  =  50  ;#  in  Hz\n",
      "nr  =  24;#  in  rev/sec\n",
      "p  =  4/2;#  no.  of  pole  pairs\n",
      "R2  =  0.35;#  in  Ohms\n",
      "X2  =  3.5;#  in  Ohms\n",
      "tr  =  0.85;#  turn  ratio  N2/N1\n",
      "Pl  =  770;#  in  Watt\n",
      "m  =  3;#  no.  of  phases\n",
      "\n",
      "#calculation:\n",
      " #ns  is  the  synchronous  speed,  f  is  the  frequency  in  hertz  of  the  supply  to  the  stator  and  \n",
      "    #p  is  the  number  of  pairs  of  poles.\n",
      "ns  =  f/p\n",
      " #The  slip,  s\n",
      "s  =  ((ns  -  nr)/ns)*100#  in  percent\n",
      " #Phase  voltage,  E1  =  V/(3**0.5)\n",
      "E1  =  V/(3**0.5)\n",
      " #Full  load  torque\n",
      "T  =  (m*(tr**2)/(2*math.pi*ns))*((s/100)*E1*E1*R2/(R2*R2  +  (X2*(s/100))**2))\n",
      " #Output  power,  including  friction  losses\n",
      "Pm  =  2*math.pi*nr*T\n",
      " #power  output\n",
      "Po  =  Pm  -  Pl\n",
      " #Maximum  torque  occurs  when  R2  =  Xr  =  0.35  ohm\n",
      " #Slip  \n",
      "sm  =  R2/X2\n",
      " #maximum  torque,  Tm  \n",
      "Tm  =  (m*(tr**2)/(2*math.pi*ns))*(sm*E1*E1*R2/(R2*R2  +  (X2*sm)**2))\n",
      " #speed  at  which  maximum  torque  occurs\n",
      "nrm  =  ns*(1  -  sm)\n",
      "nrmrpm  =  nrm*60\n",
      " #At  the  start,  i.e.,  at  standstill,  slip,  s=1\n",
      "ss  =  1\n",
      " #starting  torque\n",
      "Ts  =  (m*(tr**2)/(2*math.pi*ns))*(ss*E1*E1*R2/(R2*R2  +  (X2*ss)**2))\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n(a)Synchronous  speed  is  \",round(ns,2),\"  rev/sec\"\n",
      "print  \"\\n(b)Slip  is  \",round(s,2),\"  percent\"\n",
      "print  \"\\n(c)Full  load  torque  is  \",round(T,2),\"  Nm\"\n",
      "print  \"\\n(d)power  output  is  \",round(Po,2),\"W\"\n",
      "print  \"\\n(e)maximum  torque  is  \",round(Tm,2),\"  Nm\"\n",
      "print  \"\\n(f)speed  at  which  maximum  torque  occurs  is  \",round(nrmrpm,2),\"rev/min\"\n",
      "print  \"\\n(g)starting  torque  is  \",round(Ts,2),\"  Nm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "(a)Synchronous  speed  is   25.0   rev/sec\n",
        "\n",
        "(b)Slip  is   4.0   percent\n",
        "\n",
        "(c)Full  load  torque  is   78.05   Nm\n",
        "\n",
        "(d)power  output  is   10998.99 W\n",
        "\n",
        "(e)maximum  torque  is   113.17   Nm\n",
        "\n",
        "(f)speed  at  which  maximum  torque  occurs  is   1350.0 rev/min\n",
        "\n",
        "(g)starting  torque  is   22.41   Nm"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 11, page no. 400</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determine for the induction motor in problem 10 at full load, \n",
      "#(a) the rotor current, (b) the rotor copper loss, and (c) the starting current.\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "V  =  415;#  in  Volts\n",
      "f  =  50  ;#  in  Hz\n",
      "nr  =  24;#  in  rev/sec\n",
      "p  =  4/2;#  no.  of  pole  pairs\n",
      "R2  =  0.35;#  in  Ohms\n",
      "X2  =  3.5;#  in  Ohms\n",
      "tr  =  0.85;#  turn  ratio  N2/N1\n",
      "m  =  3;#  no.  of  phases\n",
      "\n",
      "#calculation:\n",
      " #ns  is  the  synchronous  speed,  f  is  the  frequency  in  hertz  of  the  supply  to  the  stator  and \n",
      "    #p  is  the  number  of  pairs  of  poles.\n",
      "ns  =  f/p\n",
      " #The  slip,  s\n",
      "s  =  ((ns  -  nr)/ns)*100#  in  percent\n",
      " #Phase  voltage,  E1  =  V/(3**0.5)\n",
      "E1  =  V/(3**0.5)\n",
      " #rotor  current,\n",
      "Ir  =  (s/100)*E1*tr/((R2**2  +  (X2*(s/100))**2)**0.5)\n",
      " #Rotor  copper  loss  \n",
      "Pcl  =  m*R2*(Ir**2)\n",
      " #starting  current,\n",
      "ss  =1\n",
      "I2  =  ss*tr*E1/((R2**2  +  (X2*ss)**2)**0.5)\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n(a)rotor  current  is  \",round(Ir,2),\"  A\"\n",
      "print  \"\\n(b)Total  copper  loss  is  \",round(Pcl,2),\"  W\"\n",
      "print  \"\\n(c)starting  current  is  \",round(I2,2),\"  A\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "(a)rotor  current  is   21.61   A\n",
        "\n",
        "(b)Total  copper  loss  is   490.37   W\n",
        "\n",
        "(c)starting  current  is   57.9   A"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 12, page no. 401</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#determine (a) the power input at full load, \n",
      "#(b) the efficiency of the motor at full load and \n",
      "#(c) the current taken from the supply at full load, if the motor runs at a power factor of 0.87 lagging.\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "V  =  415;#  in  Volts\n",
      "Psl  =  650;#  in  Watt\n",
      "pf  =  0.87;#  power  factor\n",
      "\n",
      "#calculation:\n",
      "Pm  =  11770;#  watts  from  part  (d),  Problem  22.10\n",
      "Pcl  =  490.35;#  watts,  Rotor  copper  loss,  from  part  (b),  Problem  22.11\n",
      " #Stator  input  power\n",
      "P1  =  Pm  +  Pcl  +  Psl\n",
      "Po  =  11000#  watts,  Net  power  output,  from  part  (d),  Problem  22.10\n",
      " #efficiency  =  (output/input)  *100\n",
      "eff  =  (Po/P1)*100#  in  percent\n",
      " #Power  input,  P1  =  (3**0.5)*VL*IL*cos(phi)\u000e\n",
      " #  pf  =  cos(phi)\n",
      " #supply  current,  IL\n",
      "I  =  P1/((3**0.5)*V*pf)\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n(aStator  input  power  is  \",round(P1,2),\" W\"\n",
      "print  \"\\n(b)efficiency  is  \",round(eff,2),\"  percent\"\n",
      "print  \"\\n(c)supply  current  is  \",round(I,2),\"  A\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "(aStator  input  power  is   12910.35  W\n",
        "\n",
        "(b)efficiency  is   85.2   percent\n",
        "\n",
        "(c)supply  current  is   20.64   A"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 13, page no. 401</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#determine the resistance of the rotor winding required for maximum starting torque.\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "V  =  415;#  in  Volts\n",
      "f  =  50  ;#  in  Hz\n",
      "nr  =  24;#  in  rev/sec\n",
      "p  =  4/2;#  no.  of  pole  pairs\n",
      "R2  =  0.35;#  in  Ohms\n",
      "X2  =  3.5;#  in  Ohms\n",
      "\n",
      "#calculation:\n",
      " #At  the  moment  of  starting,  slip,  \n",
      "s  =  1\n",
      " #Maximum  torque  occurs  when  rotor  reactance  equals  rotor  resistance\n",
      " #for  maximum  torque\n",
      "R2  =  s*X2\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\nresistance  of  the  rotor  is  \",R2,\"  Ohm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "resistance  of  the  rotor  is   3.5   Ohm"
       ]
      }
     ],
     "prompt_number": 13
    }
   ],
   "metadata": {}
  }
 ]
}