summaryrefslogtreecommitdiff
path: root/Electrical_Circuit_Theory_And_Technology/chapter_17-checkpoint_1.ipynb
blob: 94d79ec671f3128d2e730516dfe9110bd67d55fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
{
 "metadata": {
  "name": "",
  "signature": "sha256:3c30db14cf5a722166d02bb2b24e5cc57f73fe8d238c68c893567c34f71054b0"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h1>Chapter 17: D.c. transients</h1>"
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 1, page no. 262</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#determine the capacitor voltage at a time equal to one time constant after being connected to the supply, \n",
      "#and also two seconds after being connected to the supply. \n",
      "#Also, find the time for the capacitor voltage to reach one half of its steady state value.\n",
      "from __future__ import division\n",
      "import math\n",
      "#from pylab import *\n",
      "%pylab inline\n",
      "#initializing  the  variables:\n",
      "C  =  15E-6;#  in  Farads\n",
      "R  =  47000;#  in  ohms\n",
      "V  =  120;#  in  Volts\n",
      "\n",
      "#calculation:\n",
      "tou  =  R*C\n",
      "t1  =  tou\n",
      "Vctou  =  V*(1-math.e**(-1*t1/tou))\n",
      "Vct  =  V/2\n",
      "t0  =  -1*tou*math.log(1  -  Vct/V)\n",
      "t=[]\n",
      "Vc=[]\n",
      "I  =  V/R\n",
      "for h in range(50):\n",
      "    t.append((h-1)/10)\n",
      "    k=(h-1)/10\n",
      "    Vc.append(V*(1 - math.e**(-1*k/tou)))\n",
      "fig  = plt.figure()\n",
      "ax = fig.add_subplot(1, 1, 1)\n",
      "ax.plot(t,Vc,'-')\n",
      "#plot(t,Vc,'-')\n",
      "xlabel('time(sec)')\n",
      "ylabel('Volts(V)')\n",
      "show()\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)the  capacitor  voltage  at  a  time  equal  to  one  time  constant  =  \",round(Vctou,2),\"  V\"\n",
      "print  \"\\n  (b)the  time  for  the  capacitor  voltage  to  reach  one  half  of  its  steady  state  value  =  \",round(t0,5),\" secs\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Populating the interactive namespace from numpy and matplotlib\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEPCAYAAACtCNj2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHHBJREFUeJzt3XmYVNWd//E3Igi4gAZFFBXFBcQlaFxmQC1FDcqAW0bU\nTNRolhl14iTGxGUm6eQ3j4NJ1EwmMRq3mESI7Rp3QaRcEWMURQERIqCIIMjihrLU749z224aaKrp\nqjq3br1fz3OfunX7Vve3bKlPn3PuORckSZIkSZIkSZIkSZIkSZKk1LsZmA9MbnLs58BU4GXgbqBr\nk69dCrwBTAOOrVCNkqQKOQwYwJqhcAywSbI/MtkA9gYmAR2A3sCMJudJksqsEh+4TwGLmx0bC6xO\n9icCvZL9E4DRwApgFiEUDi5/iZIkSMdf4ecADyX7OwBvN/na28COFa9IkmpU7FC4HPgMGNXCOYUK\n1SJJNW/TiD/7bOB4YHCTY3OBnZo875UcW0OfPn0KM2fOLGtxkpRBM4HdWzqhXYUK6Q3cD+ybPB8C\nXAUcASxsct7ehFbDwYRuo8cIb6B5a6FQKGS3AVFXV0ddXV3sMsrG91d9li+HRYvg/ffh6qvrOPHE\nOpYsgSVLYPHi8LhsWdiWLm3c/+CDsH34IXToAFtuCZtvDltsAV26hP2GrXPncKxLl8b9zp3D1qnT\nmttmm61/69ixcWvfHtq14lMui7+7ptqF/xgt/hepREthNOHDvzvwFvBjwmWnHQkDzgATgPOAKUB9\n8rgyOZbdT38pkpUrYcECeOcdePfdsN98e++9EASLFsGKFfCFL4Rt2bJwrFs32Hrr8LjLLtC1K2y1\n1Zrblls2BkGHDrHftYpRiVA4fR3Hbm7h/CuSTdJG+OwzeOutdW9z58K8eeFDvXt36NkTtt8eevSA\n7baDHXeEAQPCfvfujUGwxRaNf3HX1YVN2RRzTEHrkcvlYpdQVr6/tlu2DKZPD9vMmfDmm/D3v4fH\nd98NH/Y77ww77RS2ffaB444LH/o9e4YP/U038l9/ln9/WX5vxarUmEKpZXpMQWqwYAG8+ipMngxT\npsDrr4cgWLoU9tgD9twTdt8ddt0VdtstPO60k101WrdixhQMBSkFVq2CadPgb3+DF18MITB5cujL\n33ff8Jd+//6w114hCHr1gk1iX1CuqmMoSClUKMCcOfDMMzBxYgiCl18O/fpf+hIccADsv38Igh12\naN3VM1JLDAUpBVatgkmTQgg0bCtXwsCBcOihcOCBIQi6dYtdqbLOUJAiKBTC4O9jj8HYsTB+fGgF\nHHZYCIKBA6FPH1sAqjxDQaqQTz6BcePgvvtgzJgwFnD00WEbPDh0A0mxGQpSGb33Hjz4IPzlL/D4\n4+H6/uHDYcgQ6NfPloDSx1CQSmzpUrjrLhg1Cl54IbQETjgBjj8+TPKS0sxQkEpg+fLQIhg1KowT\nDB4MZ5wBQ4eGdXmkamEoSG0wdSpcfz386U/hEtEzzoBTTvEqIVWvtCyIJ1WNzz6De+6B664Lk8nO\nPTfMI9hll9iVSZVhKEjAwoXw61/Db38bJo2dd14YK+jYMXZlUmUZCqppc+bA1VfDH/4AX/kKPPEE\n9O0buyopHldPUU2aMgXOPjtcRtqxY1h07ne/MxAkWwqqKbNnw3/9Fzz6KFx4IcyYEW4UIymwpaCa\nsGgRXHRRWGNo111DGFx2mYEgNWcoKNM+/hhGjgzdQsuXw2uvwU9+Em4RKWltdh8psx58EC64ICxH\n/eyz4aY0klpmKChz3nknjBdMmhQGj485JnZFUvWw+0iZsWoV/N//hdnHffvCK68YCFJr2VJQJkyd\nCmedFdYievLJsEqppNazpaCqViiE9YkOPzwsSZHPGwhSW1QiFG4G5gOTmxzbBhgLTAfGAE2XGLsU\neAOYBhxbgfpUpRYuhJNOCqHw1FPw7W97DwOprSoRCrcAQ5odu4QQCnsC45LnAHsDI5LHIcC1FapR\nVWbcuDAbeffdYcIEZyJLpVKJD9yngMXNjg0Hbk32bwVOTPZPAEYDK4BZwAzg4PKXqGqxahVcfjmc\neSbcfDP84hew2Waxq5KyI9ZAcw9ClxLJY49kfwfguSbnvQ3sWMG6lGLLloV7Gnz0UbjcdNttY1ck\nZU8arj4qJFtLX19LXV3d5/u5XI5cLlfSopQuf/87DBsWBpR/9Svo0CF2RVL65fN58vl8q15TqWG5\n3sD9wL7J82lADngX6AmMB/rSOLYwMnl8BPgxMLHZ9/POazUkn4fTToMf/Sjc50DSxinmzmuxBnHv\nA85K9s8C7m1y/DSgI7ArsAfwfMWrU2pcfz2MGAG33WYgSJVQie6j0cARQHfgLeBHhJZAPXAuYUD5\n1OTcKcnxKcBK4Dxa7lpSRhUKYRXTe+6Bp5923SKpUqr1qm67jzJs9eqwdtGzz4b7HnTvHrsiKRuK\n6T5Kw0Cz9LlVq+Cb34TXX4fHH4euXWNXJNUWQ0GpsWIFfO1rYabymDGw+eaxK5Jqj6GgVFi+HE5N\nRpYeeAA6dYpbj1SrXEJC0S1fDsOHQ5cucNddBoIUkwPNimrVqnDJabt28Oc/Q/v2sSuSssuBZqVa\noQDnnw+LF8NDDxkIUhoYCoqmrg7++lcYP95F7aS0MBQUxbXXwqhR8MwzsNVWsauR1MBQUMXV18MV\nV4Qb42y3XexqJDXlQLMqavz4MLD82GOw336xq5FqSzEDzYaCKmb2bDjkkNBtdNRRsauRak+aV0lV\njfnkEzj5ZPjBDwwEKc1sKajsCgU455wQDKNHhzkJkirPeQpKheuugxdegOeeMxCktKvWf6K2FKrE\ns8/CiSeGx913j12NVNscU1BU8+aFRe5uucVAkKqFoaCyWLkyBMK3vgVDh8auRlKxDAWVxciR0Lkz\n/Od/xq5EUms4pqCSe/FFGDIkPPbqFbsaSQ0cU1DFLV8OZ54J11xjIEjVyJaCSurii+HNN+GOO7z8\nVEob5ymoop58Em67DV5+2UCQqpXdRyqJDz6As8+G66+HbbeNXY2kjRU7FC4FXgMmA6OAzYBtgLHA\ndGAM0C1adSraRRfBkUfCsGGxK5HUFjEb+b2Bx4F+wKfA7cBDQH9gIfAz4IfA1sAlzV7rmEKKPPQQ\nnHcevPKKN8yR0iztVx8tA1YAXQhjG12Ad4DhwK3JObcCJ0apTkX5+OMQCDfeaCBIWRAzFN4HrgLm\nEMJgCaHbqAcwPzlnfvJcKTVyZLhHwtFHx65EUinEvPqoD/AfhG6kpcAdwL80O6eQbGupq6v7fD+X\ny5HL5cpQoloyc2a41/KkSbErkbQu+XyefD7fqtfEHFMYARwDfCN5/jXgUOAo4EjgXaAnMB7o2+y1\njimkwLBhMHAgXNJ8xEdSKqV9TGEaIQQ6E4o8GpgC3A+clZxzFnBvlOrUogcegOnT4bvfjV2JpFKK\nPcXoB4QP/tXAi4RWw5ZAPbAzMAs4lTDe0JQthYiWL4d99oHf/Aa+/OXY1UgqVjEthdihsLEMhYj+\n+7/DYnd33x27EkmtYSio5GbPhgMPDLfX7N07djWSWiPtYwqqQt/7Hlx4oYEgZZUL4qlo+Ty89FJY\n9E5SNtlSUFEKhXAXtZ/+FDp1il2NpHIxFFSURx+FxYvh9NNjVyKpnAwFbVDTVkL79rGrkVROhoI2\n6N57YfVqOOmk2JVIKjcvSVWLVq2C/feHK6+EoUNjVyOpLbwkVW1WXw9bbgnHHx+7EkmVYEtB67Vy\nJey9N1x3HRx1VOxqJLWVLQW1yR//CL16GQhSLbGloHX69FPYa68wUW3gwNjVSCoFWwraaDfdFLqO\nDASptthS0FpWrIA+feCuu+Cgg2JXI6lUbCloo9x5ZwgFA0GqPYaC1lAowFVXwUUXxa5EUgyGgtbw\n5JPw4YfOS5BqlaGgNVx1Vbjv8ib+nyHVJAea9bnXX4fDDgt3V+vcOXY1kkrNgWa1yjXXwL/+q4Eg\n1TJbCgJg4ULYYw+YNg169IhdjaRysKWgov32t3DKKQaCVOtsKYjly6F3bxg3Dvr3j12NpHKphpZC\nN+BOYCowBTgE2AYYC0wHxiTnqIxuuw0GDDAQJMUPhf8FHgL6AfsB04BLCKGwJzAuea4yKRTg6qud\nrCYpiBkKXYHDgJuT5yuBpcBw4Nbk2K3AiZUvrXaMGRPuuzx4cOxKJKVBzFDYFXgPuAV4EbgB2Bzo\nAcxPzpmfPFeZ3HADnH8+tKvW0SVJJbXpBr5+AHA6cDjQGygAs4EngVHAS2382QcAFwB/BX7J2l1F\nhWRbS11d3ef7uVyOXC7XhlJq04IF8NhjYZlsSdmTz+fJ5/Otek1Lfx8+BCwG7gOeB+Yl5/cEDgaG\nEQaBN/Z27tsDEwgtBoBBwKXAbsCRwLvJzxoP9G32Wq8+KoGrroLJk+H3v49diaRKKObqo5a+uB2w\nYAM/o5hzWvIk8A3ClUZ1QJfk+CLgSkLLoRvraEEYCm1TKISb6Pzud2FpC0nZV0wotNR9VEfoInq6\nhXPaEggA/w7cBnQEZgJfB9oD9cC5wCzg1Db+DK3Ds8/C6tUwaFDsSiSlSUuJ8R/ACGAH4HZgNG0b\nQyglWwptdM450K8fXHxx7EokVUpbu48a9AZOIwREF0LrYTShyycWQ6ENli2DnXcOq6K6rIVUO0oV\nCk0NIFxCui+hmycWQ6ENbrgBHn4Y7r47diWSKqlUy1xsSphQNgp4hDDr+OS2Fqd4brwRzj03dhWS\n0qilgeZjCd1GQwmXpI4GvgV8WIG6VCaTJ8PcufDlL8euRFIatRQKlxJaB98H3q9MOSq3m26Cr38d\nNt3QtEVJNamlvqWtgGUbeP2WwAelK6dojilshE8/hV69YOJE2G232NVIqrS2zlO4G3gd+AvwAo2t\nhS8AXyIsVLcHcHRbC1Vl3Hsv7L+/gSBp/VoKhaOBo4AzCEtc75Acf4cwoe02IF/O4lRaN90E3/hG\n7CokpVm1ro1p91ErzZsXlrWYNw86dYpdjaQYSnVJ6kBgi2T/a8DVwC5tqkwVd+edMGyYgSCpZcWE\nwnXAx8D+wPeAvwN/KGdRKr36ehgxInYVktKumFBYCawmDCz/Bvg14aojVYm5c+G11+CYY2JXIint\nirla/QPgMuBfCLfPbA90KGdRKq077oATToCOHWNXIintimkpnAosB84h3PhmR+Dn5SxKpWXXkaRi\nFdNS+C7wwybP5wD7lKccldqcOTB9OgweHLsSSdWgmJbCses4dlypC1F53HEHnHQSdLDDT1IRWgqF\nfwMmA3sljw3bLOCVslemkrj9djjVe9dJKlJLkxi6AlsDIwndRw3nfkC4h3JMTl4rwptvwiGHwDvv\nuACepLavfdSesCDe+UDzT+BtcOXU1Kuvh5NPNhAkFa+lj4sXWTsMGhQAl1VLufp6+LnXiUlqBdc+\nyqgZM2DQoDBxrX3MG6dKSo22dh81dQJwOKGF8ARwf5sqU9nV18MppxgIklqnmEtSRwLfAV4Dpib7\n/1POotR2XnUkaWMU0300GfgisCp53h6YBOxbohraE27i8zYwjDCIfTthJdZZhBnVS5q9xu6jFkyb\nBkcdBW+9ZUtBUqNSLZ1dALo1ed6N9Q9Ab4wLgSlNvuclwFhgT2Bc8lytcOeddh1J2jgthcK1wCDg\nCsKVSL8HbgX+lhwrhV7A8cCNNKbX8OTnkDyeWKKfVTMeeCAsgCdJrdXSQPN0wsJ3OwCPAbMJ3UY/\nJCyMVwrXABcDWzU51gOYn+zPT56rSO+9B1OnwuGHx65EUjVqKRR+mWy9gdOS7avAKGA0ITTa4p+A\nBcBLQG495xRYT1dVXV3d5/u5XI5cbn3forY8/HBY/M5lsiXl83ny+XyrXtPaeQoDgFsIg8xt7bG+\ngnB7z5VAJ0Jr4W7gIEJIvAv0BMYDfZu91oHm9RgxAo49Fs49N3YlktKmmIHmYkJhU0K//2nAYMKH\n9GjgL22sr6kjgO8Trj76GWFtpSsJg8zdWHuw2VBYhxUrYLvtYMoU6NkzdjWS0qatk9eOJQTBUOB5\nQhB8C/iwRPU11/ApPxKoB86l8ZJUFeHZZ2G33QwESRuvpcR4nBAEd5G+xe9sKazDD34AnTrBT38a\nuxJJaVSq7qM0MhTWoX9/uPnmsFy2JDVXqslrqgKzZoXLUQ86KHYlkqqZoZARDz4Ixx0Hm/gbldQG\nfoRkxIMPwtChsauQVO0cU8iAjz+G7beHOXOgW7cNny+pNjmmUCMefxwOOMBAkNR2hkIG2HUkqVS8\npXuVKxRCKDzySOxKJGWBLYUq9+qr4b4J/frFrkRSFhgKVa6h66hdtV4yIClVDIUq53iCpFKq1r8v\nvSQVWLIEdt4Z5s+Hzp1jVyMp7bwkNeOeeAIOPdRAkFQ6hkIVGz8ejjwydhWSssRQqGKGgqRSc0yh\nSi1cCH36hMcOHWJXI6kaOKaQYU88AQMHGgiSSstQqFJ2HUkqB0OhShkKksrBMYUqNH8+9O0bxhPa\nt49djaRq4ZhCRo0fD4cdZiBIKj1DoQrZdSSpXAyFKmQoSCqXmKGwEzAeeA14FfhOcnwbYCwwHRgD\neD+xJubOhUWLYL/9YlciKYtihsIK4LtAf+BQ4HygH3AJIRT2BMYlz5UYPx5yOdjENp6kMoj50fIu\nMCnZ/xCYCuwIDAduTY7fCpxY+dLSy64jSeWUlr83ewMDgIlAD2B+cnx+8lwJQ0FSOaXhHs1bAHcB\nFwIfNPtaIdnWUldX9/l+Lpcjl8uVp7oUmT0bPvoI9t47diWSqkE+nyefz7fqNbEnr3UAHgAeBn6Z\nHJsG5AjdSz0Jg9F9m72uJiev/f738PDDcPvtsSuRVI3SPnmtHXATMIXGQAC4Dzgr2T8LuLfCdaWW\nXUeSyi1mS2EQ8CTwCo1dRJcCzwP1wM7ALOBUYEmz19ZcS6FQgF12gbFjYa+9YlcjqRoV01KI3X20\nsWouFGbODEtbzJ0L7ar1tyYpqrR3H6kVGrqODARJ5WQoVIl8Pkxak6RyMhSqxIQJMGhQ7CokZZ2h\nUAUWLID333eAWVL5GQpV4Lnn4JBDXO9IUvn5MVMFJkyAQw+NXYWkWmAoVIHnnoN/+IfYVUiqBdV6\ngWPNzFNYuRK23hrmzAmPkrSxnKeQAa++CjvtZCBIqgxDIeWee87xBEmVYyik3IQJjidIqhxDIeVs\nKUiqJAeaU2zRIthttzBxrX372NVIqnYONFe5iRPhoIMMBEmVYyikmJPWJFWaoZBiTlqTVGmOKaTU\nqlWwzTbh5jrdu8euRlIWOKZQxaZOhR49DARJlWUopJSXokqKwVBIKSetSYrBUEgpWwqSYnCgOYWW\nLAmL4C1eDJtuGrsaSVnhQHOVev55OPBAA0FS5aU1FIYA04A3gB9GrqXiHE+QFEsaQ6E98GtCMOwN\nnA70i1pRhTmeICmWNIbCwcAMYBawAvgzcELMgipp9eqw5pGhICmGNIbCjsBbTZ6/nRyrCdOnQ7du\nYeKaJFVaGocyi7qsqK6u7vP9XC5HLpcrUzmV9cILYWVUSWqrfD5PPp9v1WvSeEnqoUAdYUwB4FJg\nNXBlk3Mye0nqRRfBttvCJZfErkRS1lTrJakvAHsAvYGOwAjgvpgFVdJLL8GAAbGrkFSr0th9tBK4\nAHiUcCXSTcDUqBVVSKEAkyYZCpLiSWP3UTEy2X00axYMHAhz58auRFIWVWv3Uc2y60hSbIZCihgK\nkmIzFFLEUJAUm6GQIoaCpNgMhZR47z346CPo3Tt2JZJqmaGQEi+9BF/8IrSr1uvBJGWCoZASdh1J\nSgNDISUMBUlpYCikhKEgKQ2qtQc7UzOaP/wwLJW9dKm34JRUPs5orhIvvwz9+xsIkuIzFFLAriNJ\naWEopIChICktDIUUaJijIEmxOdAc2WefhXsyL1wIXbrErkZSljnQXAWmTAlLWxgIktLAUIjM8QRJ\naWIoRGYoSEoTQyEyQ0FSmjjQHNHq1WGQedYs2Gab2NVIyjoHmlNu5kzYemsDQVJ6GAoR2XUkKW1i\nhcLPganAy8DdQNcmX7sUeAOYBhxb+dIqx1CQlDaxQmEM0B/YH5hOCAKAvYERyeMQ4Foy3JpZXyjk\n8/mK11JJvr/qluX3l+X3VqxYH7hjgdXJ/kSgV7J/AjAaWAHMAmYAB1e6uEo5/HA46KC1j2f9f0zf\nX3XL8vvL8nsrVhoWaz6HEAQAOwDPNfna28COFa+oQi67LHYFkrSmcobCWGD7dRy/DLg/2b8c+AwY\n1cL3qf5rTyWpSsScp3A28E1gMLA8OXZJ8jgyeXwE+DGhi6mpGUCfMtcnSVkzE9g9dhHrMgR4Deje\n7PjewCSgI7Ar4Q1U6wQ7SVKR3gBmAy8l27VNvnYZoSUwDfhy5UuTJEmSVNX+mdAFtQo4IHItpTSE\n0Ep6A/hh5FpK7WZgPjA5diFlshMwnvD/5avAd+KWU1KdCGN7k4ApwP/ELads2hN6L+7f0IlVaBbw\nCuH9PR+3lPLoC+xJ+EeYlVBoT+g66w10IPwD7BezoBI7DBhAdkNhe6DhxqpbAK+Trd9fw62gNiVc\nOj4oYi3l8j3gNuC+2IWUwZvABldaq+bZwtMIs6Gz5GBCKMwiTOD7M2FCX1Y8BSyOXUQZvUsIcoAP\nCUu57BCvnJL7OHnsSPgD5v2ItZRDL+B44Eaye4HLBt9XNYdCFu0IvNXkeaYn72Vcb0KrqPnl1NVs\nE0LozSe00KfELafkrgEupnG1hawpAI8BLxCmA6xTGmY0t6SYCXBZ4kS9bNgCuBO4kNBiyIrVhO6x\nrsCjQA7IR6ynlP4JWEDob8/FLaVsBgLzgG0Jn63TCK33NaQ9FI6JXUCFzSUMVjbYidBaUPXoANwF\n/Am4N3It5bIUeBD4EtkJhX8EhhO6jzoBWwF/AM6MWVSJzUse3wPuIXRXrxUKWTAeODB2ESWyKWHC\nXm9Cv23WBpohvLesDjS3I3yQXBO7kDLoDnRL9jsDTxJWI8iiI8heT0QXYMtkf3PgGTJ4a4KTCP3v\nnxAG+B6OW07JHEe4amUGjUuKZ8Vo4B3gU8Lv7utxyym5QYQulkk0TswcErWi0tkXeJHw3l4h9L1n\n1RFk7+qjXQm/u0mEy6Wz9tkiSZIkSZIkSZIkSZIkSZIkSbF1Bf4t2e8J3FHC730B4XazpVJPuM5c\nklQmvSnPzOp2hElrpVxC5hjgVyX8fpKkZv5MWAr6JcJf4g0BcTZhzaIxhPXnLwC+T5jNOwHYOjmv\nD2EW/QuEJR/2So4PIszcbvAdwk13Xm5yfHPCDYcmJt93eHK8PfCLpJaXk58NYT2lGW16t5KkFu1C\nYxA03T+bcNe7zQnr/SwFvpV87WrCyqcA44Ddk/1DkucAlwAXNfk5cwkf6hAWWQO4Avhqst+NsKxJ\nF0J3Vj2NS9o3BBDAE2RvHSylUNpXSZXKpd169iEssvhRsi2hcXG0ycB+hMD4R9Ych+iYPO4MPN3k\n+CvAKELro2HV1GOBYYQWCMBmyesGA7+lcT3/pjckeofQ5TW1iPcmbTRDQVrbp032Vzd5vprwb2YT\nwgf2gPW8vmnIDAUOJ4TA5YSF5QBOJrRIWnpt8+NZvfmLUsQ7r6lWfUDjUsLFavjA/oAw3vCVJsf3\nS/Zn03hjqHaEFkCe0K3UlXADnkcJYw0NGsJlLPBtwtgCrNl91DP53lJZGQqqVYsIa8pPBn5G413v\nCqx5B7zm+w3PvwqcS+NSxA2DxU8Tbj4DoVXxR0IX0ovA/xLGKP4fYZzhleS1P0nOvxGYkxyfBJye\nHO9AuH/wtI18r5KkSBouSe24oRNb4VhCoEiSqtB5lPYGQvWEQWZJkiRJkiRJkiRJkiRJkiRJSrv/\nD8/iLwbt6hd+AAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x34660b8>"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)the  capacitor  voltage  at  a  time  equal  to  one  time  constant  =   75.85   V\n",
        "\n",
        "  (b)the  time  for  the  capacitor  voltage  to  reach  one  half  of  its  steady  state  value  =   0.48867  secs\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 2, page no. 263</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#draw: (a) the capacitor voltage/time characteristic, \n",
      "#(b) the resistor voltage/time characteristic and \n",
      "#(c) the current/time characteristic,\n",
      "#From the characteristics determine the value of capacitor voltage, \n",
      "#resistor voltage and current one and a half seconds after discharge has started.\n",
      "from __future__ import division\n",
      "import math\n",
      "#from pylab import *\n",
      "%pylab inline\n",
      "#initializing  the  variables:\n",
      "C  =  4E-6;#  in  Farads\n",
      "R  =  220000;#  in  ohms\n",
      "V  =  24;#  in  Volts\n",
      "t1  =  1.5;#  in  secs\n",
      "\n",
      "#calculation:\n",
      "tou  =  R*C\n",
      "I  =  V/R\n",
      "\n",
      "t=[]\n",
      "Vc=[]\n",
      "for h in range(50):\n",
      "    t.append((h-1)/10)\n",
      "    k=(h-1)/10\n",
      "    Vc.append(V*math.e**(-1*k/tou))\n",
      "#plt.figsize(10,8)\n",
      "fig  = plt.figure()\n",
      "#canvas = fc(fig)\n",
      "ax = fig.add_subplot(1, 1, 1)\n",
      "ax.plot(t,Vc,'-')\n",
      "#plot(t,Vc,'-')\n",
      "xlabel('time(sec)')\n",
      "ylabel('P.D across Capacitor(V)')\n",
      "show()\n",
      "\n",
      "t=[]\n",
      "VR=[]\n",
      "for h in range(50):\n",
      "    t.append((h-1)/10)\n",
      "    k=(h-1)/10\n",
      "    VR.append(V*(1 - math.e**(-1*k/tou)))\n",
      "fig  = plt.figure()\n",
      "#canvas = fc(fig)\n",
      "ax = fig.add_subplot(1, 1, 1)\n",
      "ax.plot(t,VR,'-')\n",
      "#plot(t,VR,'-*')\n",
      "xlabel('time(sec)')\n",
      "ylabel('P.D across Resistor(V)')\n",
      "show()\n",
      "\n",
      "t=[]\n",
      "i=[]\n",
      "for h in range(50):\n",
      "    t.append((h-1)/10)\n",
      "    k=(h-1)/10\n",
      "    i.append(I*math.e**(-1*k/tou))\n",
      "fig  = plt.figure()\n",
      "#canvas = fc(fig)\n",
      "ax = fig.add_subplot(1, 1, 1)\n",
      "ax.plot(t,i,'-')\n",
      "#plot(t,i,'*-')\n",
      "xlabel('time(sec)')\n",
      "ylabel('current(A)')\n",
      "show()\n",
      "\n",
      "Vct1  =  V*math.e**(-1*t1/tou)\n",
      "VRt1  =  V*math.e**(-1*t1/tou)\n",
      "it1   =  I*math.e**(-1*t1/tou)\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  the  value  of  capacitor  voltage  is  \",round(Vct1,1),\"  V,  resistor  voltage  is  \",round(VRt1,1),\"  V,\"\n",
      "print  \"current  is  \",round(0.02,2),\"  mA  at  one  and  a  half  seconds  after  discharge  has  started.\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Populating the interactive namespace from numpy and matplotlib\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEPCAYAAACukxSbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VGWe9vFvsYOETSCsEgQxBLKyRBSwAkJADEZRNkWE\n4Kg9TAvYg+KML6gjQre2EtFuRAYREQUHERqkQSCssieiAqJAZEsCSBYCwYTKef84TUGAkECq6lSq\n7s91nauWpE7dJV6/evKcZ7EZhmEgIiJ+oYLVAURExHNU9EVE/IiKvoiIH1HRFxHxIyr6IiJ+REVf\nRMSPuK3onz9/nujoaCIiIggJCWHChAkAnD59ml69etGmTRt69+5NVlaWuyKIiMgVbO4cp3/u3Dlq\n1KjBhQsX6Nq1K2+++SZLliyhfv36jB8/nqlTp5KZmcmUKVPcFUFERC7j1u6dGjVqAJCfn4/D4aBu\n3bosWbKE4cOHAzB8+HAWL17szggiInIZtxb9wsJCIiIiCAwMJCYmhnbt2pGRkUFgYCAAgYGBZGRk\nuDOCiIhcppI7T16hQgVSUlLIzs4mNjaWtWvXFvm5zWbDZrO5M4KIiFzGrUX/otq1a9OvXz927txJ\nYGAg6enpNGrUiLS0NBo2bHjV77du3ZoDBw54IpqIiM9o1aoVv/zyy3V/x23dO6dOnXKOzMnLy2PV\nqlVERkbSv39/5syZA8CcOXOIj4+/6rUHDhzAMAyfPSZOnGh5Bn0+fT5//Hy+/NkMwyhVY9ltLf20\ntDSGDx9OYWEhhYWFDBs2jJ49exIZGcnAgQOZNWsWQUFBLFiwwF0RRETkCm4r+qGhoezateuq5+vV\nq8c333zjrrcVEZHr0IxcC9jtdqsjuJU+X/nmy5/Plz9babl1ctbNstlseGEsERGvVpraqZa+iIgf\nUdEXEfEjKvoiIn5ERV9ExI+o6IuI+BEVfRERP6KiLyLiR1T0RUT8iIq+iIgfUdEXEfEjKvoiIn5E\nRV9ExI+o6IuI+BEVfRERP6KiLyLiR1T0RUT8iIq+Gw0fDgcPWp1CROQSFX03cjhg9WqrU4iIXKKi\n70Y9eqjoi4h30R65bvTrr9CpE2RkgM1mdRoR8XXaI9diLVpAQAD88IPVSURETCr6btazJ6xZY3UK\nERGTir6b9eihoi8i3kN9+m6WkQF33gmnTkGlSlanERFfpj59LxAYCM2bw65dVicREVHR94iePTV0\nU0S8g9uK/pEjR4iJiaFdu3a0b9+exMREACZNmkSzZs2IjIwkMjKSFStWuCuC19DFXBHxFm7r009P\nTyc9PZ2IiAhyc3Pp0KEDixcvZsGCBQQEBDBu3LjiQ/lQnz5AdjY0awYnT0K1alanERFfZWmffqNG\njYiIiACgZs2atG3blmPHjgH4VEEvjdq1oV072LLF6iQi4u880qefmppKcnIyd911FwDvvvsu4eHh\nJCQkkJWV5YkIltOSDCLiDdxe9HNzc3nkkUeYNm0aNWvW5Nlnn+XQoUOkpKTQuHFjnn/+eXdH8Arq\n1xcRb+DWkeMFBQUMGDCAxx9/nPj4eAAaNmzo/PmoUaOIi4u75msnTZrkvG+327Hb7e6M6nZ33w27\nd8OZM+bSDCIiZZWUlERSUtINvcZtF3INw2D48OHceuutvP32287n09LSaNy4MQBvv/0227dv59NP\nPy0ayscu5F7Uowf86U9w//1WJxERX1Sa2um2or9x40a6d+9OWFgYtn8tMTl58mTmz59PSkoKNpuN\nli1bMmPGDAIDA284eHn0P/8DmZnw1ltWJxERX2Rp0S8LXy36334Lf/gDJCdbnUREfJGKvpcpKID6\n9eHAAfNWRMSVtPaOl6lcGbp1gxu87iIi4jIq+h6mpZZFxEoq+h52333wz3+CD/ZeiUg5oKLvYaGh\nkJ8P+/dbnURE/JGKvofZbOY4/eXLrU4iIv5IRd8C998Py5ZZnUJE/JGGbFogNxcaN4bjx7Ukg4i4\njoZseqmaNaFLF/jmG6uTiIi/UdG3SL9+6tcXEc9T945Ffv4Z7HY4etS8uCsiUlbq3vFid9wBNWrA\nd99ZnURE/ImKvoX69dMoHhHxrFJ17+zdu5fU1FQqVKhAixYtCA4Odm8oP+jeAVi5El55BTZtsjqJ\niPiCMq2yeejQId5++22WL19O06ZNadKkCYZhkJaWxtGjR3nggQcYO3YsQUFBlgT3Bb//Dg0bwsGD\ncOutVqcRkfKuTEV/4MCBPPXUU9jtdipXrlzkZwUFBaxdu5YPP/yQBQsWuC7xxVB+UvQBHnwQBg2C\noUOtTiIi5V2Zin5+fj5VqlRxS7CS+FPR/+ADWLcO5s2zOomIlHdlGr3TrFkzRo0axerVq/2mAFuh\nb19z1U2Hw+okIuIPii36e/bsoWPHjrz22ms0a9aM5557ji1btngym19o3hyaNoWtW61OIiL+oFSj\nd44fP86CBQv4/PPPOXHiBIMGDWLy5MnuC+VH3TsAEyZAxYrmxukiIjfLpXvknjlzhkWLFvHXv/6V\ntLQ0Tpw44ZKQ1wzlZ0V/wwb44x+1YbqIlE2ZZ+Tm5eWxYMECHn74YVq3bs2aNWuYOnUqx48fd2lQ\nf9elC/z6Kxw7ZnUSEfF1xbb0hw4dyqpVq7j33nsZMmQI999/P9WrV/dMKD9r6QMMGQIxMfBv/2Z1\nEhEpr8rUvfPxxx8THx9PrVq13BLuevyx6C9cCB9+aI7kERG5GWXq3iksLKRGjRrFvjA/P5/Zs2ff\nfDopom9f2LIFTp+2OomI+LJKxf0gNzeXTp06ERwcTKdOnWjUqBGGYZCens6OHTvYt28fTz31lCez\n+rSaNaFnT1iyBJ580uo0IuKrrjt6xzAMNm3axMaNGzl8+DAALVq0oGvXrtx9993Y3LQQvD9274A5\nK/ezz2DpUquTiEh5VOYhmw6Hg2nTpjFu3DiXh7sefy362dnmZK2jR8GCSykiUs6VechmxYoVmT9/\nvktDSfFq14bu3eEf/7A6iYj4qhI3UenatSujR49mw4YN7Nq1y3mU5MiRI8TExNCuXTvat29PYmIi\nAKdPn6ZXr160adOG3r17k5WVVfZP4UMeeQS++MLqFCLiq0qckWu326/Zd7927drrnjg9PZ309HQi\nIiLIzc2lQ4cOLF68mNmzZ1O/fn3Gjx/P1KlTyczMZMqUKUVD+Wn3Dpijd1q2NCdq1axpdRoRKU9c\nugxDWcXHxzN69GhGjx7NunXrCAwMJD09Hbvdzr59+4qG8uOiDxAbC6NGwaOPWp1ERMoTl2yMnpWV\nxdixY+nQoQMdOnTg+eefJzs7+4aCpKamkpycTHR0NBkZGQQGBgIQGBhIRkbGDZ3LHwwYAP/3f1an\nEBFfVOw4/YtGjhxJaGgoCxcuxDAM5s6dy4gRI1i0aFGp3iA3N5cBAwYwbdo0AgICivzMZrMVO+xz\n0qRJzvt2ux273V6q9/MF8fEwfjzk5YGHVr4QkXIoKSmJpKSkG3pNid074eHhfPfddyU+dy0FBQU8\n8MAD9O3blzFjxgAQHBxMUlISjRo1Ii0tjZiYGHXvXENMDIwZY26nKCJSGi7p3qlevTobNmxwPt64\nceN1l2e4yDAMEhISCAkJcRZ8gP79+zNnzhwA5syZQ3x8fInn8kfq4hERdyixpZ+SksITTzzh7Mev\nW7cuc+bMITw8/Lon3rhxI927dycsLMzZhfPGG2/QuXNnBg4cyOHDhwkKCmLBggXUqVOnaCi19Dl+\nHNq3h/R0sGirYhEpZ1wyeufgwYPcfvvtzqJfu3Zt53PuoqJvuuce+O//NhdjExEpiUu6dwYMGACY\nxb527doAPKqxhB7xyCPq4hER1yp29M7evXvZs2cP2dnZLFq0CMMwsNls5OTkcP78eU9m9FsDBsDr\nr8P776uLR0Rco9ii/9NPP7F06VKys7NZetmyjwEBAcycOdMj4fzdbbdBSAh8/bVG8YiIa5TYp//t\nt9/SpUsXT+UB1Kd/uZkzzd20tB6PiJSkTBdyp06dygsvvMB//Md/XPPEFxdQcwcV/UuysqBFC0hN\nhbp1rU4jIt6sNLWz2O6dkJAQADp06FBk1uzFvn3xjDp1zLV4FiyAp5+2Oo2IlHceW3DtRqilX9Q/\n/gFvvAGbNlmdRES8mUuGbPbq1avImvenT58mNja27Omk1GJj4Zdf4MABq5OISHlXYtE/efJkkRmz\n9erV08qYHla5MgwaBHPnWp1ERMq7Eot+xYoV+fXXX52PU1NTqVChxJeJiz3xhFn01eslImVR4tLK\nr7/+Ot26daN79+4ArF+/ng8++MDtwaSoDh3MCVqbN5vLM4iI3IxSXcg9efIkW7ZswWazcdddd1G/\nfn33htKF3Gt64w349Vf4+9+tTiIi3shl2yVmZmayf/9+zp8/7xyuebHl7w4q+td2+DBERpr751ar\nZnUaEfE2ZRqnf9HMmTNJTEzk6NGjREREsGXLFrp06cKaNWtcFlRK57bbIDwcli0z1+UREblRJV6R\nnTZtGtu2baNFixasXbuW5ORk52qb4nnDhsHHH1udQkTKqxKLfrVq1aj+r41az58/T3BwMD/99JPb\ng8m1DRgA69bBqVNWJxGR8qjEot+8eXMyMzOJj4+nV69e9O/fn6CgIA9Ek2upVQvuvx/mz7c6iYiU\nRze0DENSUhI5OTn06dOHKm5c4F0Xcq9v9Wpz0/Tdu0HLIInIRS65kAuwc+dONm7ciM1mo2vXrm4t\n+FKyHj0gP99ci6drV6vTiEh5UmL3zquvvsqTTz7J6dOnOXXqFCNGjOC1117zRDYphs0Gzzyj8foi\ncuNK7N5p06YNu3fvptq/Bobn5eURHh7O/v373RdK3TslOn0abr8dfv4ZGjSwOo2IeAOXrLLZtGlT\n8vLynI/Pnz9Ps2bNyp5OyqRePYiPh9mzrU4iIuVJiS39Bx98kO3bt9O7d28AVq1aRefOnWnWrJnb\ndtBSS790tm6FoUPN1r7WwBMRlyzD8NFHH133DYYPH35T4a5HRb90DAOiomDKFHPNfRHxby5be8fT\nVPRL74MPYPlyWLzY6iQiYjWXFP39+/fz0ksvsWfPHmffvs1m4+DBg65LemUoFf1Sy8011+TZvRt0\nqUXEv7nkQu6IESN45plnqFSpEklJSQwfPpzHHnvMZSGlbGrWNPv1Z860OomIlAcltvSjoqLYtWsX\noaGhfP/990Wec1sotfRvyA8/mH36qanm1ooi4p9c0tKvVq0aDoeD1q1bM336dBYtWsTZs2dLFWDk\nyJEEBgYSGhrqfG7SpEk0a9aMyMhIIiMjWbFiRanOJcVr394cs790qdVJRMTblVj033nnHc6dO0di\nYiI7duzgk08+Yc6cOaU6+YgRI64q6jabjXHjxpGcnExycjJ9+vS5ueRSxLPPwt/+ZnUKEfF2xa69\nk5eXx5kzZ+jcuTMAAQEBfPTRR5w4cYKAgIBSnbxbt26kpqZe9by6blxvwAAYOxb27oW2ba1OIyLe\nqtiW/h//+Ec2bNhw1fObNm1i3LhxZXrTd999l/DwcBISEsjKyirTucRUtSr8+7/DW29ZnUREvFmx\nF3Kvd7E2JCSEPXv2lOoNUlNTiYuLc14EPnHiBA3+tVjMyy+/TFpaGrNmzSoaymZj4sSJzsd2ux27\n3V6q9/Nnp07BHXfAnj3QuLHVaUTE3ZKSkkhKSnI+fuWVV25+nH5wcDD79u275ouu97MrXVn0S/Mz\njd65eaNHQ0AAvPGG1UlExNPKNHqnYcOGbN269arnt23bRsOGDW86VFpamvP+l19+WWRkj5TduHHm\nmP0zZ6xOIiLeqNiW/rZt2xg4cCBPPvkkHTp0wDAMdu7cyZw5c/jss8+46667Sjz5kCFDWLduHadO\nnSIwMJBXXnmFpKQkUlJSsNlstGzZkhkzZhAYGFg0lFr6ZTJoEERHm18AIuI/yrwMQ0ZGBu+99x4/\n/vgjAO3atWP06NFlaumXhop+2ezYAQ8/DAcOaLKWiD/Rgmt+rEcPGDkSHn/c6iQi4ikumZEr5dN/\n/if8+c/m8ssiIhep6PuoPn3Mgr9ypdVJRMSb3FDRdzgc5OTkuCuLuJDNdqm1LyJyUYlFf8iQIeTk\n5HD27FlCQ0Np27Ytf1YlKRcGD4b9+8GNC6KKSDlTYtHfs2cPtWrVYvHixfTt25fU1FTmzp3riWxS\nRlWqwJgx5naKIiJQiqJ/4cIFCgoKWLx4MXFxcVSuXBmbzeaJbOICTz8N69ebO2uJiJRY9J9++mmC\ngoLIzc2le/fupKamUrt2bU9kExeoWRPGj4fLljISET92w+P0DcPA4XBQqVKxqzKXmcbpu1ZeHrRu\nDV99BR07Wp1GRNzFJeP0p02bRk5ODoZhkJCQQFRUFKtXr3ZZSHG/6tXhpZfg//0/q5OIiNVKLPqz\nZs2iVq1arFy5ktOnTzN37lxefPFFT2QTFxo1Cn78ETZvtjqJiFipxKJ/8U+FZcuWMWzYMNq3b+/2\nUOJ6VavCyy+bh4j4rxKLfocOHejduzfLly8nNjaWnJwcKlTQRN7yaPhw+PVXWLvW6iQiYpUSL+Q6\nHA6+++47br/9durUqcNvv/3G0aNHCQ8Pd18oXch1m7lzYcYM2LDBnLUrIr7DZatsfvXVV6xfvx4w\nty6Mi4tzTcLiQqnou43DAe3bwzvvQGys1WlExJVcUvRffPFFtm/fzmOPPYZhGHz22Wd07NiRN9y4\nH5+KvnstWABvvglbt6q1L+JLXFL0Q0NDSUlJoWLFioDZ3RMREXHNPW9dRUXfvQoLISrKvKg7YIDV\naUTEVVwyTt9ms5GVleV8nJWVpWUYyrkKFeCtt8xVOM+ftzqNiHhSidNqJ0yYQFRUFDExMRiGwbp1\n65iiFbzKvZ49ISzM7NvXtAsR/3Hd7p3CwkIWLlxIt27d2L59OzabjU6dOtG4cWP3hlL3jkf88gvc\ndRd8/z24+Z9URDzAJX36HTp0YOfOnS4NVhIVfc954QU4cQJmz7Y6iYiUlctG79SvX59BgwZxyy23\nOJ+vV6+ea1JeK5SKvsfk5EBwsLkYW6dOVqcRkbJwSdEPCgq65oXbQ4cOlS3d9UKp6HvU//4vzJoF\nGzdqCKdIeeayyVmepqLvWYWFZiv/T3+CIUOsTiMiN8slQzbfe+89MjMznY8zMzN5//33y55OvEaF\nCuYonhdegHPnrE4jIu5UYks/PDyc7777rshzERERpKSkuC+UWvqWGDzY7N+fNMnqJCJyM1zS0i8s\nLKSwsND52OFwUFBQUPZ04nX+/GeYPh3277c6iYi4S4lFPzY2lsGDB7N69Wq++eYbBg8eTJ8+fTyR\nTTzsttvgv/8bnnrK7OcXEd9TqqWVP/jgA+cWib169WLUqFHOtXiuZ+TIkSxbtoyGDRs61+o5ffo0\ngwYN4tdffyUoKIgFCxZQp06doqHUvWMZhwPuuQdGjICnn7Y6jYjcCMtH72zYsIGaNWvyxBNPOIv+\n+PHjqV+/PuPHj2fq1KlkZmZetayDir61fvgBYmIgJQWaNrU6jYiUlkuK/v79+3nppZfYs2cPeXl5\nzhMfPHiwVCFSU1OJi4tzFv3g4GDWrVtHYGAg6enp2O129u3bd8PBxb0mTjSL/uLFGrsvUl645ELu\niBEjeOaZZ6hUqRJr165l+PDhPPbYYzcdKiMjg8DAQAACAwPJyMi46XOJ+7z0Evz8MyxcaHUSEXGl\nElfZzMvL47777sMwDIKCgpg0aRJRUVG89tprZX5zm81W7DLNky4bN2i327Hb7WV+Pym9qlXNWboP\nP2yuyHnrrVYnEpErJSUlkZSUdEOvKbHoV6tWDYfDQevWrZk+fTpNmjTh7NmzN5vR2a3TqFEj0tLS\naNiw4TV/b5IGi1uuSxd49FF4/nn46COr04jIla5sEL/yyislvqbE7p133nmHc+fOkZiYyI4dO/jk\nk0+YM2fOTYfs37+/8/Vz5swhPj7+ps8l7jd5MiQlwYoVVicREVdw6+idIUOGsG7dOk6dOkVgYCCv\nvvoqDz74IAMHDuTw4cMasllOrFkDw4aZF3YbNLA6jYgUx/IhmzdLRd/7vPiiOZRz6VKN5hHxVi4Z\nvSMC8Npr5mYr775rdRIRKQu19KXUDhwwt1f85hsID7c6jYhcqcwt/TVr1vDwww8TEhJCSEgIjzzy\nCGvXrnVpSCk/WrWCv/7VXHNfSzCLlE/FFv1ly5aRkJBAXFwcn376KfPmzeP+++8nISGBZcuWeTKj\neJFhwyAqCsaNszqJiNyMYrt37r33XhITEwm/4u/43bt3M3r0aNavX+++UOre8Wo5ORAZCX/5izl5\nS0S8Q5m6dzIyMq4q+ABhYWGcOHGi7Omk3KpVCz79FJ59Fkq5BJOIeIlii36NGjWKfdH1fib+IToa\nXn4ZHnwQcnOtTiMipVVs907t2rXp3r37NV+0YcMGsrKy3BdK3TvlgmHAqFGQnW0uzKbx+yLWKtPk\nrJIW8XHnAmgq+uXH77+D3Q79+pm7bomIdTQjVzwiLQ06d4b334e4OKvTiPgvt83InThx4k0FEt/U\nuDF88QUkJMDevVanEZHrKXZp5by8PP7+97/zyy+/EBYWRkJCApUqmb/esWNHjwWU8iE6Gv78Z4iP\nh61b4Yo19ETESxTbvTNw4ECqVKlC165d+frrrwkKCmLatGmeCaXunXJrzBj48UdYtgyqVLE6jYh/\nKVOffmhoqHNf2wsXLtCpUyeSk5Ndn/JaoVT0yy2HAwYONAv+vHlQQUv6iXhMmfr0L3blXHlf5Hoq\nVjSL/fHjMHasOaxTRLxHsS39ihUrFpmElZeXR/Xq1c0X2Wzk5OS4L5Ra+uVeVhbcey8MHgwTJlid\nRsQ/lKZ2FtuEdzgcLg8k/qNOHfj6a7jnHmjY0BzZIyLWU7+NuE2TJvDPf5ot/gYNoH9/qxOJiC6z\niVu1aQNLlpgt/TVrrE4jIir64nadOpmTtwYPhlWrrE4j4t9U9MUj7r0XFi2Cxx6DFSusTiPiv1T0\nxWO6doWvvoInnoDly61OI+KfVPTFo7p0gaVLYcQI81ZEPEtFXzwuOtpcpmHUKLPLR0Q8R0M2xRId\nO5rj+B94ANLT4Q9/sDqRiH/QevpiqQMHoG9fc4P1yZO1Vo9IWWgTFSkXTp0yJ24FBcHs2VC1qtWJ\nRMont22iIuJK9evD6tXm1ot9+pjr9oiIe1jW0g8KCqJWrVpUrFiRypUrs23btkuh1NL3Sw4HPP+8\nOYFr2TKz5S8ipefV3TstW7Zk586d1KtX76qfqej7t8REeP11+PhjiI21Oo1I+eH13Tsq7HItf/wj\nLFxojuV//XUoLLQ6kYjvsKzo22w27rvvPjp27MjMmTOtiiFeqnt32L7d7OZ56CHIzrY6kYhvsKzo\nb9q0ieTkZL7++mvee+89NmzYYFUU8VJNm0JSEjRvbi7a9sMPVicSKf8sm5zVuHFjABo0aMBDDz3E\ntm3b6Natm/PnkyZNct632+3Y7XYPJxRvUKUKTJ8Oc+dCTAy8+io88wzYbFYnE7FeUlISSUlJN/Qa\nSy7knjt3DofDQUBAAGfPnqV3795MnDiR3r17m6F0IVeu4aef4PHHzZ24Zs2CRo2sTiTiXbz2Qm5G\nRgbdunUjIiKC6OhoHnjgAWfBFynOnXfC5s0QFQUREbB4sdWJRMofzciVcmnzZhg2DOx2eOcdCAiw\nOpGI9by2pS9SVnffDSkpZt9++/bmlowiUjK19KXcW7sWnn7aLP6JidCsmdWJRKyhlr74hZgY2L0b\nwsLMvv7ERHNJBxG5mlr64lP27TOHdJ49C9Ommd1AIv5CLX3xO8HBZnfPc8/B4MHw6KPmmv0iYlLR\nF59js5nj+fftM7t7oqPN1TszM61OJmI9FX3xWTVqwH/9F/z4I+TmmuP833oLzp2zOpmIdVT0xecF\nBsKMGWa3z7ffQqtW8Ne/qviLf1LRF7/Rrh188QX885/m5K5WrcyW/9mzVicT8RwVffE7YWFm8V+5\nErZsMYv/a6/ByZNWJxNxPxV98VuhoeZmLWvWwOHD0KaNOclr716rk4m4j4q++L2QEJg501zFs0kT\nc7LX/febfwlo1y7xNZqcJXKF8+dh3jx4913IyYGnnoInn4R/bQEh4rU0OUvkJlSrBgkJkJwMn38O\nBw+afw08/DB8/bWWeJDyTS19kVI4cwbmzze7gY4fN2f7Dh1qru2vXbzEW5Smdqroi9ygvXvh00/N\no3JleOwx8wugVSurk4m/U9EXcSPDgK1bzf7/BQvMPv+HHoL4eHNYqP4CEE9T0RfxEIfDnO375Zfm\nYbOZxb9/f3Olz8qVrU4o/kBFX8QChmGu7//ll7BsGfz8M/ToAX36mMdtt1mdUHyVir6IFzhxwhzz\nv2KFuQREgwbQs6e5v++990L9+lYnFF+hoi/iZQoLYdcuc/G3pCTYuBFatDAnhHXvbnYFaT6A3CwV\nfREvd+HCpS+B9evNtYBq1YIuXczj7rvNi8K6JiCloaIvUs4UFsL+/eZF4c2bzePQIXPT9w4doGNH\n87ZdO30RyNVU9EV8QG4upKTAjh2wc6d5pKaam8KEhRU9AgOtTitWUtEX8VFnz5o7gu3eDd9/b97u\n3m0OFW3b9uqjeXOooEVXfJ6KvogfMQzIyDBnDF9+7NsHv/0GLVvCHXdA69bm7e23m8/ddhtUrWp1\nenEFFX0RAcy/DA4eNOcM/PKLeXvggNlNdOwYNGwIQUGXvgSaNy961K6tGcblgYq+iJTowgWz8B86\nZB5Hjlw6Dh82bw0DmjY19xu4/GjUyLyOcPGoV0/dSFby2qK/YsUKxowZg8PhYNSoUbzwwgtFQ6no\ni3gNwzD3FUhLM1cYvXgcOwbp6WaX0sUjN9ecbNagwaXj4uP69eHWW80vhnr1Lt0PCNBfEa7ilUXf\n4XBw55138s0339C0aVM6derE/Pnzadu27aVQPl70k5KSsNvtVsdwG32+8q0sny8/35yBfOqUuefw\n5cdvv8Hp01ffnj9vdh/VqQN165q3deqYz9WqZd5evF+rlvklceVRsyZUqVLyl4ev/9uVpnZW8lAW\np23bttGyhFdEAAAI3klEQVS6dWuCgoIAGDx4MF999VWRou/rfP1/PH2+8q0sn69KFWjWzDxKq6AA\nsrMhMxOysi7d5uSYz2dnm9cesrPNfQ1ycszby+/n5prnuuUW8wugZk2oUcN8fMstl+7v2ZNE9+52\nqleH6tXN5y/er1bNPC6/X62aeZH7ytuqVaFixfL5F4rHi/6xY8do3ry583GzZs3YunWrp2OIiJeo\nXNns+inrGkT5+eYF69xc8zh3znx87tyl+5mZ5oXqvDzzuaws8zYvz/yL4/IjLw9+/928f/H24v3f\nfze7vS5+AVSpcum2cmXz9uJRufKl48rHlSpd+3GlSpeOyEjo29c1/63BgqJvK49fjSLi9S4W2bp1\ni/+dAwdg7FjXvJ/DYRb//PxLt5cfBQXm8wUFRY+LP7tw4eqfXbhQ9Dh/3vxScinDw7799lsjNjbW\n+Xjy5MnGlClTivxOq1atDECHDh06dNzA0apVqxJrsMcv5F64cIE777yT1atX06RJEzp37nzVhVwR\nEXEPj3fvVKpUienTpxMbG4vD4SAhIUEFX0TEQ7xycpaIiLiH186dW7hwIe3ataNixYrs2rXL6jgu\ns2LFCoKDg7njjjuYOnWq1XFcauTIkQQGBhIaGmp1FLc4cuQIMTExtGvXjvbt25OYmGh1JJc5f/48\n0dHRREREEBISwoQJE6yO5BYOh4PIyEji4uKsjuJyQUFBhIWFERkZSefOnYv/RZdepXWhvXv3Gj/9\n9JNht9uNnTt3Wh3HJS5cuGC0atXKOHTokJGfn2+Eh4cbe/bssTqWy6xfv97YtWuX0b59e6ujuEVa\nWpqRnJxsGIZhnDlzxmjTpo1P/fudPXvWMAzDKCgoMKKjo40NGzZYnMj13nrrLWPo0KFGXFyc1VFc\nLigoyPjtt99K/D2vbekHBwfTpk0bq2O41OUT0ypXruycmOYrunXrRt3rjZcr5xo1akRERAQANWvW\npG3bthw/ftziVK5To0YNAPLz83E4HNSrV8/iRK519OhRli9fzqhRo3x2xn9pPpfXFn1fdK2JaceO\nHbMwkdys1NRUkpOTiY6OtjqKyxQWFhIREUFgYCAxMTGEhIRYHcmlxo4dy1/+8hcq+OiKcDabjfvu\nu4+OHTsyc+bMYn/P46N3LterVy/S09Oven7y5Mk+2eemiWm+ITc3l0ceeYRp06ZRs2ZNq+O4TIUK\nFUhJSSE7O5vY2FifWm7iH//4Bw0bNiQyMpKkpCSr47jFpk2baNy4MSdPnqRXr14EBwfTrVu3q37P\n0qK/atUqK9/e45o2bcqRI0ecj48cOUKzG1mkRCxXUFDAgAEDePzxx4mPj7c6jlvUrl2bfv36sWPH\nDp8p+ps3b2bJkiUsX76c8+fPk5OTwxNPPMHHH39sdTSXady4MQANGjTgoYceYtu2bdcs+uXi7xxf\n6X/r2LEjP//8M6mpqeTn5/P555/Tv39/q2NJKRmGQUJCAiEhIYwZM8bqOC516tQpsrKyAMjLy2PV\nqlVERkZanMp1Jk+ezJEjRzh06BCfffYZPXr08KmCf+7cOc6cOQPA2bNnWblyZbGj6Ly26H/55Zc0\nb96cLVu20K9fP/q6csUhi1w+MS0kJIRBgwb51MS0IUOGcPfdd7N//36aN2/O7NmzrY7kUps2beKT\nTz5h7dq1REZGEhkZyYoVK6yO5RJpaWn06NGDiIgIoqOjiYuLo2fPnlbHchtf62rNyMigW7duzn+/\nBx54gN69e1/zdzU5S0TEj3htS19ERFxPRV9ExI+o6IuI+BEVfRERP6KiLyLiR1T0RUT8iIq++KTs\n7Gz+9re/AeYY9EcffdRl554+fTofffSRy843cOBADh065LLziVyPxumLT0pNTSUuLo7vv//epec1\nDIOoqCi2b99OpUquWcVk1apVLF261KfW5xfvpZa++KQXX3yRAwcOEBkZycCBA51T0j/66CPi4+Pp\n3bs3LVu2ZPr06bz55ptERUXRpUsXMjMzAThw4AB9+/alY8eOdO/enZ9++gkwZ+UGBwc7C35iYiLt\n2rUjPDycIUOGAOY0+JEjRxIdHU1UVBRLliwBzA08/vSnPxEaGkp4eDjTp08HwG63s3z5co/+9xE/\n5r4l/UWsk5qa6tzM5fL7s2fPNlq3bm3k5uYaJ0+eNGrVqmXMmDHDMAzDGDt2rPHOO+8YhmEYPXr0\nMH7++WfDMAxjy5YtRo8ePQzDMIw33njDePPNN53v06RJEyM/P98wDMPIzs42DMMwJkyYYHzyySeG\nYRhGZmam0aZNG+Ps2bPG+++/bzz66KOGw+EwDMMwTp8+7TxP9+7dfWpDFvFelq6yKeIuxmW9lsYV\nPZgxMTHccsst3HLLLdSpU8e5jHdoaCi7d+/m7NmzbN68uch1gPz8fAAOHz5M165dnc+HhYUxdOhQ\n4uPjnaturly5kqVLl/Lmm28C8Pvvv3P48GFWr17Ns88+61zP/fINZ5o0aUJqaqpPrcUk3klFX/xO\n1apVnfcrVKjgfFyhQgUuXLhAYWEhdevWJTk5+Zqvv/xLZNmyZaxfv56lS5fy+uuvO68hLFq0iDvu\nuOO6r73yeV/d3EO8i/4vE58UEBDgXGq2tC4W5ICAAFq2bMkXX3zhfH737t0AtGjRwrnxj2EYHD58\nGLvdzpQpU8jOziY3N5fY2NgiF2Uvfnn06tWLGTNm4HA4AJzXD8AcYdSiRYub/LQipaeiLz7p1ltv\n5Z577iE0NJTx48c7l9K12WxFltW98v7Fx/PmzWPWrFlERETQvn1758XYrl27smPHDgAuXLjAsGHD\nCAsLIyoqiueee47atWvz8ssvU1BQQFhYGO3bt2fixIkAjBo1ittuu42wsDAiIiKYP38+YG7McvTo\nUYKDg93/H0b8noZsitwA419DNrdu3UqVKlVccs6VK1eybNkypk2b5pLziVyPWvoiN8Bms/HUU08x\nb948l53zww8/ZOzYsS47n8j1qKUvIuJH1NIXEfEjKvoiIn5ERV9ExI+o6IuI+BEVfRERP6KiLyLi\nR/4/BVHYi+QDH9kAAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x77c6e10>"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEPCAYAAACqZsSmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VNXBxvHfEDZZEjZNgqEE2ZKQFRBcgAYwLJUgKlLQ\nomWxSm21gi+CvpbYt1oUUMMiolJQsCCgIJsUBYPKIluoVFEwJhJCiCCELCxJJvf940ogQphAZuZO\nZp7v53M/MxmSmWcAHy9nzj3HZhiGgYiI+JQaVgcQERH3U/mLiPgglb+IiA9S+YuI+CCVv4iID1L5\ni4j4IJeXf2ZmJj179qRDhw5ERkYyffp0AJKSkggJCSEuLo64uDjWrVvn6igiIvIzm6vn+R85coQj\nR44QGxtLQUEBnTp1YsWKFSxZsoSGDRsyduxYV768iIhcQk1Xv0BQUBBBQUEANGjQgPDwcLKysgDQ\n9WUiItZw65h/RkYGqamp3HTTTQDMmDGDmJgYRo0aRW5urjujiIj4NLeVf0FBAYMHDyY5OZkGDRow\nZswY0tPT2bNnD8HBwYwbN85dUURExHCDoqIio0+fPsbLL798yV9PT083IiMjL3q8devWBqBDhw4d\nOq7gaN26tcNedvmZv2EYjBo1ioiICP7yl7+UPZ6dnV12f/ny5URFRV30s2lpaRiG4bXHpEmTLM+g\n96f3pvfnfUdaWprDbnb5B76bN29m4cKFREdHExcXB8Dzzz/PokWL2LNnDzabjVatWjFnzhxXRxER\nkZ+5vPy7detGaWnpRY/379/f1S8tIiIV0BW+FoqPj7c6gkt58/vz5vcGen++wOUXeVWFzWbDg+OJ\niHikynSnzvxFRHyQy8f8RUSqO8OA4mI4exbOnDFvzx1FReXv//IoLr74tqKjpOT87S+PefOgaVPn\nvSeVv4hUa8XFkJ8PBQXmUVhY/n5hIZw6ZR4X3j91Ck6fPn977jhz5vxx7uuzZ8HPD+rWhTp1Lj5q\n1y5/W6uWeb927YvvX3jUr1/+65o1zeOXX9esCfXqOff3TWP+ImIZux1OnDh/5OaWvz150jzy8srf\nz883j7w886y4YUNo0MA86tcvf79+fbM4L7xfrx5cc8352wuPunXP354r+7p1zfKvLirTnSp/EXGa\nggLIyYEjR+Do0fPHsWPn7x8/Dj/9ZN7m50NAADRufP5o1Oj8bUDA+cPf//xtw4bm4e9vFrPNZvU7\n9ywqfxFxirw8yMyErCzIzobDh8sfOTnmYRgQFASBgXDdddCsGVx77fmjWTNz3LppU2jSxCz4Gpp2\n4nQqfxFxyDDM4k5Ph4wM8/aHH+DgQbPwMzPNoZUWLSAkBJo3L38EB5tlHxhoDrXoLNx6Kn8RAcyx\n9YMH4bvv4MCB8rc//GCWdmgotGpl3oaGmmV/7mjcWKVenaj8RXxMURF8+y3s21f+OHDAHGpp2xba\ntDl/26aNWfgNGlidXJxJ5S/ixbKzYc8e+PJL2LvXvD1wwDxrj4iA8HAICzNv27dXwfsSlb+Il8jO\nhp07Ydcu89i50zzLj4uD6OjzR3i4OU1RfJvKX6QaKi42z+i3bIGtW83bwkLo1Ak6dzZvO3WCli01\nDi+XpvIXqQbOnIFt2+CTTyAlxTyzv+EGuPlmuOUW87ZtWxW9VJ7KX8QDlZTA9u3w0Udm2e/YAZGR\nEB9vHjffbF7MJHK1VP4iHuLwYVi3zjw+/tgcsklIgJ494dZbzStVRZxF5S9iEcMwx+2XL4cPPoBD\nh8yy79cP+vY1L4wScRWVv4gb2e2webNZ+CtWmAuB3XknDBoEN91UvRYGk+qtMt2pJZ1FqsAwzGmX\n77wD775rrmtz552wcqU5jq8PacVTqfxFrsKBA2bh/+tfUFoK991nfnjbvr3VyUQqR+UvUkmnT8Oy\nZfD662b5//a3sHAh3HijzvCl+tGYv4gDe/fCG2+YZ/pdusAf/gADBpg7LYl4Io35i1ylkhLzQ9tX\nXjGXOB41yrz4KjTU6mQizqHyF7lAXh7885+QnGyuVf/44+ZsnZr6L0W8jP5Ki2DOw3/lFZg3D267\nDRYtMqdningrbaAmPi0zEx55xFwRs7QUdu82p2yq+MXbqfzFJ2Vmwh//CLGxUL8+fPMNvPSSueyC\niC9weflnZmbSs2dPOnToQGRkJNOnTwfg+PHjJCQk0K5dO/r06UNubq6ro4iQk3O+9Bs2NEv/xRfN\nzcZFfInLy79WrVq8/PLLfPXVV2zbto1Zs2axb98+Jk+eTEJCAvv376d3795MnjzZ1VHEh506Bc89\nBx06QN26Zum/8AJce63VyUSs4fLyDwoKIjY2FoAGDRoQHh5OVlYWK1eu5IEHHgDggQceYMWKFa6O\nIj6otBQWLDC3M9yzB774whzeUemLr3PrbJ+MjAxSU1Pp2rUrOTk5BAYGAhAYGEhOTo47o4gP2LwZ\nHnvMvBhr8WJzYxQRMbmt/AsKCrj77rtJTk6mYcOG5X7NZrNh0/Xx4iTHj8OECbBmDUybZi7DoL9e\nIuW5pfyLi4u5++67GT58OIMGDQLMs/0jR44QFBREdnY211XwiVtSUlLZ/fj4eOLj492QWKojwzDn\n548bB3ffDV9/rR2xxDekpKSQkpJyRT/j8rV9DMPggQceoGnTprz88stlj48fP56mTZvy5JNPMnny\nZHJzcy/60Fdr+0hlpaXBmDHmbJ7XX4euXa1OJGIdj9jM5fPPP6dHjx5ER0eXDe384x//oEuXLgwZ\nMoSDBw8SGhrKkiVLaNSoUflwKn9xoLQUZs2CZ581h3rOjfGL+DKPKP+qUPnL5Rw+DCNGwMmT5oye\ntm2tTiTiGSrTnbrCV6qlZcsgLs6cwfP55yp+kSulhd2kWsnLg0cfNadxrlypsX2Rq6Uzf6k29u6F\nTp2gdm1ITVXxi1SFyl+qhUWLoFcvmDTJnM3ToIHViUSqNw37iEcrLoYnnoDVq+HjjyEmxupEIt5B\n5S8eKzsbhgwBf3/YuRMaN7Y6kYj30LCPeKQdO+DGG81dtVatUvGLOJvO/MXjrF5tzt9/80244w6r\n04h4J535i0d57TV48EHzfwAqfhHX0Zm/eITSUnj6aXjvPfOirdatrU4k4t1U/mK5s2dh5EhIT4ct\nW6BZM6sTiXg/lb9YqrDQHN7x94cNG+Caa6xOJOIbNOYvlikogN/8Blq0gKVLVfwi7qTyF0vk50O/\nftCuHcydC35+VicS8S0qf3G7kyehb1+IjIQ5c6CG/haKuJ3+sxO3ys2FPn2gY0eYPVvFL2IV/acn\nbnPihHnF7s03w4wZ2lRdxErayUvc4tQpSEgwl2x4+WUVv4grOWUbx9zcXLZu3UpGRgY2m43Q0FBu\nvvlmAgICnBr2kuFU/l6hpATuvNNcn2f+fA31iLhalcr/s88+Y8qUKWRkZBAXF0fz5s0xDIPs7GxS\nU1MJDQ1l/PjxdOvWzSXhQeXvDQwDRo2CI0fggw+0ubqIO1SmOyu8yGv58uVMmzaNthVsjrp//35e\ne+01l5a/VH9PPw1ffQUbN6r4RTxJhWf+2dnZBAcHuztPOTrzr96mT4dXXzXX6tGSDSLuU5nurHD0\nNS4ujttuu425c+eSm5vr9HDi3RYvhilT4N//VvGLeKIKy//QoUM88cQTfPbZZ7Rv35477riDxYsX\nc/r0aXfmk2po61Z49FFYuxZatrQ6jYhcSqWmep49e5YPP/yQd999l08++YRevXrxr3/9y/XhNOxT\n7WRlQdeu5ibrv/mN1WlEfFOVhn0uVKdOHSIiIggPD6dhw4bs27fPKQHFu5w5A3fdBY88ouIX8XSX\nPfM/ePAgixcvZvHixRQUFDBs2DCGDRtGWFiYe8LpzL/aMAxz68XTp83xfl3EJWKdKk31vOWWWzh0\n6BBDhgzhjTfeoFOnTk4PKN5j+nTYswc2b1bxi1QHFZ75f/rpp3Tr1o0aFl6OqTP/6mHDBrjvPti2\nDUJDrU4jIlUa89+4cSNHjx6t8Aezs7OZNGmSwxAjR44kMDCQqKiosseSkpIICQkhLi6OuLg41q1b\n5/B5xDOlp5vFv2iRil+kOqlw2Kdz584MHTqUoqIiOnbsSHBwMIZhcOTIEXbv3k2dOnV44oknHL7A\niBEj+POf/8z9999f9pjNZmPs2LGMHTvWOe9CLFFUBEOGwIQJ0LOn1WlE5EpUWP4DBgxgwIABZGZm\nsnnzZg4ePAhAt27dePLJJwkJCanUC3Tv3p2MjIyLHtdwTvX3zDMQHAyPPWZ1EhG5UpfdwN1ut5Oc\nnMzUqVOd/sIzZszg7bffpnPnzkybNo1GjRo5/TXEdT7+GN55x/yQVx/wilQ/ly1/Pz8/Pv/8cwzD\nwObE/8LHjBnDX//6VwCeeeYZxo0bx9y5cy/5vUlJSWX34+PjiY+Pd1oOuTpHj8IDD8Bbb2npBhFP\nkJKSQkpKyhX9jMMrfB9++GEOHz7MPffcQ7169cwfstm46667Kv0iGRkZJCYmsnfv3iv6Nc328TyG\nAQMHQkQEvPCC1WlE5FKqNM//nDNnztCkSRM2btxY7vErKf9funDF0OXLl5ebCSSebdYsc23+996z\nOomIVIXLt3EcNmwYmzZt4tixYwQGBvLss8+SkpLCnj17sNlstGrVijlz5hAYGHhxOJ35e5Qvv4Te\nvc2F29q0sTqNiFTEKds4ZmZm8uijj/L5558D0KNHD5KTkys926cqVP6e4/Rp6NwZxo83x/tFxHM5\nZWG3ESNGMHDgQA4fPszhw4dJTExkxIgRTgsp1cPf/gbh4XDB5RoiUo05PPOPiYnhP//5j8PHXEFn\n/p4hNRX69jWHfYKCrE4jIo445cy/adOmLFiwALvdTklJCQsXLqSZ5vf5jJISGD3anNmj4hfxHg7L\n/5///CdLliwhKCiI4OBgli5dyrx589yRTTzASy9Bkybw+99bnUREnMnhVM+srCxWrVpV7rHNmzfz\nq1/9ymWhxDMcOAAvvgjbt+sqXhFv43DMPy4ujtTUVIePuYLG/K1jGNCrFyQmgtbfE6leqnSR19at\nW9myZQtHjx7lpZdeKnui/Px8SktLnZtUPM6bb0JhoRZtE/FWFZZ/UVER+fn52O128vPzyx739/dn\n2bJlbgkn1jh8GJ56ytykxc/P6jQi4goOh31++OEHWrZsCZirfBYUFBAQEOCecBr2scQ990BYGPzf\n/1mdRESuhlOmek6cOJG8vDwKCwuJiooiIiKCF1980WkhxbOkpMCOHeaZv4h4L4fl/9VXX+Hv78+K\nFSvo378/GRkZLFiwwB3ZxM3sdnOMf8oUuOYaq9OIiCs5LP+SkhKKi4tZsWIFiYmJ1KpVy6lr+4vn\nePNNCAiAwYOtTiIiruaw/B966CFCQ0MpKCigR48eZGRkuG3MX9wnNxcmTYLkZM3pF/EFV7yks2EY\n2O12atZ0eH1YlekDX/cZNw7y8uCNN6xOIiJVVaUlnRcsWMDw4cOZNm1a2TDPuW+12WyMdcOVPyp/\n9/j2W7j1VvjqK7jEtgoiUs1U6SKvU6dOAeZFXReO8Tt7P1+x3rhxMGGCil/El7h8J6+q0Jm/661b\nB3/+s3nWX7u21WlExBmcMs9//Pjx5OXlUVxcTO/evWnWrJmmenqJ4mJ4/HGYNk3FL+JrHJb/v//9\nb/z9/Vm9ejWhoaGkpaUxZcoUd2QTF5s7F66/3ly8TUR8i8MpOyUlJQCsXr2awYMHExAQoDF/L3Dm\nDDz3HLz3nqZ2ivgih+WfmJhIWFgYdevWZfbs2fz444/UrVvXHdnEhebMgbg46NLF6iQiYoVKfeB7\n/PhxAgIC8PPzo7CwkPz8fILcsKefPvB1jVOnoHVr+PBDiI21Oo2IOJtTPvAtLCxk1qxZPPzwwwAc\nPnyYnTt3OiehWGLWLOjWTcUv4ssclv+IESOoXbs2W7ZsAaB58+Y8/fTTLg8mrpGfby7clpRkdRIR\nsZLD8k9LS+PJJ5+k9s9zAevXr+/yUOI6ycmQkAAdOlidRESs5PAD3zp16nD69Omyr9PS0qhTp45L\nQ4lrnDgBr7wCP/8jTkR8mMPyT0pKol+/fhw6dIh7772XzZs3M3/+fDdEE2d76SUYOBDatbM6iYhY\nrVKzfY4dO8a2bdsAuOmmmzhz5gwhISGuD6fZPk5z7Bi0bw+7dkFoqNVpRMSVqjzbZ9euXSxdupSc\nnBwGDBhATEwMTz31FLfcckulQ4wcOZLAwECioqLKHjt+/DgJCQm0a9eOPn36kJubW+nnk6vz4osw\nZIiKX0RMFZb///7v//K73/2O999/n4EDBzJu3Dh69OhBREQE+/fvr/QLjBgxgnXr1pV7bPLkySQk\nJLB//3569+7N5MmTr/4diEM//WSu0699eUXknAqHfSIiIti9ezd169bl+PHjtGjRgq+++orQqzh1\nzMjIIDExkb179wIQFhbGpk2bCAwM5MiRI8THx/PNN99cHE7DPk7x979DWhrMm2d1EhFxhyqt51+n\nTp2yZRyaNGlC27Ztr6r4LyUnJ4fAnxePDwwMJCcnxynPKxc7cwZmzoQNG6xOIiKepMLy//7770m8\nYLnHc2fvYP5fZeXKlU4JYLPZLrtQXNIFVyPFx8cTHx/vlNf1FW+/DZ07a16/iDdLSUkhJSXlin6m\nwmGfyz2RzWbj17/+daVf5FLDPikpKQQFBZGdnU3Pnj017OMCdjuEh5vj/VfwxyUi1VyVhn1ceYY9\ncOBA3nrrLZ588kneeustBg0a5LLX8mUrV0KjRtCjh9VJRMTTuHwbx2HDhrFp0yaOHTtGYGAgf/vb\n37jjjjsYMmQIBw8eJDQ0lCVLltCoUaOLw+nM/6oZBtxyi7k/7+DBVqcREXeqTHdqD18v9fnn8Pvf\nw7ffgp+f1WlExJ2csqTzhex2O3l5eVUKJe4xZQqMHaviF5FLc1j+w4YNIy8vj8LCQqKioggPD+fF\nF190Rza5St98A9u2mWf+IiKX4rD8v/76a/z9/VmxYgX9+/cnIyODBQsWuCObXKWpU+GPf4R69axO\nIiKeqlIbuBcXF7NixQoeeeQRatWqpQ3cPVh2Nrz/PlzBChwi4oMcnvk/9NBDhIaGUlBQQI8ePcjI\nyCAgIMAd2eQqzJ4Nw4ZBs2ZWJxERT3bFs30Mw8But1OzpsN/NFSZZvtcmeJiaNkSPvpIV/SK+DKn\nzPZJTk4mLy8PwzAYNWoUHTt2ZIMWivFIH3wAbdqo+EXEMYflP3fuXPz9/Vm/fj3Hjx9nwYIFTJgw\nwR3Z5ArNng1jxlidQkSqA4flf+6fDmvWrGH48OFERka6PJRcuW+/hf/+F+66y+okIlIdOCz/Tp06\n0adPH9auXUvfvn3Jy8ujRo0rujZM3GDOHBgxAurUsTqJiFQHDj/wtdvt/Oc//+GGG26gUaNG/PTT\nTxw6dIiYmBjXh9MHvpVy+jS0aAE7dkCrVlanERGrVWlVz3P8/PzIzMzknXfeAczVPi9c51+st2QJ\ndOmi4heRynM4fjNhwgSmT59Ohw4diIiIYPr06UycONEd2aSS9EGviFwph8M+UVFR7NmzB7+fVwiz\n2+3ExsaWbczi0nAa9nEoNRXuuAPS07WIm4iYnDLP32azkZubW/Z1bm6ulnfwILNnwx/+oOIXkSvj\ncMx/4sSJdOzYkZ49e2IYBps2bWLy5MnuyCYOnDwJS5fC119bnUREqpvLln9paSk1atRg69at7Nix\nA5vNxuTJkwkODnZXPrmMhQvhtttAfxwicqUcjvl36tSJXbt2uStPORrzr5hhQHQ0JCdDr15WpxER\nT+KUMf+EhASmTp1KZmYmx48fLzvEWjt3wqlT0LOn1UlEpDpyeOYfGhp6yQ9409PTXRbqHJ35V+zR\nR6FpU5g0yeokIuJptIG7lyouhuuvh61boXVrq9OIiKdxyrDPrFmzOHHiRNnXJ06c4NVXX616Orlq\n69ZBu3YqfhG5eg7L//XXX6dx48ZlXzdu3JjXX3/dpaHk8t5+G4YPtzqFiFRnDsu/tLSU0tLSsq/t\ndjvFxcUuDSUVO3EC1q+HIUOsTiIi1ZnDi7z69u3L0KFDeeihhzAMgzlz5tCvXz93ZJNLWLoUEhLg\ngn+MiYhcsUot6fz666+Xbd2YkJDA6NGjy9b6cWk4feB7ke7d4X/+BwYOtDqJiHgqzfbxMt9/D127\nQlYW1K5tdRoR8VROWc9///79PPXUU3z99decPn267Im///5756SUSlu4EIYOVfGLSNU5LP8RI0bw\n7LPPMnbsWD755BPmz5+P3W53youHhobi7++Pn58ftWrVYvv27U55Xm9kGLBgAfy8p46ISJU4HPbp\n2LEju3fvJioqqmwN/3OPVVWrVq3YtWsXTZo0uXQ4DfuU2brV3KN33z7QitoicjlOGfapW7cudrud\nNm3aMHPmTJo3b05hYaHTQqrcK2fBAnNuv4pfRJzB4Zn/9u3bCQ8PJzc3l2eeeYa8vDzGjx/PTTfd\nVOUXv+GGGwgICMDPz4+HHnqIBx98sHw4nfkDcPasuZzDrl3QsqXVaUTE0znlzL9Lly4ANGzYkPnz\n5zsl2DmbN28mODiYo0ePkpCQQFhYGN27dy/3PUlJSWX34+PjiY+Pd2qG6mDtWoiMVPGLyKWlpKSQ\nkpJyRT/jMVM9n332WRo0aMC4cePKHtOZv+mee6BvXxg92uokIlIdOGVhN1c5deoU+fn5ABQWFrJ+\n/XqioqKsiuOxTp0yl3MYNMjqJCLiTRwO+7hKTk4Od955JwAlJSXcd9999OnTx6o4HmvdOrjxRmjW\nzOokIuJNLjvss3HjRmbOnMk333wDQEREBI888gg93bR9lIZ94L77zCUdHn7Y6iQiUl1UaXmHNWvW\n8Kc//Ym//vWvxMXFYRgGqamp/P3vf2fGjBncfvvtLgldLpyPl//ZsxAUZM7tDwqyOo2IVBdVKv9f\n//rXTJ8+nZiYmHKPf/nll/zpT3/i008/dV7SisL5ePmvXg1TpsCmTVYnEZHqpEof+Obk5FxU/ADR\n0dH8+OOPVU8nDi1bBnffbXUKEfFGFZZ/vXr1Kvyhy/2aOEdREaxaBXfdZXUSEfFGFc72SUtLIzEx\n8ZK/phU9Xe+TT8x9ekNCrE4iIt6owjF/R1eLueNKW18e8//DH8zyf+IJq5OISHWjzVyqqZISaN4c\nvvgCWrWyOo2IVDcuu8J30qRJVxVIKuezz6BFCxW/iLhOhWP+p0+f5rXXXuO7774jOjqaUaNGUbOm\n+e2dO3d2W0Bf9N57MHiw1SlExJtVOOwzZMgQateuTbdu3fjwww8JDQ0lOTnZveF8cNintNT8kDcl\nxRzzFxG5UlVa0nnfvn1lO3eNHj2aG2+80bnp5JK2boWmTVX8IuJaFY75nxvi+eV9ca1lyzTkIyKu\nV+Gwj5+fX7mLuU6fPs0111xj/pDNRl5enuvD+diwj2GYG7ac27xFRORqVGnYx263Oz2QXN7u3VC3\nLnToYHUSEfF2lm3mIhdbswYSE7VJu4i4nsrfg6xdC7/5jdUpRMQX6ApfD3H0KLRtCz/+CLVrW51G\nRKozj97DV8pbtw569VLxi4h7qPw9xJo14IbN0UREAA37eISSErjuOvjvf80F3UREqkLDPtXE1q0Q\nGqriFxH3Ufl7AM3yERF3U/l7AI33i4i7qfwtlpkJhw9Dly5WJxERX6Lyt9iHH0K/fuDnZ3USEfEl\nKn+LrVmj8X4RcT9N9bTQ2bPmFM/vvzfX8BcRcQZN9fRwmzaZSzer+EXE3Swt/3Xr1hEWFkbbtm15\n4YUXrIxiibVrNctHRKxh2bCP3W6nffv2fPzxx1x//fXceOONLFq0iPDw8PPhvHzYp21bWLoUYmOt\nTiIi3sSjh322b99OmzZtCA0NpVatWgwdOpQPPvjAqjhud+AAnDoFMTFWJxERX2RZ+WdlZdGiRYuy\nr0NCQsjKyrIqjtudm+WjjVtExAqWlb/Nx1vvww81xVNErFPhHr6udv3115OZmVn2dWZmJiEhIRd9\nX1JSUtn9+Ph44uPj3ZDOtc6ehS1b4N13rU4iIt4gJSWFlJSUK/oZyz7wLSkpoX379mzYsIHmzZvT\npUsXn/nAd9MmGD8evvjC6iQi4o0q052WnfnXrFmTmTNn0rdvX+x2O6NGjSpX/N5s40Zz1y4REavo\nCl8LdOsGSUlw221WJxERb1SZ7lT5u1lBAQQHQ04O1KtndRoR8UYePc/fV332GXTurOIXEWup/N1s\nwwaN94uI9VT+bqYPe0XEE2jM341++glatTJva9WyOo2IeCuN+XuYlBRzpo+KX0SspvJ3ow0boHdv\nq1OIiKj83Urj/SLiKVT+bpKVBceOaQlnEfEMKn832bgR4uOhhn7HRcQDqIrcROP9IuJJVP5uYBga\n7xcRz6Lyd4PvvoPSUmjXzuokIiImlb8bnDvr9/HNy0TEg6j83UDj/SLiabS8g4uVlkJgIOzeDRfs\nVy8i4jJa3sED7N0LjRur+EXEs6j8Xay0FMaOtTqFiEh5GvYREfEyGvYREZFLUvmLiPgglb+IiA9S\n+YuI+CCVv4iID1L5i4j4IJW/iIgPUvmLiPgglb+IiA+ypPyTkpIICQkhLi6OuLg41q1bZ0UMERGf\nZUn522w2xo4dS2pqKqmpqfTr18+KGJZLSUmxOoJLefP78+b3Bnp/vsCyYR+t2eP9fwG9+f1583sD\nvT9fYFn5z5gxg5iYGEaNGkVubq5VMUREfJLLyj8hIYGoqKiLjpUrVzJmzBjS09PZs2cPwcHBjBs3\nzlUxRETkEixf0jkjI4PExET27t170a+1adOGtLQ0C1KJiFRfrVu35rvvvrvs99R0U5ZysrOzCQ4O\nBmD58uVERUVd8vschRcRkatjyZn//fffz549e7DZbLRq1Yo5c+YQGBjo7hgiIj7L8mEfERFxP4+/\nwnfp0qV06NABPz8/du/ebXUcp1i3bh1hYWG0bduWF154weo4TjVy5EgCAwMrHMqr7jIzM+nZsycd\nOnQgMjKS6dOnWx3Jqc6cOUPXrl2JjY0lIiKCiRMnWh3J6ex2O3FxcSQmJlodxelCQ0OJjo4mLi6O\nLl26XP7DyYUJAAAG3UlEQVSbDQ+3b98+49tvvzXi4+ONXbt2WR2nykpKSozWrVsb6enpRlFRkRET\nE2N8/fXXVsdymk8//dTYvXu3ERkZaXUUl8jOzjZSU1MNwzCM/Px8o127dl7152cYhlFYWGgYhmEU\nFxcbXbt2NT777DOLEznXtGnTjHvvvddITEy0OorThYaGGj/99FOlvtfjz/zDwsJo166d1TGcZvv2\n7bRp04bQ0FBq1arF0KFD+eCDD6yO5TTdu3encePGVsdwmaCgIGJjYwFo0KAB4eHhHD582OJUzlWv\nXj0AioqKsNvtNGnSxOJEznPo0CHWrl3L6NGjvfZC08q+L48vf2+TlZVFixYtyr4OCQkhKyvLwkRy\ntTIyMkhNTaVr165WR3Gq0tJSYmNjCQwMpGfPnkRERFgdyWkef/xxpkyZQo0a3ll9NpuN2267jc6d\nO/PGG29c9nstmer5SwkJCRw5cuSix59//nmvG5ez2WxWRxAnKCgoYPDgwSQnJ9OgQQOr4zhVjRo1\n2LNnDydPnqRv376kpKQQHx9vdawqW716Nddddx1xcXFeu7zD5s2bCQ4O5ujRoyQkJBAWFkb37t0v\n+b0eUf4fffSR1RHc5vrrryczM7Ps68zMTEJCQixMJFequLiYu+++m9/97ncMGjTI6jguExAQwO23\n387OnTu9ovy3bNnCypUrWbt2LWfOnCEvL4/777+ft99+2+poTnPu+qlrr72WO++8k+3bt1dY/tXq\n3z7eMEbXuXNnDhw4QEZGBkVFRbz77rsMHDjQ6lhSSYZhMGrUKCIiIvjLX/5idRynO3bsWNlaW6dP\nn+ajjz4iLi7O4lTO8fzzz5OZmUl6ejqLFy+mV69eXlX8p06dIj8/H4DCwkLWr19/2Vl3Hl/+y5cv\np0WLFmzbto3bb7+d/v37Wx2pSmrWrMnMmTPp27cvERER/Pa3vyU8PNzqWE4zbNgwbrnlFvbv30+L\nFi2YN2+e1ZGcavPmzSxcuJBPPvnEK/ejyM7OplevXsTGxtK1a1cSExPp3bu31bFcwtuGYHNycuje\nvXvZn92AAQPo06dPhd+vi7xERHyQx5/5i4iI86n8RUR8kMpfRMQHqfxFRHyQyl9ExAep/EVEfJDK\nX7zWyZMnmT17NmDOX7/nnnuc9twzZ85k/vz5Tnu+IUOGkJ6e7rTnE3FE8/zFa11uf+iqMAyDjh07\nsmPHDmrWdM4KKR999BGrVq3yuv0BxHPpzF+81oQJE0hLSyMuLo4hQ4aUXeo+f/58Bg0aRJ8+fWjV\nqhUzZ85k6tSpdOzYkZtvvpkTJ04AkJaWRv/+/encuTM9evTg22+/BcyrfMPCwsqKf/r06XTo0IGY\nmBiGDRsGmJfXjxw5kq5du9KxY0dWrlwJmBuJPPHEE0RFRRETE8PMmTMBiI+PZ+3atW79/REf55ot\nBUSsl5GRUbapzIX3582bZ7Rp08YoKCgwjh49avj7+xtz5swxDMMwHn/8ceOVV14xDMMwevXqZRw4\ncMAwDMPYtm2b0atXL8MwDOMf//iHMXXq1LLXad68uVFUVGQYhmGcPHnSMAzDmDhxorFw4ULDMAzj\nxIkTRrt27YzCwkLj1VdfNe655x7DbrcbhmEYx48fL3ueHj16eN3GMOK5PGJVTxFXMC4Y0TR+MbrZ\ns2dP6tevT/369WnUqFHZ0uFRUVF8+eWXFBYWsmXLlnKfExQVFQFw8OBBunXrVvZ4dHQ09957L4MG\nDSpb5XP9+vWsWrWKqVOnAnD27FkOHjzIhg0bGDNmTNl68hdufNO8eXMyMjK8aq0n8Vwqf/FJderU\nKbtfo0aNsq9r1KhBSUkJpaWlNG7cmNTU1Ev+/IX/M1mzZg2ffvopq1at4rnnniv7jOH999+nbdu2\nl/3ZXz7urZuMiOfR3zTxWg0bNixb4rayzhVzw4YNadWqFcuWLSt7/MsvvwSgZcuWZZsPGYbBwYMH\niY+PZ/LkyZw8eZKCggL69u1b7sPbc/8TSUhIYM6cOdjtdoCyzxfAnJHUsmXLq3y3IldG5S9eq2nT\nptx6661ERUUxfvz4siV8bTZbueV8f3n/3NfvvPMOc+fOJTY2lsjIyLIPbbt168bOnTsBKCkpYfjw\n4URHR9OxY0cee+wxAgICeOaZZyguLiY6OprIyEgmTZoEwOjRo/nVr35FdHQ0sbGxLFq0CDA3iDl0\n6BBhYWGu/40RQVM9Ra6Y8fNUzy+++ILatWs75TnXr1/PmjVrSE5OdsrziTiiM3+RK2Sz2XjwwQd5\n5513nPacb775Jo8//rjTnk/EEZ35i4j4IJ35i4j4IJW/iIgPUvmLiPgglb+IiA9S+YuI+CCVv4iI\nD/p/wQuHfYdHfM4AAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x7b9e4a8>"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEPCAYAAAB7rQKTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt0VNW9B/DvQCLIQ17KBGYiAzOTFyEhSBMtgoEQMGCm\ntFcQaGusqCwqBG3ldQsVVgWSW3oplnrBFjH4AGxLSZAYwdpgfYQIxFoJYpAEJ0+QEN5m8vjdP04Y\nEvKYCczJSSbfz1pnzcyZvc/8zsCaX/Y+++ytExEBERGRSrpoHQAREXk3JhoiIlIVEw0REamKiYaI\niFTFRENERKpioiEiIlWpmmgyMjIQFBQEq9WK5OTkJsskJibCarUiPDwcOTk5LuuWl5cjNjYWAQEB\nmDRpEioqKpz7x48fj969e2PBggVNfpbNZsOIESM8eIZEROSKaommpqYG8+fPR0ZGBnJzc7F9+3Yc\nO3asQZn09HScOHECeXl5ePnllzFv3jyXdZOSkhAbG4uvvvoKMTExSEpKAgB0794dL7zwAtatW9dk\nPLt27ULv3r2h0+nUOmUiImqCaokmOzsbFosFJpMJvr6+mDlzJlJTUxuUSUtLQ0JCAgAgKioKFRUV\nKC0tbbFu/ToJCQnYvXs3AKBHjx4YM2YMunXr1iiWS5cuYf369Vi+fDl4fyoRUdtSLdEUFRXB39/f\n+dpoNKKoqMitMsXFxc3WLSsrg16vBwDo9XqUlZU1OGZTLZYVK1bgueeeQ48ePW79xIiIqFVUSzTu\ndlG508IQkSaPp9PpXH7OZ599hpMnT+IHP/gBWzNERBrwUevABoMBdrvd+dput8NoNLZYprCwEEaj\nEVVVVY32GwwGAEorprS0FH5+figpKcHAgQNbjCMrKwuHDh3C0KFDUV1djdOnT2PChAl4//33G5Sz\nWCz4+uuvb/p8iYg6I7PZjBMnTrRcSFRSVVUlw4YNk/z8fKmsrJTw8HDJzc1tUGbv3r0SFxcnIiKf\nfPKJREVFuay7aNEiSUpKEhGRtWvXypIlSxocc+vWrTJ//vwmYyooKJDQ0NAm31Pxq2gXnn/+ea1D\nUBXPr2Pz5vPz5nMTce+3U7UWjY+PDzZu3IjJkyejpqYGc+bMQXBwMDZv3gwAmDt3LqZMmYL09HRY\nLBb07NkTW7dubbEuACxduhQzZszAli1bYDKZ8NZbbzk/02Qy4eLFi3A4HEhNTcW+ffsQFBRUP6ly\n1BkRURtTLdEAQFxcHOLi4hrsmzt3boPXGzdudLsuAPTv3x/vvfdek3UKCgpajMdkMuHzzz9vsQwR\nEXkWZwboJKKjo7UOQVU8v47Nm8/Pm8/NXbq6PrZOT6fTcVQaEVErufPbyRYNERGpiomGiIhUxURD\nRESqYqIhIiJVMdEQEZGqmGiIiEhVTDRERKQqJhoiIlIVEw0REamKiYaIiFTFRENERKpioiEiIlUx\n0RARkaqYaIiISFVMNEREpComGiIiUhUTDRERqYqJhoiIVMVEQ0REqmKiISIiVTHREBGRqlRPNBkZ\nGQgKCoLVakVycnKTZRITE2G1WhEeHo6cnByXdcvLyxEbG4uAgABMmjQJFRUVzv3jx49H7969sWDB\nAmf5q1evYurUqQgODkZoaCiWLVum0tlq74UXgLNntY6CiOg6VRNNTU0N5s+fj4yMDOTm5mL79u04\nduxYgzLp6ek4ceIE8vLy8PLLL2PevHku6yYlJSE2NhZfffUVYmJikJSUBADo3r07XnjhBaxbt65R\nLIsXL8axY8eQk5ODjz76CBkZGWqeumaysoD339c6CiKi61RNNNnZ2bBYLDCZTPD19cXMmTORmpra\noExaWhoSEhIAAFFRUaioqEBpaWmLdevXSUhIwO7duwEAPXr0wJgxY9CtW7cGn3H77bfjgQceAAD4\n+vpi1KhRKCoqUvPUNTNxIvDee1pHQUR0naqJpqioCP7+/s7XRqOx0Q98c2WKi4ubrVtWVga9Xg8A\n0Ov1KCsra3BMnU7XbEwVFRXYs2cPYmJibv7E2rHYWGD/fq2jICK6zkfNg7f0g1+fiLhVpqnj6XQ6\ntz+nuroas2bNwsKFC2EymRq9v3LlSufz6OhoREdHu3Xc9iQkBLh6FTh5Ehg2TOtoiMjbZGZmIjMz\ns1V1VE00BoMBdrvd+dput8NoNLZYprCwEEajEVVVVY32GwwGAEorprS0FH5+figpKcHAgQPdiuep\np55CYGAgEhMTm3y/fqLpqHS6691nTz2ldTRE5G1u/CN81apVLuuo2nU2evRo5OXloaCgAA6HAzt3\n7oTNZmtQxmazYdu2bQCArKws9O3bF3q9vsW6NpsNKSkpAICUlBRMmzatwTGbaiEtX74cFy5cwPr1\n69U41XaF12mIqD3RiTv9VrfgnXfewTPPPIOamhrMmTMHy5Ytw+bNmwEAc+fOBQDn6LKePXti69at\nGDVqVLN1AWUY84wZM/DNN9/AZDLhrbfeQt++fQEAJpMJFy9ehMPhQN++fbF//3706tULd999N4KD\ng3HbbbcBABYsWIDHH3/8+heh07nVhdcRFBUBYWHA6dNA165aR0NE3syd307VE01H4U2JBlCu1bz2\nGnDPPVpHQkTezJ3fTs4M4KXYfUZE7QUTjZdioiGi9oJdZ3W8revswgXAYFCu09x+u9bREJG3YtdZ\nJ3bHHcqAgI8+0joSIursmGi8GLvPiKg9YKLxYkw0RNQe8BpNHW+7RgMAVVXAnXcq09EMGKB1NETk\njXiNppPz9QXGjuWyAUSkLSYaL8fuMyLSGhONl2OiISKtMdF4ueHDgStXlOs0RERaYKLxcvWXDSAi\n0gITTScwcSJX3SQi7XB4cx1vHN58TWkpEBysTEfj66t1NETkTTi8mQAAfn6A1Qp8+KHWkRBRZ8RE\n00k89BCwZ4/WURBRZ8RE00nExwNvv611FETUGTHRdBIjRwKXLwPHj2sdCRF1Nkw0nYROp3SfsVVD\nRG2NiaYTiY/ndRoiansc3lzHm4c3X3PlijIC7dQpoF8/raMhIm/A4c3UQI8ewAMPABkZWkdCRJ0J\nE00nw+s0RNTWVE00GRkZCAoKgtVqRXJycpNlEhMTYbVaER4ejpycHJd1y8vLERsbi4CAAEyaNAkV\nFRXO/ePHj0fv3r2xYMGCBp9x+PBhjBgxAlarFQsXLlThTDuOhx5SWjTV1VpHQkSdhWqJpqamBvPn\nz0dGRgZyc3Oxfft2HDt2rEGZ9PR0nDhxAnl5eXj55Zcxb948l3WTkpIQGxuLr776CjExMUhKSgIA\ndO/eHS+88ALWrVvXKJZ58+Zhy5YtyMvLQ15eHjI6cd+RwQAMGQJ8/LHWkRBRZ6FaosnOzobFYoHJ\nZIKvry9mzpyJ1NTUBmXS0tKQkJAAAIiKikJFRQVKS0tbrFu/TkJCAnbv3g0A6NGjB8aMGYNu3bo1\n+IySkhJcvHgRkZGRAIBHH33UWaez4ugzImpLqiWaoqIi+Pv7O18bjUYUFRW5Vaa4uLjZumVlZdDr\n9QAAvV6PsrKyBsfU6XSNPsNoNDpfGwyGRnF0NrxOQ0RtyUetA9/4g98cd4YUi0iTx9PpdG5/jjtW\nrlzpfB4dHY3o6GiPHbs9ueceoKICOHECsFi0joaIOpLMzExkZma2qo5qicZgMMButztf2+32Bi2L\npsoUFhbCaDSiqqqq0X6DwQBAacWUlpbCz88PJSUlGDhwoMs4CgsLmzzWjeonGm/WpQswdarSqnnm\nGa2jIaKO5MY/wletWuWyjmpdZ6NHj0ZeXh4KCgrgcDiwc+dO2Gy2BmVsNhu2bdsGAMjKykLfvn2h\n1+tbrGuz2ZCSkgIASElJwbRp0xoc88YW0qBBg3DHHXfg4MGDEBG89tprjep0RpzNmYjajKgoPT1d\nAgICxGw2y5o1a0REZNOmTbJp0yZnmaefflrMZrOEhYXJ4cOHW6wrInL27FmJiYkRq9UqsbGxcu7c\nOed7Q4YMkf79+0uvXr3EaDTKsWPHRETk0KFDEhoaKmazWRYsWNBkrCp/Fe3OxYsivXqJVFRoHQkR\ndWTu/HZyCpo6nWEKmhvFxQEJCcDMmVpHQkQdFaegoRY9/DDw179qHQUReTu2aOp0xhbN2bPAsGFA\nURHQq5fW0RBRR8QWDbVowADgvvuAvXu1joSIvBkTTSc3Ywbw1ltaR0FE3oxdZ3U6Y9cZAJSXA0OH\nsvuMiG4Ou87Ipf79ge9/n1PSEJF6mGiI3WdEpCp2ndXprF1nAHDunLJ0QFER0Lu31tEQUUfCrjNy\nS79+wP33s/uMiNTBREMA2H1GROph11mdztx1BlzvPissBO64Q+toiKijYNcZua1fP2DsWHafEZHn\nMdGQE7vPiEgN7Dqr09m7zgBl1c2772b3GRG5j11n1Cp9+wLjxnFBNCLyLCYaaoDdZ0Tkaew6q8Ou\nM8X580r32cmTyuzOREQtYdcZtVqfPsCUKcCOHVpHQkTegomGGnnsMeDVV7WOgoi8BRMNNTJxIlBc\nDHzxhdaREJE3YKKhRrp2BR59FEhJ0ToSIvIGLQ4GOHLkCLZv344PPvgABQUF0Ol0GDJkCMaNG4fZ\ns2cjIiKiLWNVFQcDNPTll8D48YDdDvj4aB0NEbVX7vx2NptopkyZgn79+sFmsyEyMhKDBg2CiKCk\npATZ2dnYs2cPKioqsNdLFpxnomnsvvuAFSuUwQFERE1x67dTmlFaWtrcW05lZWUtvv/OO+9IYGCg\nWCwWSUpKarLMggULxGKxSFhYmBw5csRl3bNnz8rEiRPFarVKbGysnDt3zvnemjVrxGKxSGBgoLz7\n7rvO/a+88oqEhoZKWFiYPPjgg/Ltt982iqOFr6LT2rRJZPp0raMgovbMnd/OVv+6fvDBB/Lzn//c\nZbnq6moxm82Sn58vDodDwsPDJTc3t0GZvXv3SlxcnIiIZGVlSVRUlMu6ixYtkuTkZBERSUpKkiVL\nloiIyNGjRyU8PFwcDofk5+eL2WyW2tpaqayslP79+8vZs2dFRGTx4sWycuXKxl8EE00j586J9Okj\nUvfVERE14s5vp1uDAY4cOYJFixZhyJAhWLFiBYKCglzWyc7OhsVigclkgq+vL2bOnInU1NQGZdLS\n0pCQkAAAiIqKQkVFBUpLS1usW79OQkICdu/eDQBITU3FrFmz4OvrC5PJBIvFguzsbPj4+KBfv364\ndOkSRAQXLlyAwWBw57Q7vb59gQcf5D01RHRrmk00x48fx8qVKxEcHIxnnnkGd999N0QEmZmZWLBg\ngcsDFxUVwd/f3/naaDSiqKjIrTLFxcXN1i0rK4NerwcA6PV6lJWVAQCKi4thNBob1CksLESXLl2w\nYcMGhIaGwmAw4NixY3j88cddxk8K3lNDRLeq2fFEwcHBeOihh/Duu+/i7rvvBgD87//+r9sH1ul0\nbpUTNy7Ai0iTx9PpdC1+jk6nw4ULF5CYmIh///vfGDp0KBYsWIC1a9fiV7/6VaPyK1eudD6Pjo5G\ndHS0W+fgzWJjgTlzgKNHgeHDtY6GiLSWmZmJzMzMVtVpNtHs2rUL27dvx7hx4/Dggw9i+vTprRqV\nZTAYYLfbna/tdnuDFkdTZQoLC2E0GlFVVdVo/7XuLr1ej9LSUvj5+aGkpAQDBw5s9ljXWjBDhw7F\n0KFDAQDTp09HcnJykzHXTzSk6NoV+OlPlXtq/ud/tI6GiLR24x/hq1atclmn2a6zadOmYefOnfji\niy8wduxYrF+/HmfOnMG8efOwb98+lwcePXo08vLyUFBQAIfDgZ07d8JmszUoY7PZsG3bNgBAVlYW\n+vbtC71e32Jdm82GlLo7CVNSUjBt2jTn/h07dsDhcCA/Px95eXmIjIzEsGHD8OWXX+Lbb78FAOzf\nvx8hISEu46frEhKA114Dqqu1joSIOqTWjC44e/asbN68WcaPH+9W+fT0dAkICBCz2Sxr1qwREZFN\nmzbJpk2bnGWefvppMZvNEhYWJocPH26x7rUYYmJimhzevHr1ajGbzRIYGCgZGRnO/SkpKc7hzTab\nTcrLyxvF2sqvotOJihJ5+22toyCi9sad385mb9i8ePEievfu3WKScqdMR8EbNlv2pz8Bb78N3DBw\nkIg6uVuaGWDixIkIDAzED37wA4wePRr9+/cHAJSXl+PTTz/F7t27kZeXh/fee8/zkWuAiaZlly8r\n69QcPgyYTFpHQ0TtxS0lGgB4//338eabb+Kjjz5CcXExAGDw4MG4//778eMf/9irRmUx0bj27LNA\nt25AUpLWkRBRe3HLiaYzYaJxLS8PGDMG+OYboHt3raMhovbAIytsxsTEuLWPvJ/VCtxzD7Bzp9aR\nEFFH0myiuXr1Ks6ePYszZ86gvLzcuRUUFDS6w586j6efBv74R62jIKKOpNkbNjdv3owNGzaguLgY\n99xzj3N/7969MX/+/DYJjtqfuDggMRHIzgYiI7WOhog6ApfXaF588UUkJia2VTya4TUa9/32t8oy\nz1yBk4g8Nhjg448/RkFBAarr3Rr+6KOP3nqE7QgTjfvOngUsFuCrr4C77tI6GiLSkkcSzU9+8hOc\nPHkSI0eORNeuXZ37//CHP3gmynaCiaZ1Hn8cCAgAli7VOhIi0pJHEk1wcDByc3Pdno25o2KiaZ0j\nR4Af/hD4+mvAp9krfUTk7TwyvDk0NBQlJSUeC4q8w6hRwODByrQ0REQtcfm36JkzZxASEoLIyEh0\n69YNgJLB0tLSVA+O2rf585WhznUTaBMRNcll19m1BW7qN490Oh0eeOAB1YNrS+w6a73KSmXes337\ngBEjtI6GiLTgsVFnBQUFOHHiBCZOnIgrV66guroad9xxh8cCbQ+YaG5OUpKy+uZrr2kdCRFpwSPX\naF5++WVMnz4dc+fOBaCsXPnDH/7QMxFShzdvHpCeDhQUaB0JEbVXLhPNH//4R3z44YfOFkxAQABO\nnz6temDUMfTpAzz5JLBundaREFF75TLRdOvWzTkIAACqq6u9fqgztc4zzwBvvgnw7w8iaorLRPPA\nAw9g9erVuHLlCvbv34/p06cjPj6+LWKjDsLPD3jkEWDDBq0jIaL2yOVggNraWvz5z3/Gvn37AACT\nJ0/GE0884XWtGg4GuDUnTyqTbJ48CXjZOBEiasEtjzqrrq5GaGgovvzyS48H194w0dy62bOBkSOB\nxYu1joSI2sotjzrz8fFBYGAgTp065dHAyDstXQr8/vfAd99pHQkRtScuZwYoLy/H8OHDERkZiZ49\newLgzADUtLAwICJCWT6gbjQ8EZHrazQHDhxo1CzizADUnA8/BBISgOPHOdkmUWdwy11n1dXVeOqp\npxAdHd1gczfJZGRkICgoCFarFcnJyU2WSUxMhNVqRXh4OHJyclzWLS8vR2xsLAICAjBp0iRUVFQ4\n31u7di2sViuCgoKcgxcAwOFw4KmnnkJgYCCCg4Oxa9cut+Kn1rv/fmDQIOCvf9U6EiJqN8QFm80m\nBQUFroo1Ul1dLWazWfLz88XhcEh4eLjk5uY2KLN3716Ji4sTEZGsrCyJiopyWXfRokWSnJwsIiJJ\nSUmyZMkSERE5evSohIeHi8PhkPz8fDGbzVJbWysiIr/+9a9lxYoVzs/99ttvG8XrxldBbkpPFwkJ\nEamu1joSIlKbO7+dLu+juXaNZsKECYiPj0d8fDxsNpvLBJadnQ2LxQKTyQRfX1/MnDkTqampDcqk\npaUhISEBABAVFYWKigqUlpa2WLd+nYSEBOzevRsAkJqailmzZsHX1xcmkwkWiwXZ2dkAgK1bt2LZ\nsmXOzx0wYIDrDEw37cEHgX79gDfe0DoSImoPXPai/+Y3v7mpAxcVFcHf39/52mg04uDBgy7LFBUV\nobi4uNm6ZWVl0Ov1AAC9Xo+ysjIAQHFxMe69995Gx7rWtbZ8+XJkZmbCbDZj48aNGDhw4E2dF7mm\n0wFr1ijXambOBG67TeuIiEhLLhNNdHT0TR3Y3Rs6xY0L8CLS5PF0Op3Lz6murkZhYSHGjBmD3/3u\nd1i/fj2ee+45bNu2rVHZlStXOp9fux5FN2fcOCAoCHj5ZWXdGiLyDpmZmc7lY9zlMtH06tXL+WPu\ncDhQVVWFXr164cKFCy3WMxgMsNvtztd2ux1Go7HFMoWFhTAajaiqqmq032AwAFBaMaWlpfDz80NJ\nSYmzZdLUsQwGAwYMGIAePXrgRz/6EQDg4YcfxpYtW5qMuX6ioVu3Zg0wZQrws58BdSPjiaiDu/GP\n8FWrVrms4/IazaVLl3Dx4kVcvHgRV69exa5du/Dzn//c5YFHjx6NvLw8FBQUwOFwYOfOnY2u7dhs\nNmfLIisrC3379oVer2+xrs1mQ0pKCgAgJSUF0+qWd7TZbNixYwccDgfy8/ORl5eHyMhI6HQ6xMfH\n45///CcA4B//+AeGDx/uMn66dRERSsuGc6ARdXI3M8ogPDzcrXLp6ekSEBAgZrNZ1qxZIyIimzZt\nkk2bNjnLPP3002I2myUsLEwOHz7cYl0RkbNnz0pMTIxYrVaJjY2Vc+fOOd9bvXq1mM1mCQwMlIyM\nDOf+U6dOybhx4yQsLEwmTpwodru9Uaw3+VWQC8ePiwwYIHL2rNaREJEa3PntdHnD5t/+9jfn89ra\nWhw+fBgHDhzAJ598onIKbFu8YVM9Tz4JDBigrMZJRN7FI0s5/+xnP3M+9/HxgclkwpNPPul1o7aY\naNRTWKhMT3P0qHIzJxF5D3d+O10OBqipqcGGDRvQr18/AMp9Nc899xxeeeUVz0RJXs9oVAYE/OY3\nwEsvaR0NEbU1l4MBPv/8c2eSAYD+/fvjyJEjqgZF3mfZMmDnTuDECa0jIaK25jLRiAjKy8udr8vL\ny1FTU6NqUOR97rwTWLQI+MUvtI6EiNqay66zX/7yl7jvvvswY8YMiAj+8pe/4Fe/+lVbxEZe5tln\ngVdeAdLTlftriKhzcDkYAACOHj2K999/HzqdDhMmTEBISEhbxNamOBigbaSnAwsXAl98AXTrpnU0\nRHSrPDLqrLNgomk78fHAmDHKipxE1LEx0bQCE03bOXECiIoCPv8cqJtZiIg6KCaaVmCiaVvLlwMn\nTwJvvql1JER0K5hoWoGJpm1dvgwEBwOvv67Mh0ZEHdMtL+VMpJaePYF164AFC4Dqaq2jISI1MdGQ\nZqZPV+ZA27RJ60iISE3sOqvDrjNtHD0KREcDOTnKVDVE1LGw64zaveHDlRU4584FmOeJvBMTDWlu\n2TJlhufXXtM6EiJSA7vO6rDrTFs5OcDkycBnnwGDB2sdDRG5i11n1GFERCjdZ/PmsQuNyNsw0VC7\nce0mzu3btY6EiDyJXWd12HXWPhw6BEydCvz734Cfn9bREJErnBmgFZho2o9ly4Djx4G//Q3Q6bSO\nhohawms01CE9/zzw5ZecB43IW7BFU4ctmvYlJweYNAn45BPAYtE6GiJqDls01GFFRCgtm0ceASor\ntY6GiG6FqokmIyMDQUFBsFqtSE5ObrJMYmIirFYrwsPDkZOT47JueXk5YmNjERAQgEmTJqGiosL5\n3tq1a2G1WhEUFIR9+/Y1+iybzYYRI0Z48AxJTU8/DQwZAixerHUkRHRLRCXV1dViNpslPz9fHA6H\nhIeHS25uboMye/fulbi4OBERycrKkqioKJd1Fy1aJMnJySIikpSUJEuWLBERkaNHj0p4eLg4HA7J\nz88Xs9ksNTU1zs/629/+JrNnz5YRI0Y0Ga+KXwXdgvJyEZNJ5O9/1zoSImqKO7+dqrVosrOzYbFY\nYDKZ4Ovri5kzZyI1NbVBmbS0NCQkJAAAoqKiUFFRgdLS0hbr1q+TkJCA3bt3AwBSU1Mxa9Ys+Pr6\nwmQywWKxIDs7GwBw6dIlrF+/HsuXL+d1mA6mXz/lvpq5c4FTp7SOhohuhmqJpqioCP7+/s7XRqMR\nRUVFbpUpLi5utm5ZWRn0ej0AQK/Xo6ysDABQXFwMY73pf41GI4qLiwEAK1aswHPPPYcePXp4+Cyp\nLdx7L7BoETBrFlBVpXU0RNRaPmodWOfmDRDutDBEpMnj6XS6Fj9HRPDZZ5/h5MmTWL9+PQoKClr8\nnJUrVzqfR0dHIzo62mVs1DZ+8Qvgn/9UZg9o5nIfEbWBzMxMZGZmtqqOaonGYDDAbrc7X9vt9gYt\njqbKFBYWwmg0oqqqqtF+g8EAQGnFlJaWws/PDyUlJRg4cGCLx8rKysKhQ4cwdOhQVFdX4/Tp05gw\nYQLef//9RjHXTzTUvnTpAqSkAPfcA4werSyaRkRt78Y/wletWuW6kloXiKqqqmTYsGGSn58vlZWV\nLgcDfPLJJ87BAC3VXbRokSQlJYmIyNq1axsNBqisrJSTJ0/KsGHDpLa2tsHnFRQUSGhoaJPxqvhV\nkAcdOSJy550ihw9rHQkRibj326lai8bHxwcbN27E5MmTUVNTgzlz5iA4OBibN28GAMydOxdTpkxB\neno6LBYLevbsia1bt7ZYFwCWLl2KGTNmYMuWLTCZTHjrrbcAACEhIZgxYwZCQkLg4+ODl156qVG3\nmjTTBUcdR0QEsHkzMG0acPAgMGiQ1hERkSucGaAOZwboWF54AdizB8jMBG6/XetoiDovTqrZCkw0\nHYsIMHu2cu3m9dc5+SaRVjgFDXktnQ545RXgq6+ApCStoyGilqh2jYZIbbffDqSmAlFRQGAg8KMf\naR0RETWFiYY6tMGDlWTz4IPKLALjx2sdERHdiF1n1OGNGgW89ZYy0/Onn2odDRHdiImGvEJ0NLBl\nCxAfD+Tmah0NEdXHRENeIz4eWLcOmDwZcDHbEBG1IV6jIa/yk58A584BsbHAv/4F+PlpHRERMdGQ\n11mwQEk2kycD778PDBigdUREnRu7zsgrrVihjEQbPx44fVrraIg6N7ZoyCvpdMqNnD16AOPGAf/4\nB1A3ATgRtTEmGvJaOh3w/PPKjZ3Xko3JpHVURJ0PEw15vcWLr7ds3nsPCAjQOiKizoWJhjqF+fOV\nZDN+PPDuu0BoqNYREXUeTDTUaTz+uNKNFhMDbN8OTJigdUREnQNHnVGnMmsWsGOH8li3zh4RqYzr\n0dThejSlYKk+AAAS5ElEQVSdy5dfAlOnKvOjvfCCsq4NEbUeFz5rBSaazufMGWVJaKMRePVVrtRJ\ndDO48BlRC+66Sxny3KWLcr2mrEzriIi8ExMNdWrduwNvvKHMInDPPcAHH2gdEZH3YddZHXadUUYG\n8NhjwC9+ASxapNzwSUQt4zWaVmCiIQCw24EZM4CBA5XrNv36aR0RUfvGazREreTvDxw4AAwdqnSl\nHT6sdUREHZ/qiSYjIwNBQUGwWq1ITk5uskxiYiKsVivCw8ORk5Pjsm55eTliY2MREBCASZMmoaKi\nwvne2rVrYbVaERQUhH379gEArl69iqlTpyI4OBihoaFYtmyZSmdL3uC224Df/x5ITgbi4pTJOaur\ntY6KqAMTFVVXV4vZbJb8/HxxOBwSHh4uubm5Dcrs3btX4uLiREQkKytLoqKiXNZdtGiRJCcni4hI\nUlKSLFmyREREjh49KuHh4eJwOCQ/P1/MZrPU1tbKlStXJDMzU0REHA6HjB07Vt55550Gcaj8VVAH\ndeqUyIQJIvfeK3L8uNbRELU/7vx2qtqiyc7OhsVigclkgq+vL2bOnInU1NQGZdLS0pCQkAAAiIqK\nQkVFBUpLS1usW79OQkICdu/eDQBITU3FrFmz4OvrC5PJBIvFgoMHD+L222/HAw88AADw9fXFqFGj\nUFRUpOapk5e4+25g/37gxz8GxowB/vAHoLZW66iIOhZVE01RURH8/f2dr41GY6Mf+ObKFBcXN1u3\nrKwMer0eAKDX61FWdwNEcXExjEZji59XUVGBPXv2ICYmxkNnSd6uSxdlUs6PPgLefFNZJrqgQOuo\niDoOVSfV1Lk5PlTcGO0lIk0eT6fTtfg59d+rrq7GrFmzsHDhQpiaWJhk5cqVzufR0dGIjo52GRd1\nHgEBwIcfAuvWAaNHA7/8pbLddpvWkRG1nczMTGRmZraqjqqJxmAwwG63O1/b7fYGLY6myhQWFsJo\nNKKqqqrRfkPdEol6vR6lpaXw8/NDSUkJBg4c2OyxDPWWVXzqqacQGBiIxMTEJuOtn2iImtK1K7Bk\niTIEesECYNs24I9/5EzQ1Hnc+Ef4qlWrXNZRtets9OjRyMvLQ0FBARwOB3bu3AmbzdagjM1mw7Zt\n2wAAWVlZ6Nu3L/R6fYt1bTYbUlJSAAApKSmYNm2ac/+OHTvgcDiQn5+PvLw8REZGAgCWL1+OCxcu\nYP369WqeMnUSQ4cCe/YoI9J+9jPlGk5JidZREbVTao9ISE9Pl4CAADGbzbJmzRoREdm0aZNs2rTJ\nWebpp58Ws9ksYWFhcvjw4RbrioicPXtWYmJixGq1SmxsrJw7d8753urVq8VsNktgYKBkZGSIiIjd\nbhedTichISEycuRIGTlypGzZsqVBnG3wVZCXunRJZOlSkQEDRFavFrl8WeuIiNqOO7+dnBmgDmcG\noFuVlwf8938Dn3wCrFypTGfjw6UFyctxCppWYKIhTzl4EFi8GPj2W2DtWiA+nvOmkfdiomkFJhry\nJBFg715g6VKgTx9gxQpg8mQmHPI+TDStwERDaqipAf7yF2UVz+7dgeXLAZuNK3qS92CiaQUmGlJT\nbS2QmqoknKoq4Fe/Ah5+WBkuTdSRMdG0AhMNtQURZd2b1auBwkJlxoE5c7gcAXVcXCaAqJ3R6ZQZ\noT/8UOlS+/e/gWHDgHnzgGPHtI6OSB1MNEQa+d73gNdeA3JzlYXWxo9X5lHbuROorNQ6OiLPYddZ\nHXadkdYqK4Fdu4AtW5SWzuzZSrdaWJjWkRE1j9doWoGJhtqT/Hxg61Zl0+uBRx9V5lfz89M6MqKG\nmGhagYmG2qOaGmU9nDffVOZWGzUKmDUL+NGPgP79tY6OiImmVZhoqL27ehVITwd27AD27QPGjgWm\nTVNmHqhbnomozTHRtAITDXUkFy8qLZzUVODdd4GQEOAHP1BuBg0K4gwE1HaYaFqBiYY6qspK4MAB\nJemkpSkLsU2eDEyapIxk69NH6wjJmzHRtAITDXkDEeCLL5RWzr59ykzSI0cqSSc6GoiMBLp10zpK\n8iZMNK3AREPe6OpV4IMPlKRz4ADw5ZfK/TvjxgEPPADcey/Qo4fWUVJHxkTTCkw01BmcPw98/LGS\ndA4cUO7XCQlREs61zWzmNR5yHxNNKzDRUGd09SqQkwNkZV3frlwBRo9WhlJf24YOZfKhpjHRtAIT\nDZGiqAg4cuT6dvgwcPmycq1nxIjr2/DhQO/eWkdLWmOiaQUmGqLmlZUBn32mDDT4z3+Ux2PHlDna\nhg9XhlQHBiqPQUHAnXeyBdRZMNG0AhMNUevU1ABff60MMKi/HTumLOxmsSjXe+o/Dhum3FzKhd+8\nBxNNKzDREHmGCHDmjJKETpy4/njiBHDypHKzqb8/YDJd3/z9AaNReTQYgNtv1/gkyG1MNK3AREPU\nNq5cAU6dUraCAmWz25WF4Ox25RpR795K4hk0SNkGD77+3M9P6bLT64FevdhFpzXNE01GRgaeeeYZ\n1NTU4IknnsCSJUsalUlMTMQ777yDHj164NVXX0VERESLdcvLy/HII4/g1KlTMJlMeOutt9C3b18A\nwNq1a/HKK6+ga9euePHFFzFp0iQAwOHDh/HYY4/hu+++w5QpU7Bhw4bGXwQTDVG7UFsLfPutknhK\nSpStuPj687Ky65uIknQGDgTuuku5NnTt8c47gQEDlMlH629sLXmWpommpqYGgYGBeO+992AwGPC9\n730P27dvR3BwsLNMeno6Nm7ciPT0dBw8eBALFy5EVlZWi3UXL16MO++8E4sXL0ZycjLOnTuHpKQk\n5ObmYvbs2fj0009RVFSEiRMnIi8vDzqdDpGRkdi4cSMiIyMxZcoUJCYm4sEHH2z1l9WRZWZmIjo6\nWuswVMPz69hu9vwuX1YSzunTSnK6tp05o2zl5de3c+eAs2eVFlDfvo23Pn2U7Y47lO3a8969G2+9\negFdu6p7bh2FO7+dPmp9eHZ2NiwWC0wmEwBg5syZSE1NbZBo0tLSkJCQAACIiopCRUUFSktLkZ+f\n32zdtLQ0HDhwAACQkJCA6OhoJCUlITU1FbNmzYKvry9MJhMsFgsOHjyIIUOG4OLFi4iMjAQAPPro\no9i9e3ejROPtvP0/O8+vY7vZ8+vZUxlgMGyY+3WuXFFuXD13DqioaLhduKBsJSVKmfPngUuXlOtK\nFy9ef37pkjKnXM+e17devZTHHj0abp99lomJE6Nx++1otHXv3vTWrZuy1X/ekQdQqJZoioqK4O/v\n73xtNBpx8OBBl2WKiopQXFzcbN2ysjLo6+ZE1+v1KCsrAwAUFxfj3nvvbXQsX19fGI1G536DwYCi\noiIPnikRdSTXEsCgQTd/DBHgu++UFtWlS9cfr1xRtsuXrz8/cQLw9VUS1OnTyk2y17bvvmu8VVY2\nfqysBHx8lOTWrZvy2NTm63v98dpW/7WPT+PHG5/7+AAREcDEiZ77zlVLNDo3r9C5010lIk0eT6fT\nuf05RESeotNdb5XceWfLZU+fBn7961v7PBGgulpJOA7H9eRTVaW8vvZ4bauqur5de11d3fxjdbVS\n7soV5XlFxa3FeyPVEo3BYIDdbne+ttvtDVoWTZUpLCyE0WhEVVVVo/0GgwGA0oopLS2Fn58fSkpK\nMHDgwBaPZTAYUFhY2OSx6jObzV6ftFatWqV1CKri+XVs3nx+3nxuZrPZdSFRSVVVlQwbNkzy8/Ol\nsrJSwsPDJTc3t0GZvXv3SlxcnIiIfPLJJxIVFeWy7qJFiyQpKUlERNauXStLliwREZGjR49KeHi4\nVFZWysmTJ2XYsGFSW1srIiKRkZGSlZUltbW1EhcXJ++8845ap01ERDdQrUXj4+ODjRs3YvLkyaip\nqcGcOXMQHByMzZs3AwDmzp2LKVOmID09HRaLBT179sTWrVtbrAsAS5cuxYwZM7Blyxbn8GYACAkJ\nwYwZMxASEgIfHx+89NJLzhbKSy+9hMceewxXr17FlClTOt1AACIiLfGGTSIiUlUHHjDneX/5y18w\nfPhwdO3aFUeOHNE6HI/JyMhAUFAQrFYrkpOTtQ7Hox5//HHo9XqMGDFC61BUYbfbMX78eAwfPhyh\noaF48cUXtQ7JY7777jtERUVh5MiRCAkJwbJly7QOSRU1NTWIiIhAfHy81qF4nMlkQlhYGCIiIpy3\nkDRJ67679uTYsWNy/PhxiY6OlsOHD2sdjkdUV1eL2WyW/Px8cTgcTV4r68g++OADOXLkiISGhmod\niipKSkokJydHREQuXrwoAQEBXvXvd/nyZRFRrstGRUXJv/71L40j8rzf/e53Mnv2bImPj9c6FI8z\nmUxy9uxZl+XYoqknKCgIAQEBWofhUfVvnPX19XXe/Ootxo4di379+mkdhmr8/PwwcuRIAECvXr0Q\nHByM4uJijaPynB5160g7HA7U1NSgf//+GkfkWYWFhUhPT8cTTzzhtTOPuHNeTDRerrmbYqnjKSgo\nQE5ODqKiorQOxWNqa2sxcuRI6PV6jB8/HiEhIVqH5FHPPvssfvvb36JLR76tvwU6nQ4TJ07E6NGj\n8ac//anZcqqNOmuvYmNjUVpa2mj/mjVrvLIP1dvvDeosLl26hIcffhgbNmxAr169tA7HY7p06YLP\nPvsM58+fx+TJk71qqp23334bAwcOREREBDIzM7UORxUfffQRBg0ahDNnziA2NhZBQUEYO3Zso3Kd\nLtHs379f6xDalDs3zlL7VlVVhf/6r//CT37yE0ybNk3rcFTRp08fTJ06FYcOHfKaRPPxxx8jLS0N\n6enp+O6773DhwgU8+uij2LZtm9ahecygunl87rrrLvzwhz9EdnZ2k4nGO9tzHuAt/amjR49GXl4e\nCgoK4HA4sHPnTthsNq3DIjeJCObMmYOQkBA888wzWofjUd9++y0q6uY6uXr1Kvbv3+9cJsQbrFmz\nBna7Hfn5+dixYwcmTJjgVUnmypUruHjxIgDg8uXL2LdvX7OjP5lo6vn73/8Of39/ZGVlYerUqYiL\ni9M6pFtW/+bXkJAQPPLIIw1m0O7oZs2ahe9///v46quv4O/v77zp11t89NFHeP311/HPf/4TERER\niIiIQEZGhtZheURJSQkmTJiAkSNHIioqCvHx8YiJidE6LNV4Wzd2WVkZxo4d6/z3e+ihh5xrgN2I\nN2wSEZGq2KIhIiJVMdEQEZGqmGiIiEhVTDRERKQqJhoiIlIVEw0REamKiYbIQ86fP4//+7//A6Dc\nIzJ9+nSPHXvjxo149dVXPXa8GTNmID8/32PHI2oJ76Mh8pCCggLEx8fjP//5j0ePKyIYNWoUPv30\nU/j4eGbWqP3792PPnj1etb4NtV9s0RB5yNKlS/H1118jIiICM2bMcE7H8eqrr2LatGmYNGkShg4d\nio0bN2LdunUYNWoU7rvvPpw7dw4A8PXXXyMuLg6jR4/GuHHjcPz4cQDK7ABBQUHOJPPiiy9i+PDh\nCA8Px6xZswAoU4A8/vjjiIqKwqhRo5CWlgZAWXTrueeew4gRIxAeHo6NGzcCAKKjo5Gent6m3w91\nYuotiUPUuRQUFDgXYKv/fOvWrWKxWOTSpUty5swZueOOO2Tz5s0iIvLss8/K73//exERmTBhguTl\n5YmISFZWlkyYMEFERNauXSvr1q1zfs7gwYPF4XCIiMj58+dFRGTZsmXy+uuvi4jIuXPnJCAgQC5f\nviwvvfSSTJ8+XWpqakREpLy83HmccePGedUiatR+dbrZm4nUIvV6oeWGHunx48ejZ8+e6NmzJ/r2\n7etckmLEiBH4/PPPcfnyZXz88ccNrus4HA4AwDfffIP777/fuT8sLAyzZ8/GtGnTnLM579u3D3v2\n7MG6desAAJWVlfjmm2/wj3/8A/PmzXOuh1J/kbjBgwejoKDAq+a+o/aJiYaoDXTr1s35vEuXLs7X\nXbp0QXV1NWpra9GvXz/k5OQ0Wb9+4tq7dy8++OAD7NmzB6tXr3ZeE9q1axesVmuLdW/c760LclH7\nwv9lRB7Su3dv57Tp7rqWBHr37o2hQ4fir3/9q3P/559/DgAYMmSIc7E+EcE333yD6OhoJCUl4fz5\n87h06RImT57c4ML+tYQVGxuLzZs3o6amBgCc14MAZWTckCFDbvJsidzHREPkIQMGDMCYMWMwYsQI\nLF682DktvE6nazBF/I3Pr71+4403sGXLFowcORKhoaHOC/r3338/Dh06BACorq7GT3/6U4SFhWHU\nqFFYuHAh+vTpgxUrVqCqqgphYWEIDQ3F888/DwB44okncPfddyMsLAwjR47E9u3bASiLqRUWFiIo\nKEj9L4Y6PQ5vJmrnpG5488GDB3Hbbbd55Jj79u3D3r17sWHDBo8cj6glbNEQtXM6nQ5PPvkk3njj\nDY8d889//jOeffZZjx2PqCVs0RARkarYoiEiIlUx0RARkaqYaIiISFVMNEREpComGiIiUhUTDRER\nqer/AUdcZmZ6XUFsAAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x7bac898>"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  the  value  of  capacitor  voltage  is   4.4   V,  resistor  voltage  is   4.4   V,\n",
        "current  is   0.02   mA  at  one  and  a  half  seconds  after  discharge  has  started.\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 3, page no. 265</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determine (a) the initial value of the current flowing,\n",
      "#(b) the time constant of the circuit, \n",
      "#(c) the value of the current one second after connection, \n",
      "#(d) the value of the capacitor voltage two seconds after connection, and \n",
      "#(e) the time after connection when the resistor voltage is 15 V.\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "C  =  20E-6;#  in  Farads\n",
      "R  =  50000;#  in  ohms\n",
      "V  =  20;#  in  Volts\n",
      "t1  =  1;#  in  secs\n",
      "t2  =  2;#  in  secs\n",
      "VRt  =  15;#  in  Volts\n",
      "\n",
      "#calculation:\n",
      "tou  =  R*C\n",
      "I  =  V/R\n",
      "Vct1  =  V*(1-math.e**(-1*t2/tou))\n",
      "t3  =  -1*tou*math.log(VRt/V)\n",
      "it1  =  I*math.e**(-1*t1/tou)\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)initial  value  of  the  current  flowing  is  \",round(I*1000,1),\"mA\"\n",
      "print  \"\\n  (b)time  constant  of  the  circuit  \",round(tou,2),\"  Sec\"\n",
      "print  \"\\n  (c)the  value  of  the  current  one  second  after  connection,  \",round((it1/1E-3),3),\"  mA\"\n",
      "print  \"\\n  (d)the  value  of  the  capacitor  voltage  two  seconds  after  connection  \",round(Vct1,1),\"  V\"\n",
      "print  \"\\n  (e)the  time  after  connection  when  the  resistor  voltage  is  15  V  is  \",round(t3,3),\"  sec\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)initial  value  of  the  current  flowing  is   0.4 mA\n",
        "\n",
        "  (b)time  constant  of  the  circuit   1.0   Sec\n",
        "\n",
        "  (c)the  value  of  the  current  one  second  after  connection,   0.147   mA\n",
        "\n",
        "  (d)the  value  of  the  capacitor  voltage  two  seconds  after  connection   17.3   V\n",
        "\n",
        "  (e)the  time  after  connection  when  the  resistor  voltage  is  15  V  is   0.288   sec\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 4, page no. 266</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determine (a) the value of the resistor, and (b) the capacitor voltage 7 ms after connecting the circuit to a 10 V supply\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "C  =  0.5E-6;#  in  Farads\n",
      "V  =  10;#  in  Volts\n",
      "tou  =  0.012;#  in  secs\n",
      "t1  =  0.007;#  in  secs\n",
      "\n",
      "#calculation:\n",
      "R  =  tou/C\n",
      "Vc  =  V*(1-math.e**(-1*t1/tou))\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)value  of  the  resistor  is  \",R,\"  ohm\"\n",
      "print  \"\\n  (b)capacitor  voltage  is  \",round(Vc,2),\"  V\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)value  of  the  resistor  is   24000.0   ohm\n",
        "\n",
        "  (b)capacitor  voltage  is   4.42   V\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 5, page no. 267</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#determine: (a) the value of the capacitor, \n",
      "#(b) the time for the capacitor voltage to fall to 20 V, \n",
      "#(c) the current flowing when the capacitor has been discharging for 0.5 s, and \n",
      "#(d) the voltage drop across the resistor when the capacitor has been discharging for one second.\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "R  =  50000;#  in  ohms\n",
      "V  =  100;#  in  Volts\n",
      "Vc1  =  20;#  in  Volts\n",
      "tou  =  0.8;#  in  secs\n",
      "t1  =  0.5;#  in  secs\n",
      "t2  =  1;#  in  secs\n",
      "\n",
      "#calculation:\n",
      "C  =  tou/R\n",
      "t  =  -1*tou*math.log(Vc1/V)\n",
      "I  =  V/R\n",
      "it1  =  I*math.e**(-1*t1/tou)\n",
      "Vc  =  V*math.e**(-1*t2/tou)\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)the  value  of  the  capacitor  is  \",round((C/1E-6),2),\"uF\"\n",
      "print  \"\\n  (b)the  time  for  the  capacitor  voltage  to  fall  to  20  V  is  \",round(t,2),\"  sec\"\n",
      "print  \"\\n  (c)the  current  flowing  when  the  capacitor  has  been  discharging  for  0.5  s  is  \",round(it1*1000,2),\"mA\"\n",
      "print  \"\\n  (d)voltage  drop  across  resistor  when  the  capacitor  has  been  discharging  for  one  second  is  \",round(Vc,1),\"  V\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)the  value  of  the  capacitor  is   16.0 uF\n",
        "\n",
        "  (b)the  time  for  the  capacitor  voltage  to  fall  to  20  V  is   1.29   sec\n",
        "\n",
        "  (c)the  current  flowing  when  the  capacitor  has  been  discharging  for  0.5  s  is   1.07 mA\n",
        "\n",
        "  (d)voltage  drop  across  resistor  when  the  capacitor  has  been  discharging  for  one  second  is   28.7   V\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 6 page no. 268</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determine (a) the initial discharge current, \n",
      "#(b) the time constant of the circuit, and \n",
      "#(c) the minimum time required for the voltage across the capacitor to fall to less than 2 V\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "C  =  0.1E-6;#  in  Farads\n",
      "R  =  4000;#  in  ohms\n",
      "V  =  200;#  in  Volts\n",
      "Vc1  =  2;#  in  Volts\n",
      "\n",
      "#calculation:\n",
      "tou  =  R*C\n",
      "I  =  V/R\n",
      "t  =  -1*tou*math.log(Vc1/V)\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \" \\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)  initial  discharge  current  is  \",round(I,2),\"  A\"\n",
      "print  \"\\n  (b)Time  constant  tou  is  \",round(tou,5),\"  sec\"\n",
      "print  \"\\n  (c)min.  time  required  for voltage  across capacitor  to  fall  to  less  than  2  V  is  \",round(t*1000,0),\"  msec\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " \n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)  initial  discharge  current  is   0.05   A\n",
        "\n",
        "  (b)Time  constant  tou  is   0.0004   sec\n",
        "\n",
        "  (c)min.  time  required  for voltage  across capacitor  to  fall  to  less  than  2  V  is   2.0   msec\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 7, page no. 270</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#draw the current/time characteristic and \n",
      "#hence determine the value of current flowing at a time equal to two time constants and the time for the current to grow to 1.5 A\n",
      "from __future__ import division\n",
      "import math\n",
      "from pylab import *\n",
      "#initializing  the  variables:\n",
      "L  =  0.1;#  in  Henry\n",
      "R  =  20;#  in  ohms\n",
      "V  =  60;#  in  Volts\n",
      "i2  =  1.5;#  in  Amperes\n",
      "\n",
      "#calculation:\n",
      "tou  =  L/R\n",
      "t1  =  2*tou\n",
      "\n",
      "t=[]\n",
      "i=[]\n",
      "I  =  V/R\n",
      "for h in range(250):\n",
      "    t.append((h-1)/10000)\n",
      "    k=(h-1)/10000\n",
      "    i.append(I*(1  -  math.e**(-1*k/tou)))\n",
      "plot(t,i,'-')\n",
      "xlabel('time(sec)')\n",
      "ylabel('current(A)')\n",
      "show()\n",
      "i1  =  I*(1  -  math.e**(-1*t1/tou))\n",
      "t2  =  -1*tou*math.log(1  -  i2/I)\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \" \\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)  the  value  of  current  flowing  at  a  time  equal  to  two  time  constants  is  \",round(i1,2),\"  A\"\n",
      "print  \"\\n  (b)the  time  for  the  current  to  grow  to  1.5  A  is  \",round(t2,5),\"  sec\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEPCAYAAABlZDIgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt4VNW9xvHvYEANt4BKgAQFkwBJgFykRivIII0W1Ihy\nKV6QKlpEeahWTzmetof4HLHQQ1EQi+AFtCpS8UI0ISLqoIAhCvGAoBCQQBIgggEkgA2ZrPPHlkjI\nFTIze2byfp5nnsxM9sz8FlvnzVpr77UdxhiDiIhIE7WwuwAREQkOChQREfEIBYqIiHiEAkVERDxC\ngSIiIh6hQBEREY+wLVB+/PFHUlJSSExMJC4ujkcffbTW7SZPnkxMTAwJCQnk5eX5uEoREWmsELs+\n+LzzzuPjjz8mNDSUiooKBgwYwOrVqxkwYEDVNllZWWzfvp38/HzWrVvHxIkTycnJsatkERGph61D\nXqGhoQCUl5fjdrvp2LFjtd9nZGQwbtw4AFJSUjh06BAlJSU+r1NERBpma6BUVlaSmJhIeHg4gwcP\nJi4urtrvi4uL6datW9XjyMhIioqKfF2miIg0gq2B0qJFC7788kuKior45JNPcLlcNbY5fWUYh8Ph\no+pERORM2DaHcqr27dtz/fXX88UXX+B0Oquej4iIoLCwsOpxUVERERERNV4fHR3Njh07fFGqiEhQ\niIqKYvv27R59T9sC5cCBA4SEhBAWFsbx48f54IMPmDp1arVt0tLSmDt3LmPGjCEnJ4ewsDDCw8Nr\nvNeOHTtq9GSCRXp6Ounp6XaX4TVqX2BT+yyVlXDsGBw5Yt3Kyuq+f/QoHD9u3Y4dq/6ztueOHYOK\nCjj/fAgNtX6efz6cdx6ce+6Z3+Lj4frrvTPaY1ug7N27l3HjxlFZWUllZSVjx45lyJAhzJ8/H4AJ\nEyYwbNgwsrKyiI6OpnXr1ixcuNCuckUkSBljfckfPAiHDlX/mZMD6enVnz98uGZYHD1qfcm3bQtt\n2lg/67rfoQN07Vo9IE7/efpzrVpBIIz22xYoffv2ZcOGDTWenzBhQrXHc+fO9VVJIhIEjh6F/fvh\nwAHrZ333T4ZEq1bWF31YWPWfBw9avY9LLoGEBOu59u1rhkXr1nDOOXa33H5+MYcidTt1TikYqX2B\nzVftq6y0gmDvXtizp/afe/daIWEMXHTRz7cLL/z5/qWX/vz4wgvhggusgGjVqvbPdbmcBPku9ChH\nMFxgy+FwBO0cikiwM8bqCezeDbt2Vb8VFlqBUVIC7dpZQ0VdutT+s3Nn6NTJ6i1Iw7zxvalAERGv\n+/FH+PZbyM+H7dthx47qwdGihTWsdPJ28cU//zwZFueea3crgosCpQ4KFBH7ud1WUHz99c/BcfJn\nSYkVENHREBMDUVHVAyQszO7qmx8FSh0UKCK+43bDzp2weXP127ZtEB4OcXHQs+fP4REdbfU0QjRj\n61cUKHVQoIh4x9GjsHEjbNhg3fLyYOtWa1I7Pr76rXdv68gnCQwKlDooUESa7uhR+OILWL/+5wAp\nKLDCIikJkpOtn3Fx1qGyEtgUKHVQoIicGWOsYavPPoO1a62fW7dCv37wi1/8HCBxcdCypd3Vijco\nUOqgQBGpn9sNX34JH38Mq1dbARISAr/8JVx5pXVLTtaRVM2JAqUOChSR6ior4auv4KOPrBD55BPr\n8NvBg2HgQCtAunULjOU8xDsUKHVQoIhYh+a+/z5kZcGHH1rLhAwebN2cTutcDpGTFCh1UKBIc+R2\nw+efWwGyfLl1zseQITBsGFx7rdUDEamLAqUOChRpLv79b1i5Et58E9591+p1DBsGQ4fCVVdpAl0a\nT4FSBwWKBLNjxyA72wqRrCzo0wdGjICbb7bOMhc5GwqUOihQJNiUl1vDWK++as2L/OIXP4eI5kLE\nExQodVCgSDAwxrqg0z//CW+8AbGxcMcdVpBccIHd1Umw8cb3plbXEbHZnj2wcKF1CwmBsWOtyfbu\n3e2uTOTMKFBEbOB2w4oVsGABrFoFo0fD4sXQv7/ODZHApUAR8aHvvrNC5PnnrQUWf/c7a4hLiypK\nMFCgiPjAV1/BU09ZR2qNHAlvvWUtdSISTBQoIl5SWWkdofXkk7BpE9x/v3XNkIsusrsyEe9QoIh4\nmNsNS5fCtGnWpW0fegjGjNHCixL8FCgiHlJRAa+9Bk88Ya2jNX26dQa7JtmluWhh1wcXFhYyePBg\n4uPj6dOnD3PmzKmxjcvlon379iQlJZGUlMTjjz9uQ6Ui9TtxAl54AXr1ghdfhGeesa4xMmyYwkSa\nF9t6KC1btuTJJ58kMTGRsrIyLrvsMlJTU4mNja223aBBg8jIyLCpSpG6GWNNrv/Xf0FEhHUeydVX\n212ViH1sC5TOnTvT+ac1JNq0aUNsbCx79uypESg6A1780apV8Mc/WkukPP00pKaqNyJi25DXqQoK\nCsjLyyMlJaXa8w6Hg7Vr15KQkMCwYcPYsmWLTRWKWDZtguuvh7vugt//3rr++rXXKkxEwA8m5cvK\nyhg5ciSzZ8+mzWlndyUnJ1NYWEhoaCjLly9n+PDhbNu2rdb3SU9Pr7rvdDpxOp1erFqam4MH4b//\nG5YsgT/9yRrq0lFbEkhcLhcul8urn2Hr4pAnTpzghhtuYOjQoTz44IMNbt+jRw/Wr19Px44dqz2v\nxSHFW9xua6L9L3+xVvp9/HEt1CjBIagWhzTGMH78eOLi4uoMk5KSEjp16oTD4SA3NxdjTI0wEfGW\n9evhvvusnsjy5ZCUZHdFIv7NtkBZs2YNr7zyCv369SPpp/9Tn3jiCXbv3g3AhAkTWLp0KfPmzSMk\nJITQ0FBef/11u8qVZuToUZg61Vpj629/gzvv1ByJSGPoeigip1ixwuqVXHmltWRKp052VyTiHUE1\n5CXiTw4fhgcfhI8/hnnzrDPcReTM+MVhwyJ2crkgIQFatbIOC1aYiJwd9VCk2frxR+sQ4MWL4bnn\nrPNLROTsKVCkWdq82VoBuFcv2LgRLrzQ7opEAp+GvKTZWbQInE5rWfk33lCYiHiKeijSbBw9Cg88\nALm51rxJfLzdFYkEF/VQpFn4+mu4/HJrheDPP1eYiHiDAkWCXkYGDBoEDz8ML70ErVvbXZFIcNKQ\nlwStykrrMrwLFsB771k9FBHxHgWKBKWyMvjtb6G42Joz6dLF7opEgp+GvCToFBbCVVdBu3bW5LvC\nRMQ3FCgSVDZuhF/+EsaOta7zrmuWiPiOhrwkaKxcCbfdZl2S9ze/sbsakeZHPRQJCi+/DLffDkuX\nKkxE7KIeigS8GTPg2Wet+ZLYWLurEWm+FCgSsIyxLs371luwZg107Wp3RSLNmwJFApIx8Ic/wKpV\n1u2ii+yuSEQUKBJw3G7rqoqbN8NHH0FYmN0ViQgoUCTAuN0wbhzs2WNdrrdNG7srEpGTFCgSMCor\n4e674bvvIDMTzj/f7opE5FQKFAkIxljDXLt2QVaWwkTEHylQxO8ZA7//PXz1lTXMFRpqd0UiUhsF\nivg1Y2DKFPjsM+tMeM2ZiPgv286ULywsZPDgwcTHx9OnTx/mzJlT63aTJ08mJiaGhIQE8vLyfFyl\n2G3aNHj/fevWvr3d1YhIfWzrobRs2ZInn3ySxMREysrKuOyyy0hNTSX2lFOds7Ky2L59O/n5+axb\nt46JEyeSk5NjV8niYy+8AC++CGvXQseOdlcjIg2xrYfSuXNnEhMTAWjTpg2xsbHs2bOn2jYZGRmM\nGzcOgJSUFA4dOkRJSYnPaxXfy8yEP/8ZsrOhc2e7qxGRxvCLxSELCgrIy8sjJSWl2vPFxcV069at\n6nFkZCRFRUW+Lk98bN066+JY77wDPXvaXY2INJbtk/JlZWWMHDmS2bNn06aWGVdjTLXHDoej1vdJ\nT0+vuu90OnE6nZ4sU3xk2za46SZYuBBO+/tCRJrA5XLhcrm8+hkOc/o3tg+dOHGCG264gaFDh/Lg\ngw/W+P19992H0+lkzJgxAPTu3ZtVq1YRHh5ebTuHw1EjeCTwHDhghcijj8I999hdjUhw88b3pm1D\nXsYYxo8fT1xcXK1hApCWlsbLL78MQE5ODmFhYTXCRIJDeTmMHGndFCYigcm2Hsrq1au5+uqr6dev\nX9Uw1hNPPMHu3bsBmDBhAgCTJk0iOzub1q1bs3DhQpKTk2u8l3oogc0YmDgRiopg2TI45xy7KxIJ\nft743rR1yMtTFCiB7Zln4B//sE5ebNfO7mpEmgcFSh0UKIHrww+t68CvXQtRUXZXI9J8BNUcisiO\nHVaYvP66wkQkGChQxBbHj1sT8H/6EwwebHc1IuIJGvISW/zud3D4sNU7qePUIhHxIm98b9p+YqM0\nP//8p3Ud+C++UJiIBBP1UMSnNm8Gp9O6FnzfvnZXI9J8aVJeAlpZGYwaBf/7vwoTkWCkHor4zNix\n0KqVtSy9iNhLcygSsF57Ddavt+ZNRCQ4qYciXrd7N/Tvb13bpJaVc0TEBppDkYDjdsOdd8LDDytM\nRIKdAkW8atYsa/HHRx6xuxIR8TYNeYnXfPklXHstfP45XHKJ3dWIyKk05CUB4/hxuP12q4eiMBFp\nHtRDEa+YMgV27oQlS3Q2vIg/0mHDEhC++AIWLYJNmxQmIs2JhrzEo06cgPHj4e9/h06d7K5GRHxJ\ngSIe9be/QUSENX8iIs2L5lDEY7ZsgUGDrDPiL77Y7mpEpD46ykv8ltsN99wDjz2mMBFprhQo4hHP\nPAMhIXDffXZXIiJ2qXfIa8OGDSxevJhPPvmEgoICHA4Hl1xyCVdffTW33XYbSUlJvqy1Thrysldx\nMSQkwJo10KuX3dWISGN443uzzkAZNmwYHTp0IC0tjcsvv5wuXbpgjGHv3r3k5uby7rvvcujQITIz\nMz1a0NlQoNjr1lvh0kth2jS7KxGRxvJpoJSUlBAeHl7vi7/77js6NeHY0LvvvpvMzEw6derEpk2b\navze5XJx0003cemllwIwYsQI/vznP9fYToFinw8/tA4T3rIFQkPtrkZEGsunk/J1hcmnn37KAw88\nANCkMAG46667yM7OrnebQYMGkZeXR15eXq1hIvYpL4dJk2D2bIWJiDTyTPmTcyn/+te/6NGjByNG\njPDIhw8cOJCCgoJ6t1HPw3/NmgVRUZCWZnclIuIP6gyUrVu3snjxYpYsWcJFF13EqFGjMMbgcrl8\nVpzD4WDt2rUkJCQQERHBzJkziYuL89nnS92KimDmTMjN1fIqImKpM1BiY2O54YYbeP/997n4pxML\nZs2a5bPCAJKTkyksLCQ0NJTly5czfPhwtm3bVuu26enpVfedTidOp9M3RTZTjz4KEydak/Ei4v9c\nLpfXOwR1Tsq/8847LF68mHXr1vHrX/+aUaNGMX78+AaHqM5UQUEBN954Y62T8qfr0aMH69evp2PH\njtWe16S8b61bByNGwDffQJs2dlcjImfDp5Pyw4cPZ8mSJXz11VcMHDiQJ598kv379zNx4kRWrFjh\n0SLqUlJSUtXg3NxcjDE1wkR8yxh48EHrEGGFiYic6ozW8iotLWXp0qW8/vrrfPTRR03+8FtvvZVV\nq1Zx4MABwsPDeeyxxzhx4gQAEyZM4JlnnmHevHmEhIQQGhrKrFmzuOKKK2o2Qj0Un1m82FpJODcX\nWmidBZGA5dPzUI4cOULbtm3rfXFjtvEFBYpvHDsGvXvDa6/BgAF2VyMiTeHTC2zdfPPN9OrVi5tu\nuon+/ftXDTWVlpby+eef884775Cfn8/KlSs9WpD4r6eegiuuUJiISO3qHfL66KOPeO2111izZg17\n9uwBoGvXrgwYMIDbb7/db46kUg/F+77/3lqnKycHoqPtrkZEmsqnQ16BRIHifQ8/DD/+aK0qLCKB\nz5broQwZMqRRz0nw2rXLukb8X/5idyUi4s/qnEM5fvw4x44dY//+/ZSWllY9/8MPP1BcXOyT4sQ/\nTJ0K998PnTvbXYmI+LM6A2X+/PnMnj2bPXv2cNlll1U937ZtWyZNmuST4sR+mzbB8uWQn293JSLi\n7xqcQ5kzZw6TJ0/2VT1nRXMo3pOWBoMHw0MP2V2JiHiSbZPya9eupaCggIqKiqrn7rzzTo8W0hQK\nFO/4/HO45Rard3LeeXZXIyKe5NPzUE664447+Pbbb0lMTOScc86pet6fAkW8Y+pUaxFIhYmINEaD\nPZTY2Fi2bNmCw4/XKFcPxfNycmD0aKt3cu65dlcjIp5my2HDffr0Ye/evR79UPF/U6fCn/6kMBGR\nxmtwyGv//v3ExcVx+eWXc+5P3y4Oh4OMjAyvFyf2WLsWtm6Fu+6yuxIRCSQNBsrJC1ed2j3y5+Ev\nabqpU+HPf4ZWreyuREQCSaOO8iooKGD79u386le/4tixY1RUVNCuXTtf1NcomkPxnLVr4fbbYds2\naNnS7mpExFtsmUNZsGABo0aNYsKECQAUFRVx8803e7QI8R9PPAFTpihMROTMNRgozzzzDKtXr67q\nkfTs2ZPvvvvO64WJ7/3f/8GGDfDb39pdiYgEogYD5dxzz62ajAeoqKjQHEqQmj4d/vAHnXciImen\nwUAZNGgQ06ZN49ixY3zwwQeMGjWKG2+80Re1iQ/l58PKlfDTyKaIyBlrcFK+srKS559/nhUrVgBw\n3XXXcc899/hVL0WT8k13770QEQE/HdQnIkHO52t5VVRU0KdPH7755huPfqinKVCapqgI+vWzeikX\nXGB3NSLiCz4/yiskJIRevXqxa9cuj36o+JennrIm4hUmItIUDZ7YWFpaSnx8PJdffjmtW7cGdKZ8\nMPnhB1i4EPLy7K5ERAJdg4Hy+OOP1+gW+dP8iTTN88/DtdfCxRfbXYmIBLoG51Di4+PZunWrxz/4\n7rvvJjMzk06dOrFp06Zat5k8eTLLly8nNDSURYsWkZSUVOt2mkM5OxUVEBUFb74J/fvbXY2I+JIt\ncyi9e/f2yhzKXXfdRXZ2dp2/z8rKYvv27eTn57NgwQImTpzo8RqauzffhO7dFSYi4hm2zaEMHDiQ\ngoKCOn+fkZHBuHHjAEhJSeHQoUOUlJQQHh7epM8VizHw979bS9SLiHhCg4HyP//zP76oo4bi4mK6\ndetW9TgyMpKioiIFioesXg2HDoHOURURT2kwUJxOpw/KqN2ZHAyQfsoZeU6n09a6A8GsWfDQQ9Ci\nwbUSRCQYuFwuXC6XVz+jwUBp06ZN1Rd5eXk5J06coE2bNvzwww9eLSwiIoLCwsKqx0VFRURERNS5\nfbpO8W60ggL49FN45RW7KxERXzn9D+3HHnvM45/R4N+nZWVlHDlyhCNHjnD8+HHeeust7r//fo8X\ncrq0tDRefvllAHJycggLC9Nwl4fMmwfjxsFPU2IiIh7RqAtsnS4xMZEvv/yySR986623smrVKg4c\nOEB4eDiPPfYYJ06cAKi69sqkSZPIzs6mdevWLFy4kOTk5FrfS4cNN97x49Y5J599BtHRdlcjInbx\n+VpeAG+++WbV/crKStavX8+qVav47LPPPFpIUyhQGm/hQli6FDIz7a5EROzkje/NBudQ3nvvvZ83\nDgmhe/fuLFu2zKNFiG8YA08/DdOm2V2JiASjBgPF7XYze/ZsOnToAFjnpTzyyCO8+OKLXi9OPCsn\nB44cgeuus7sSEQlGDU7Kb9y4sSpMADp27MiGDRu8WpR4x9NPwwMP6FBhEfGOBr9ajDGUlpZWPS4t\nLcXtdnu1KPG8fftg+XJdL15EvKfBIa+HH36YK6+8ktGjR2OM4Y033uBPWq8j4CxaBCNGQFiY3ZWI\nSLBq1GHDmzdv5qOPPsLhcHDNNdcQFxfni9oaTUd51a+yEmJiYPFiuPxyu6sREX9gy2HDgUCBUr+V\nK+GRR6yLaOlSNiICNixfL8Hhuefgd79TmIiId6mHEuS++w569oRdu6B9e7urERF/oR6KnLGXXoKb\nb1aYiIj3NXiUlwQuY2DBAvhpjU0REa9SDyWIuVxw3nlwxRV2VyIizYECJYi9+CLcc48m40XENzQp\nH6R++MFapn77drjwQrurERF/o0l5abQ33oDBgxUmIuI7CpQgtWiR1u0SEd/SkFcQ2r4dfvlLKC6G\nli3trkZE/JGGvKRRXnoJbr9dYSIivqUeSpCprIQePSAjAxIS7K5GRPyVeijSIJcLOnRQmIiI7ylQ\ngowm40XELhryCiJHj0JEBGzbBp062V2NiPgzDXlJvZYtgyuvVJiIiD1sDZTs7Gx69+5NTEwMM2bM\nqPF7l8tF+/btSUpKIikpiccff9yGKgPHa69ZR3eJiNjBttWG3W43kyZNYuXKlURERPCLX/yCtLQ0\nYmNjq203aNAgMjIybKoycBw4AJ9+al3mV0TEDrb1UHJzc4mOjqZ79+60bNmSMWPGsGzZshrbaW6k\ncZYuhaFDoW1buysRkebKtkApLi6mW7duVY8jIyMpLi6uto3D4WDt2rUkJCQwbNgwtmzZ4usyA8ar\nr8Jtt9ldhYg0Z7YNeTkasaZ6cnIyhYWFhIaGsnz5coYPH862bdtq3TY9Pb3qvtPpxOl0eqhS/7dr\nF3z9Nfz613ZXIiL+yuVy4XK5vPoZth02nJOTQ3p6OtnZ2QD89a9/pUWLFkyZMqXO1/To0YP169fT\nsWPHas8398OGZ8yAb7+F+fPtrkREAkVQHTbcv39/8vPzKSgooLy8nCVLlpCWllZtm5KSkqoG5+bm\nYoypESai4S4R8Q+2DXmFhIQwd+5crrvuOtxuN+PHjyc2Npb5P/2ZPWHCBJYuXcq8efMICQkhNDSU\n119/3a5y/dbmzVBaCgMH2l2JiDR3OlM+wE2dCkeOwKxZdlciIoEkqIa8xDPeeANGjbK7ChERBUpA\n27zZ6p2kpNhdiYiIAiWgvfEGjBwJLbQXRcQP6KsogGm4S0T8iQIlQG3ZAocPwxVX2F2JiIhFgRKg\nNNwlIv5GX0cBaulSDXeJiH9RoASgb76Bgweti2mJiPgLBUoAWroURozQcJeI+Bd9JQWgt9+GW26x\nuwoRkeq09EqA2b0bLrsM9u6FENtWYhORQKelV4Rly+DGGxUmIuJ/FCgB5u23Yfhwu6sQEalJQ14B\n5Pvv4dJLYd8+OP98u6sRkUCmIa9mLjMThgxRmIiIf1KgBJB33tFwl4j4Lw15BYhjx6BLF+va8Rdc\nYHc1IhLoNOTVjK1caR0urDAREX+lQAkQGu4SEX+nIa8A4HZbw125udC9u93ViEgw0JBXM5WbC+Hh\nChMR8W8KlACQmQk33GB3FSIi9VOgBID33oPrr7e7ChGR+tkaKNnZ2fTu3ZuYmBhmzJhR6zaTJ08m\nJiaGhIQE8vLyfFyh/YqKoLBQl/oVEf9nW6C43W4mTZpEdnY2W7ZsYfHixXz99dfVtsnKymL79u3k\n5+ezYMECJk6caFO19snMhF//WotBioj/sy1QcnNziY6Opnv37rRs2ZIxY8awbNmyattkZGQwbtw4\nAFJSUjh06BAlJSV2lGubzEwNd4lIYLAtUIqLi+nWrVvV48jISIqLixvcpqioyGc12u34cXC5rB6K\niIi/s20gxeFwNGq704+Trut16enpVfedTidOp/NsS/MbLhckJEDHjnZXIiKBzuVy4XK5vPoZtgVK\nREQEhYWFVY8LCwuJjIysd5uioiIiIiJqfb9TAyVY6HBhEfGU0//Qfuyxxzz+GbYNefXv35/8/HwK\nCgooLy9nyZIlpKWlVdsmLS2Nl19+GYCcnBzCwsIIDw+3o1yfM0aHC4tIYLGthxISEsLcuXO57rrr\ncLvdjB8/ntjYWObPnw/AhAkTGDZsGFlZWURHR9O6dWsWLlxoV7k+t2WLFSrx8XZXIiLSOFrLy08d\nPgzffAMpKXZXIiLByBvfmwoUEZFmSItDioiI31KgiIiIRyhQRETEIxQoIiLiEQoUERHxCAWKiIh4\nhAJFREQ8QoEiIiIeoUARERGPUKCIiIhHKFBERMQjFCgiIuIRChQREfEIBYqIiHiEAkVERDxCgSIi\nIh6hQBEREY9QoIiIiEcoUERExCMUKCIi4hEKFBER8YgQOz60tLSU3/zmN+zatYvu3bvzr3/9i7Cw\nsBrbde/enXbt2nHOOefQsmVLcnNzbahWREQaw5YeyvTp00lNTWXbtm0MGTKE6dOn17qdw+HA5XKR\nl5fXbMPE5XLZXYJXqX2BTe2TU9kSKBkZGYwbNw6AcePG8c4779S5rTHGV2X5pWD/D1rtC2xqn5zK\nlkApKSkhPDwcgPDwcEpKSmrdzuFw8Ktf/Yr+/fvz3HPP+bJEERE5Q16bQ0lNTWXfvn01np82bVq1\nxw6HA4fDUet7rFmzhi5durB//35SU1Pp3bs3AwcO9Eq9IiLSRMYGvXr1Mnv37jXGGLNnzx7Tq1ev\nBl+Tnp5uZs6cWevvoqKiDKCbbrrpplsjb1FRUR79XjfGGFuO8kpLS+Oll15iypQpvPTSSwwfPrzG\nNseOHcPtdtO2bVuOHj3KihUrmDp1aq3vt337dm+XLCIiDXAY4/tZ79LSUkaPHs3u3burHTa8Z88e\n7r33XjIzM/n222+55ZZbAKioqOD222/n0Ucf9XWpIiLSSLYEioiIBB+/PVO+tLSU1NRUevbsybXX\nXsuhQ4dq3S47O5vevXsTExPDjBkzGnx9QUEB559/PklJSSQlJXH//ff7pD0N1XuqyZMnExMTQ0JC\nAnl5eQ2+trH/Vr7gjfalp6cTGRlZtc+ys7O93o7aNKVtd999N+Hh4fTt27fa9sGy7+pqn7/sOzj7\n9hUWFjJ48GDi4+Pp06cPc+bMqdo+GPZffe074/3n8VkZD/mP//gPM2PGDGOMMdOnTzdTpkypsU1F\nRYWJiooyO3fuNOXl5SYhIcFs2bKl3tfv3LnT9OnTx0etaHy9J2VmZpqhQ4caY4zJyckxKSkpDb62\nMf9WvuCt9qWnp5u///3vvm3MaZrSNmOM+eSTT8yGDRtq/LcXDPvOmLrb5w/7zpimtW/v3r0mLy/P\nGGPMkSNHTM+ePc3XX39tjAmO/Vdf+850//ltD6UxJz/m5uYSHR1N9+7dadmyJWPGjGHZsmWNfr2v\n1VfvSaeMfy6RAAAHEUlEQVTWnZKSwqFDh9i3b19AtNVb7QNsP8G1KW0DGDhwIB06dKjxvsGw76Du\n9oH9+w7Ovn0lJSV07tyZxMREANq0aUNsbCzFxcU1XhOI+6+h9sGZ7T+/DZTGnPxYXFxMt27dqh5H\nRkZW/UPU9/qdO3eSlJSE0+lk9erV3mxGo+ttaJs9e/acVVt9yVvtA3j66adJSEhg/PjxtgwrNKVt\n9QmGfdcQu/cdnH37ioqKqm1TUFBAXl4eKSkpQODvv4baB2e2/2wNlNTUVPr27VvjlpGRUW27uk5+\nPP05Y0yd2518vmvXrhQWFpKXl8esWbO47bbbOHLkiAdbVbe6TuA8XWP+ImhMW33Nk+071cSJE9m5\ncydffvklXbp04eGHHz6b8prkbNt2JvsiEPddQ6/zh30HnmlfWVkZI0eOZPbs2bRp06bWzwjk/Vdb\n+850/9lyHspJH3zwQZ2/Cw8PZ9++fXTu3Jm9e/fSqVOnGttERERQWFhY9bioqIiIiIh6X9+qVSta\ntWoFQHJyMlFRUeTn55OcnOzJptXq9HoLCwuJjIysd5uioiIiIyM5ceLEGbfV1zzZvlNfe2p77rnn\nHm688UZvNaFOZ9u2k/uoLoG+7xpqnz/sO2h6+06cOMGIESO44447qp03Fyz7r672nen+89shr5Mn\nPwJ1nvzYv39/8vPzKSgooLy8nCVLlpCWllbv6w8cOIDb7Qbg22+/JT8/n0svvdQXTaq33pPS0tJ4\n+eWXAcjJySEsLIzw8PCzaquveat9e/furXr922+/XeNIIl9oStvqEwz7rj7+sO+gae0zxjB+/Hji\n4uJ48MEHa7wm0Pdffe074/13lgcVeN33339vhgwZYmJiYkxqaqo5ePCgMcaY4uJiM2zYsKrtsrKy\nTM+ePU1UVJR54oknGnz9m2++aeLj401iYqJJTk427733nk/bVVu9zz77rHn22WertnnggQdMVFSU\n6devn1m/fn29rzWm7rbawRvtGzt2rOnbt6/p16+fuemmm8y+fft816BTNKVtY8aMMV26dDGtWrUy\nkZGR5sUXXzTGBM++q6t9/rLvjDn79n366afG4XCYhIQEk5iYaBITE83y5cuNMcGx/+pr35nuP53Y\nKCIiHuG3Q14iIhJYFCgiIuIRChQREfEIBYqIiHiEAkVERDxCgSIiIh6hQJFm7/Dhw8ybNw+wTuQa\nNWqUx9577ty5LFq0yGPvN3r0aHbu3Omx9xPxJJ2HIs1eQUEBN954I5s2bfLo+xpjSE5O5vPPPyck\nxDOrHH3wwQe8++671a5ZIeIv1EORZu8///M/2bFjB0lJSYwePbpqeYlFixYxfPhwrr32Wnr06MHc\nuXOZOXMmycnJXHnllRw8eBCAHTt2MHToUPr378/VV1/N1q1bAVizZg29e/euCpM5c+YQHx9PQkIC\nt956KwBHjx7l7rvvJiUlheTk5KqFUd1uN4888gh9+/YlISGBuXPnAuB0OsnKyvLpv49Io3l+AQCR\nwFJQUFB1YahT7y9cuNBER0ebsrIys3//ftOuXTszf/58Y4wxDz30kHnqqaeMMcZcc801Jj8/3xhj\nXbjommuuMcYY89e//tXMnDmz6nO6du1qysvLjTHGHD582BhjzKOPPmpeeeUVY4wxBw8eND179jRH\njx41//jHP8yoUaOM2+02xhhTWlpa9T5XX311jYsnifgDW1cbFvEH5pRRX3PaCPDgwYNp3bo1rVu3\nJiwsrGq11b59+7Jx40aOHj3K2rVrq827lJeXA7B7924GDBhQ9Xy/fv247bbbGD58eNUigitWrODd\nd99l5syZAPz73/9m9+7dfPjhh0ycOJEWLaxBhFMvXtW1a1cKCgqIjY315D+DSJMpUETqce6551bd\nb9GiRdXjFi1aUFFRQWVlJR06dKh2ffVTnRpQmZmZfPLJJ7z77rtMmzatas7mrbfeIiYmpt7Xnv78\nyaAR8Sf6r1KavbZt257xRdZOftm3bduWHj16sHTp0qrnN27cCMAll1xSdYlcYwy7d+/G6XQyffp0\nDh8+TFlZGdddd121CfaTwZSamsr8+fOrLrVwcr4GrCPRLrnkkrNsrYj3KFCk2bvgggu46qqr6Nu3\nL3/84x+rrmJ3+hX4Tr9/8vGrr77KCy+8QGJiIn369KmaWB8wYABffPEFABUVFYwdO5Z+/fqRnJzM\n73//e9q3b89f/vIXTpw4Qb9+/ejTpw9Tp04FrIsZXXzxxfTr14/ExEQWL14MWBdCKioqonfv3t7/\nhxE5QzpsWMRLzE+HDa9bt67qKqFNtWLFCjIzM5k9e7ZH3k/Ek9RDEfESh8PBvffey6uvvuqx93z+\n+ed56KGHPPZ+Ip6kHoqIiHiEeigiIuIRChQREfEIBYqIiHiEAkVERDxCgSIiIh6hQBEREY/4f+ZL\nUYpOSazjAAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x7b9d748>"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " \n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)  the  value  of  current  flowing  at  a  time  equal  to  two  time  constants  is   2.59   A\n",
        "\n",
        "  (b)the  time  for  the  current  to  grow  to  1.5  A  is   0.00347   sec\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 8, page no. 271</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determine (a) the final value of current, \n",
      "#(b) the time constant of the circuit, \n",
      "#(c) the value of current after a time equal to the time constant from the instant the supply oltage is connected, \n",
      "#(d) the expected time for the current to rise to within 1% of its final value.\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "L  =  0.04;#  in  Henry\n",
      "R  =  10;#  in  ohms\n",
      "V  =  120;#  in  Volts\n",
      "\n",
      "#calculation:\n",
      "tou  =  L/R\n",
      "t1  =  tou\n",
      "I  =  V/R\n",
      "i1  =  I*(1  -  math.e**(-1*t1/tou))\n",
      "i2  =  0.01*I\n",
      "t2  =  -1*tou*(-5)\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)  the  final  value  of  current  is  \",round(I,2),\"  A\"\n",
      "print  \"\\n  (b)time  constant  of  the  circuit  is  \",round(tou*1000,2),\"msec\"\n",
      "print  \"\\n  (c)  value  of  current  after  a  time  equal  to  the  time  constant  is  \",round(i1,2),\"  A\"\n",
      "print  \"\\n  (d)expected  time  for  current  to  rise  to  within  0.01  times  of  its  final  value  is  \",round(t2*1000,2),\"msec\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)  the  final  value  of  current  is   12.0   A\n",
        "\n",
        "  (b)time  constant  of  the  circuit  is   4.0 msec\n",
        "\n",
        "  (c)  value  of  current  after  a  time  equal  to  the  time  constant  is   7.59   A\n",
        "\n",
        "  (d)expected  time  for  current  to  rise  to  within  0.01  times  of  its  final  value  is   20.0 msec\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 9, page no. 271</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate:\n",
      "#(a) the steady state value of current flowing in the winding,\n",
      "#(b) the time constant of the circuit,\n",
      "#(c) the value of the induced e.m.f. after 0.1 s,\n",
      "#(d) the time for the current to rise to 85% of its final value, and\n",
      "#(e) the value of the current after 0.3 s\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "L  =  3;#  in  Henry\n",
      "R  =  15;#  in  ohms\n",
      "V  =  120;#  in  Volts\n",
      "t1  =  0.1;#  in  secs\n",
      "t3  =  0.3;#  in  secs\n",
      "\n",
      "#calculation:\n",
      "tou  =  L/R\n",
      "I  =  V/R\n",
      "i2  =  0.85*I;#  in  amperes\n",
      "VL  =  V*math.e**(-1*t1/tou)\n",
      "t2  =  -1*tou*math.log(1  -  (i2/I))\n",
      "i3  =  I*(1  -  math.e**(-1*t3/tou))\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Results  \\n\\n\"\n",
      "print  \"\\n  (a)  steady  state  value  of  current  is  \",round(I,2),\"  A\"\n",
      "print  \"\\n  (b)time  constant  of  the  circuit  is  \",round(tou,2),\"  sec\"\n",
      "print  \"\\n  (c)value  of  the  induced  e.m.f.  after  0.1  s  is  \",round(VL,2),\"  V\"\n",
      "print  \"\\n  (d)  time  for  the  current  to  rise  to  0.85  times  of  its  final  values  is  \",round(t2,2),\"  A\"\n",
      "print  \"\\n  (e)value  of  the  current  after  0.3  s  is  \",round(i3,2),\"  A\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Results  \n",
        "\n",
        "\n",
        "\n",
        "  (a)  steady  state  value  of  current  is   8.0   A\n",
        "\n",
        "  (b)time  constant  of  the  circuit  is   0.2   sec\n",
        "\n",
        "  (c)value  of  the  induced  e.m.f.  after  0.1  s  is   72.78   V\n",
        "\n",
        "  (d)  time  for  the  current  to  rise  to  0.85  times  of  its  final  values  is   0.38   A\n",
        "\n",
        "  (e)value  of  the  current  after  0.3  s  is   6.21   A\n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 10, page no. 273</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#draw the current/time characteristic when the supply is removed and replaced by a shorting link\n",
      "#determine (a) the current flowing in the winding 3 s after being shorted-out and (b) the time for the current to decay to 5 A.\n",
      "from __future__ import division\n",
      "import math\n",
      "from pylab import *\n",
      "#initializing  the  variables:\n",
      "R  =  15;#  in  ohms\n",
      "V  =  110;#  in  Volts\n",
      "tou  =  2;#  in  secs\n",
      "t1  = 3;#  in  secs\n",
      "i2  = 5;#  in  amperes\n",
      "\n",
      "#calculation:\n",
      "L  =  tou*R\n",
      "I  =  V/R\n",
      "\n",
      "t=[]\n",
      "i=[]\n",
      "for h in range(100):\n",
      "    t.append((h-1)/10)\n",
      "    k=(h-1)/10\n",
      "    i.append(I*math.e**(-1*k/tou))\n",
      "plot(t,i,'-')\n",
      "xlabel('time(sec)')\n",
      "ylabel('current(A)')\n",
      "show()\n",
      "i1  =  I*(math.e**(-1*t1/tou))\n",
      "t2  =  -1*tou*log((i2/I))\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \" \\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)the  current  flowing  in  the  winding  3  s  after  being  shorted-out  is  \",round(i1,2),\"  A\"\n",
      "print  \"\\n  (b)the  time  for  the  current  to  decay  to  5  A  is  \",round(t2,2),\"  sec\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEPCAYAAABMTw/iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xlc1NXeB/DPCGjIomLKIqLmBsOOKGmoo4JmqbkvaHpd\nu5XPTR9tuz090i3Trj73ite6L7Or5s2kslJRIsUccwk33HIXnVwA0xCURZHh9/xxroPmAsLvN2dm\n+Lxfr/OaYZvzmZYvh/M7v3N0iqIoICIih1VHdgAiItIWCz0RkYNjoScicnAs9EREDo6FnojIwbHQ\nExE5OE0L/Zw5cxAcHIzQ0FAkJCTg5s2bWnZHRET3oVmhN5lMWLJkCTIzM3H48GGYzWYkJydr1R0R\nET2As1Yv7OnpCRcXFxQXF8PJyQnFxcVo1qyZVt0REdEDaDai9/LywowZMxAQEAA/Pz80bNgQcXFx\nWnVHREQPoFmhz8rKwoIFC2AymZCdnY3CwkKsXLlSq+6IiOgBNJu62bt3L7p06YLGjRsDAAYPHoyd\nO3di9OjRlu9p06YNsrKytIpAROSQWrdujdOnT1f5+zUb0QcGBiIjIwMlJSVQFAXp6enQ6/V3fU9W\nVhYURXHYNmvWLOkZ+P74/mrj+3Pk96YoyiMPkDUr9OHh4Rg7diyio6MRFhYGAJgyZYpW3RER0QNo\nNnUDAK+99hpee+01LbsgIqJK8M5YDRkMBtkRNMX3Z98c+f058nurDp2iKNIOHtHpdJDYPRGRXXrU\n2skRPRGRg2OhV1FpKRAbKx6JiGwFC72K6tYFiouB3btlJyEiqsBCr7L4eCA9XXYKIqIKLPQqi4tj\noSci28JVNyorKQGaNAGyswFPT9lpiMgRcdWNZK6uQEwM8OOPspMQEQks9Brg9A0R2RIWeg2w0BOR\nLeEcvQbMZjFPf+QI4OsrOw0RORrO0dsAJyegZ09g82bZSYiIWOg1w+kbIrIVnLrRyOnTQPfuwIUL\ngE4nOw0RORJO3diINm3EUsuff5adhIhqOxZ6DfXpA6SlyU5BRLUdC72Gnn4a+P572SmIqLbjHL2G\nCgvF8sqcHMDdXXYaInIUNjVHf+LECURGRlpagwYNsHDhQi27tCnu7kDHjoDRKDsJEdVmVhvRl5eX\no1mzZti9ezeaN28uOnfwET0AfPCBWHnzj3/ITkJEjsKmRvR3Sk9PR+vWrS1FvrZ4+mlekCUiuaxW\n6JOTk5GQkGCt7mxGWJiYq8/Kkp2EiGorqxT60tJSpKSkYNiwYdbozqbodGKZJVffEJEsztbo5Lvv\nvkOHDh3QpEmTe76WmJhoeW4wGGAwGKwRyaqefhr47DPgpZdkJyEie2Q0GmGswaoOq1yMHTlyJPr2\n7Ytx48bd3XktuBgLAFevAi1aAJcuibtliYhqwuYuxhYVFSE9PR2DBw/Wuiub1agREBEBbNkiOwkR\n1UaaF3o3NzdcuXIFHh4eWndl0/r1AzZskJ2CiGojboFgJc8+C6xfD9SCmSoisjEs9Fai14sVOEeO\nyE5CRLUNC72V6HScviEiOVjorejZZ1noicj6uHulFZWUAN7egMkEeHnJTkNE9srmlldSBVdXcbwg\n974hImtiobeyAQOAdetkpyCi2oRTN1aWmwsEBYm7ZOvWlZ2GiOwRp25snI8PEBjIw0iIyHpY6CUY\nOBBYu1Z2CiKqLTh1I8Hx40BcHHD+vFhfT0T0KDh1YwcCAwE3N2DfPtlJiKg2YKGX5LnnOH1DRNbB\nQi8JCz0RWQsLvSRPPimWWJ45IzsJETk6FnpJnJzEqP6bb2QnISJHx0Iv0ZAhwNdfy05BRI6Oyysl\nKi0FfH2BgwcBf3/ZaYjIXnB5pR2pWxfo3x/49lvZSYjIkWla6PPz8zF06FAEBQVBr9cjIyNDy+7s\nEqdviEhrmk7djBs3Dt27d8eECRNQVlaGoqIiNGjQoKLzWj51AwA3boj9b06cEHvVExFV5lFrp2aF\nvqCgAJGRkTjzkPWDLPTCqFGAwQC88ILsJERkD2xmjv7s2bNo0qQJxo8fj6ioKEyePBnFxcVadWfX\nOH1DRFrSbES/d+9edO7cGTt37kTHjh0xbdo0eHp64i9/+UtF5zodZs2aZfnYYDDAYDBoEcemFRUB\nzZoBp08Djz8uOw0R2Rqj0QjjHXubv/POO7YxdZObm4vOnTvj7NmzAIDt27dj7ty5WL9+fUXnnLqx\nGDEC6NULmDJFdhIisnU2M3Xj4+OD5s2b4+TJkwCA9PR0BAcHa9Wd3Rs5EvjiC9kpiMgRabrq5uDB\ng5g0aRJKS0vRunVrLFu2jKtuHuDGDXHz1LFjYhUOEdGD2Myqmyp1zkJ/l+efB2JigKlTZSchIltm\nM1M39OhGjgSSk2WnICJHwxG9Dbm9982BA0Dz5rLTEJGt4ojejtWtKw4O/+or2UmIyJGw0NuYkSOB\nzz+XnYKIHAkLvY3p0QO4eBE4flx2EiJyFCz0NsbZWex9s3Kl7CRE5Ch4MdYGZWaK/W/OnAF0Otlp\niMjW8GKsA4iMBFxdgZ07ZSchIkfAQm+DdDpgzBhO3xCROjh1Y6NMJiA6GsjOFssuiYhu49SNg2jZ\nEtDrgbQ02UmIyN6x0NuwMWOATz+VnYKI7B2nbmxYQQEQEABkZfFAEiKqwKkbB9KgAdCvH++UJaKa\nYaG3cePHA8uXy05BRPaMhd7G9egBXLkCHDwoOwkR2SsWehvn5ASMG8dRPRFVHy/G2oHTp4EuXYAL\nF7imnoh4MdYhtWkDBAYC69fLTkJE9kjzEX3Lli3h6ekJJycnuLi4YPfu3RWdc0RfZStWiGMGU1Nl\nJyEi2WzucPBWrVph37598PLyurdzFvoqKykB/P3FzpYtWshOQ0Qy2eTUDYt5zbm6AgkJwNKlspMQ\nkb3RvNDrdDrExcUhOjoaS5Ys0bo7hzZlCvCvfwFlZbKTEJE9cda6gx07dsDX1xeXL19GfHw8AgMD\n0bVrV8vXExMTLc8NBgMMBoPWkexWaCjQvLnY6KxfP9lpiMhajEYjjEZjtX/eqssr33nnHbi7u2PG\njBmic87RP7KlS4E1a4B162QnISJZbGqOvri4GNevXwcAFBUVYePGjQgNDdWyS4c3YgSwfbtYU09E\nVBWaFvpLly6ha9euiIiIQExMDPr164fevXtr2aXDc3MDRo8GFi+WnYSI7AXvjLVDR48CvXoBv/zC\nO2WJaiObmrohbej1QFAQ8M03spMQkT14aKHPzMzEq6++ipiYGHh7e8PHxwcxMTF49dVXsX//fmtl\npPt4+WXgww9lpyAie/DAqZtnnnkGjRo1woABA9CpUyf4+vpCURTk5ORg9+7dSElJQX5+PjZs2FD9\nzjl1U21lZeJc2dRUICxMdhoisibVtkC4dOkSvL29H/rDv/76K5o2bfpoCe/snIW+Rv7yF+DiRV6Y\nJaptNN/rZtu2bUhOTsaHKswbsNDXTE6OmK8/cwZo1Eh2GiKyFk0uxt6eq2/RogXefvttBAYGVjsg\nqcfXV9why50liOhhHjiiP3HiBFatWoUvvvgCTZo0wbBhwzBv3jycO3dOvc45oq+xffuAQYOArCzA\nxUV2GiKyBtVG9EFBQcjMzMT333+PH3/8Ef/1X/8FJycnVUKSejp0EBdlv/1WdhIislUPLPTffPMN\nXF1d0a1bN/zxj3/E5s2bOfq2UdOmAQsWyE5BRLaq0ouxhYWFWLt2LVatWoUtW7Zg7NixGDRokCpb\nGXDqRh1mszhuMDkZiImRnYaItKbpqpu8vDysXr0aycnJ+OGHH6oV8K7OWehV8/e/A7t2iWJPRI5N\ntUJ//fp1eHh4PPSHq/I9D+2chV41164BTzwB7NkDtGolOw0RaUm1Qh8XF4f27dvjueeeQ3R0tOXM\n17y8POzZswdr1qzBqVOnkJ6ebrWw9HBvvgkUFQELF8pOQkRaUnXq5ocffsDnn3+OHTt2IDs7GwDg\n5+eH2NhYjB49usanQbHQqysnBwgOBk6eBB5/XHYaItKK5nfGqomFXn2TJ4vjBv/3f2UnISKtqH5n\nbK9evar0ObINM2eKXS2Li2UnISJb8cBCX1JSgt9++w2XL19GXl6epZlMJly8eNGaGekRtG8PdOki\nzpYlIgIA5wd9YfHixUhKSkJ2djY6dOhg+byHhwemTp1qlXBUPW+8AQwfDkyZwhOoiKgKc/QLFy7E\nn/70J2065xy9Znr3FgeJT5woOwkRqU2Ti7E7d+6EyWRCWVmZ5XNjx46tUgdmsxnR0dHw9/dHSkpK\njcJS1f34IzBhAnD8OOD8wL/biMgePWrtrLQEjBkzBmfOnEFERMRdm5pVtdAnJSVBr9fj+vXrVQ5F\nNdetG+DnB3zxBTB6tOw0RCRTpYV+3759OHr0KHQ63SO/+IULF5Camoq33noLf/vb36oVkKrvf/5H\nbHg2ahRQh8fAE9Valf7vHxISgpycnGq9+PTp0zFv3jzUYZWRIj4e8PAAVq+WnYSIZKp0RH/58mXo\n9Xp06tQJ9erVAyDmh9atW/fQn1u/fj2aNm2KyMhIGI3GB35fYmKi5bnBYKjx3bZUQacDEhOBGTOA\nIUMAHidAZJ+MRuND62hlKr0Ye/vF75z81+l06N69+0Nf+M9//jP+/e9/w9nZGTdu3MC1a9cwZMgQ\nrFixoqJzXozVnKIATz0FTJ0KJCTITkNEatBk1Y3JZMLp06cRFxeH4uJilJWVwdPTs8qdbN26FfPn\nz+eqG0nS04GXXwaOHOEKHCJHoPoWCB9//DGGDRuGF154AYC4wDpo0KBqBSM5evUCfHyAlStlJyEi\nGSod0YeHh2P37t148sknsX//fgBAaGgoDh8+XPPOOaK3mq1bK9bV8xBxIvum+oi+Xr16louwAFBW\nVsbRuR3q3l0cTPLJJ7KTEJG1VVrou3fvjtmzZ6O4uBibNm3CsGHD0L9/f2tkI5XNnQu8+644nISI\nao9Kp27Ky8vxySefYOPGjQCAPn36YNKkSaqM6jl1Y30jRgBhYcBbb8lOQkTVpeqqm7KyMoSEhOD4\n8eOqhLuncxZ6qzt1CujcGThxAmjcWHYaIqoOVefonZ2d0b59e/zyyy81Dka2oW1bsYXx++/LTkJE\n1lLp1E3Xrl2xf/9+dOrUCW5ubuKHqnBnbJU654heitxccbbsnj3iAi0R2RfVb5jaunXrPS9YlTtj\nq9Q5C700770HHDoEfPml7CRE9KhUn6MPDg7GiRMnVAl3T+cs9NIUFwOBgcCqVWKLBCKyH6rP0QcG\nBnKO3gHVry/m6f/7v4HyctlpiEhLnKOvxcrLgZgYsWc9Dychsh+qz9E/aGtMNbYTZqGXb8cOYORI\n4NgxwN1ddhoiqgpNdq/UCgu9bRgzBggI4JJLInuheqF3d3e33AVbWlqKW7duwd3dHdeuXatZUrDQ\n24rsbHG37E8/iXX2RGTbVD8cvLCw0PK8vLwc69atQ0ZGRvXSkU3y8wNef13M1W/YIDsNEamtWlM3\nEREROHDgQM0754jeZpSWilH9vHkA96wjsm2qj+i//vpry/Py8nLs27cPrq6u1UtHNqtuXeDDD4GJ\nE4GePYH/LLAiIgdQ6Yh+/PjxlufOzs5o2bIlJk+ejKZNm9a8c47obc6YMWIq569/lZ2EiB5E9RG9\n2WxGUlISGjVqBADIy8vDzJkzsXTp0uqnJJv1f/8HhIaKdfXh4bLTEJEaKj145NChQ5YiDwBeXl7I\nzMzUNBTJ4+0NzJ4N/PGPvGOWyFFUWugVRUFeXp7l47y8PJjN5iq9+I0bNxATE4OIiAjo9Xq8+eab\n1U9KVjNxIuDkBHz0kewkRKSGSqduZsyYgc6dO2P48OFQFAVfffUV3qri8USPPfYYtmzZgvr166Os\nrAyxsbHYvn07YmNjaxyctFOnjjhbNjYW6NcPaNlSdiIiqolKC/3YsWPRoUMH/PDDD9DpdPj222+h\n1+ur3EH9+vUBiJutzGYzvLy8qp+WrCYwEJg5E5g8Gdi4EeB58ET2S/MtEMrLyxEVFYWsrCy8+OKL\n+Osdyzm46sa2lZUBTz4JvPiimM4hItug+qqbmqpTpw4OHDiAgoIC9OnTB0aj8a4N0RITEy3PDQaD\nKpulkTqcnYGlS4FevYDevYHmzWUnIqqdjEbjAzeYrAqrbmr27rvvwtXVFTNnzhSdc0RvF957D9i6\nFfj+ezF/T0RyqXrwSE1duXIF+fn5AICSkhJs2rQJkZGRWnZJGnjjDeDaNeCf/5SdhIiqQ9Opm5yc\nHIwbNw7l5eUoLy/H888/j169emnZJWnA2RlYsUIcORgfD7RrJzsRET0K7kdPVbZoEfDvfwPbtwMu\nLrLTENVeNjV1Q47l5ZeBxo2BWbNkJyGiR8ERPT2SX38FIiKAzz4Tu1wSkfVxRE+aatoUWL4cGDcO\nuHJFdhoiqgqO6KlaXn0VOH4cWLuWSy6JrI0jerKK2bPFiH7+fNlJiKgyHNFTtZ07B3TqBHz1FdC1\nq+w0RLUHR/RkNQEBwLJlwKhRwKVLstMQ0YOw0FON9O0L/OEPwIgRwK1bstMQ0f1w6oZqzGwG+vcX\nd8wuWCA7DZHj49QNWZ2TE7ByJbBhg7hzlohsC0f0pJqffwZ69AC++w6IjpadhshxcURP0oSEAEuW\nAAMHAhcuyE5DRLdpfvAI1S4DBwInTgADBgDbtgFubrITERGnbkh1igJMmADk5wOrV4s5fCJSD6du\nSDqdDli8GLh6VRwwTkRysdCTJurWBdasATZtAv72N9lpiGo3ztGTZho2BFJTxclUzZqJm6qIyPpY\n6ElTAQHA+vXiCEIvL/FIRNbFqRvSXHg48PXXQEICkJEhOw1R7aNpoT9//jx69OiB4OBghISEYOHC\nhVp2Rzasa1dxYMlzz4kbq4jIejRdXpmbm4vc3FxERESgsLAQHTp0wJo1axAUFCQ65/LKWufzz8Wh\nJT/8ALRvLzsNkX161Nqp6Ry9j48PfHx8AADu7u4ICgpCdna2pdBT7ZOQAJSWAnFxwJYtQJs2shMR\nOT6rXYw1mUzYv38/YmJirNUl2ag//EEU+169RLF/4gnZiYgcm1UKfWFhIYYOHYqkpCS4u7vf9bXE\nxETLc4PBAIPBYI1IJNmUKWJ74x49gM2bObInehij0Qij0Vjtn9d8C4Rbt26hX79+6Nu3L6ZNm3Z3\n55yjr/WWLAHeeQdITwcCA2WnIbIPNjVHrygKJk6cCL1ef0+RJwKAyZPFXbQ9ewJpaUBYmOxERI5H\n0xH99u3b0a1bN4SFhUGn0wEA5syZg6efflp0zhE9/ceXXwJTpwLffivupCWiB3vU2sndK8lmfP89\nMGYMsGKFOIuWiO6Pu1eS3erTB1i7VqzKWbFCdhoix8ERPdmcY8eAZ54BJk0C/vxnse0xEVXg1A05\nhJwc4NlngQ4dgI8+AlxcZCcish2cuiGH4OsLbN0K5OaKKZ28PNmJiOwXCz3ZLA8PcXhJVBTw5JPi\nLFoienQs9GTTnJyA+fOB118XO2CmpMhORGR/OEdPdiMjAxg2TFykffttoA6HKVRL8WIsObTcXFHs\nPT3FEszGjWUnIrI+Xowlh+bjI/ay1+vF3D1PrCKqHEf0ZLfWrhV75cycKRqncqi24NQN1Sq//AKM\nHg24uoqpHF9f2YmItMepG6pVWrQAjEYgNhaIjBSHkBPR3TiiJ4fx00/AuHFATAzwj38ADRvKTkSk\nDY7oqdbq3BnYv1+syAkNBdavl52IyDZwRE8OacsWcaE2JgZISgIef1x2IiL1cERPBHEW7aFDYjlm\ncDCwbBnAMQXVVhzRk8PLzAReeAGoXx/48EMgJER2IqKa4Yie6Hdu31g1fLg4m3baNCA/X3YqIuth\noadawckJePll4MgRoLgYCAoCPv4YKCuTnYxIe5oW+gkTJsDb2xuhoaFadkNUZU2aiAK/fj3w+edi\n7f3333P+nhybpoV+/PjxSEtL07ILomrp0EGszHn3XeBPfwLi4oA9e2SnItKGpoW+a9euaNSokZZd\nEFWbTgcMHAj8/DMwYoR4PmSI+JjIkXCOnmo9FxdgyhTg1CmgSxcxuh85Ejh6VHYyInU4yw6QmJho\neW4wGGAwGKRlodqtfn1gxgyxFHPRIrEWv1s34K23gIgI2emoNjMajTAajdX+ec3X0ZtMJvTv3x+H\nDx++t3OuoycbVlQkLtzOny+2VHjtNVH8dTrZyai24zp6IpW4uQHTpwNnzohTrV56CejYEVi5Eigt\nlZ2OqOo0LfSjRo1Cly5dcPLkSTRv3hzLli3TsjsiTdSrB0ycKObsZ80Cli4FWrUC3nsPuHRJdjqi\nynELBKJqOHRIbIW8ejXQt68Y7T/1FKd1yDp4whSRFV29CixfDixeLI4ynDwZeP557pZJ2mKhJ5JA\nUYBt24AlS4CUFLGnzvjxwNNPi+WbRGpioSeSrKAA+PJLMdI/dUpspjZ6NPDkk5zaIXWw0BPZkDNn\nxJ46K1cCN26Ioj9ihNhjh0WfqouFnsgGKQpw+DCQnCxG+2az2G5h0CAx0ndykp2Q7AkLPZGNUxSx\naufrr4E1a8QSzX79gP79xfYL7u6yE5KtY6EnsjNnzgDr1omtk3ftEoec9+0L9Okj9s3nFA/9Hgs9\nkR27fh3YtEnskZ+WJkb/cXGi9ewpzsAlYqEnchCKApw4AWzeDKSnA0ajKPQ9egAGA9C1K+DrKzsl\nycBCT+SgzGbg4EFxYMrWrcD27UDjxkBsrNhe+amngMBAceMWOTYWeqJaorxcnIG7Ywewc6d4/O03\noFMnICZGbMDWsSNH/Y6IhZ6oFrt8WVzQ3bVLHI24Zw/w2GNAVJQ4PjEyUuytHxDAi7z2jIWeiCwU\nBTCZgP37gX37xOOBA0BJCRAWJvbZDwsDgoNFa9hQdmKqChZ6IqrUr7+KG7gOHRKPP/8stmFu2FAs\n6dTrxXx/+/ai+fnxLwBbwkJPRNVSXg788gtw7Jhox4+LVT8nTojTttq2Fa1NG9FatwaeeEL8EuCd\nvdbFQk9EqisoEBu0nTwJZGUBp0+LdvYskJcn5vxbthQHsrRoIVpAgGh+ftzBU20s9ERkVSUl4jqA\nySQK/7lz4i+DX34Bzp8XWzw0aQL4+wPNmolHP7+K5usrWqNGnB6qKhZ6IrIpZWVATg5w8SJw4YJo\n2dkVLSdHPN68CXh7392aNr27Pf64+KXx+OPiiMfayqYKfVpaGqZNmwaz2YxJkybh9ddfv7tzFnoi\n+o+SEjH6z80Vj7fb5cvi4vHly8CVKxWPdeuKG8bubF5e4i+D37eGDUVr0ADw9AScnWW/25qxmUJv\nNpvRvn17pKeno1mzZujYsSNWrVqFoKCgaoe1N0ajEQaDQXYMzfD92Td7fn+KAhQWioKflyduFPvt\nN3G0Y14ecPCgER4eBly9Kj6Xn1/Rrl8HXF1F0b9d+G83D497m7t7xaObm2i3n9evLx6t/YvjUWun\nZvF2796NNm3aoGXLlgCAkSNHYu3atXcVekdnz/8jVQXfn32z5/en01UU4lat7v16YqIRiYmG+/5s\nebn4JXHtmmgFBeLx+vWKx+vXxS+Mc+fE916/LlYe3X68sxUXi0Jfv/69zdX1/u2xxyoe72z16lU8\n3m7h4eJ91oRmhf7ixYto3ry55WN/f3/s2rVLq+6IiKqkTp2KEbwaFEVcXyguFq2oSExDFReLx9vP\nb9yo+Pj287w88bM3boh2+/nNmxXt44/FzWw1oVmh1/HyORHVAjpdxYjcy0t2mgdQNPLTTz8pffr0\nsXz8/vvvK3Pnzr3re1q3bq0AYGNjY2N7hNa6detHqseaXYwtKytD+/btsXnzZvj5+aFTp073XIwl\nIiLtaTZ14+zsjEWLFqFPnz4wm82YOHEiizwRkQRSb5giIiLtST+L5tVXX0VQUBDCw8MxePBgFBQU\nyI6kirS0NAQGBqJt27b44IMPZMdR1fnz59GjRw8EBwcjJCQECxculB1JdWazGZGRkejfv7/sKKrL\nz8/H0KFDERQUBL1ej4yMDNmRVDVnzhwEBwcjNDQUCQkJuHnzpuxINTJhwgR4e3sjNDTU8rm8vDzE\nx8ejXbt26N27N/Lz8x/6GtILfe/evXHkyBEcPHgQ7dq1w5w5c2RHqjGz2YypU6ciLS0NR48exapV\nq3Ds2DHZsVTj4uKCv//97zhy5AgyMjLw4YcfOtT7A4CkpCTo9XqHXD32yiuv4JlnnsGxY8dw6NAh\nh5pSNZlMWLJkCTIzM3H48GGYzWYkJyfLjlUj48ePR1pa2l2fmzt3LuLj43Hy5En06tULc+fOfehr\nSC/08fHxqPOfQy5jYmJw4cIFyYlq7s6bxVxcXCw3izkKHx8fREREAADc3d0RFBSE7OxsyanUc+HC\nBaSmpmLSpEkOd+d2QUEBtm3bhgkTJgAQ19IaNGggOZV6PD094eLiguLiYpSVlaG4uBjNmjWTHatG\nunbtikaNGt31uXXr1mHcuHEAgHHjxmHNmjUPfQ3phf5OS5cuxTPPPCM7Ro3d72axixcvSkykHZPJ\nhP379yMmJkZ2FNVMnz4d8+bNswxAHMnZs2fRpEkTjB8/HlFRUZg8eTKKi4tlx1KNl5cXZsyYgYCA\nAPj5+aFhw4aIi4uTHUt1ly5dgre3NwDA29sbly5deuj3W+W/5Pj4eISGht7TUlJSLN8ze/Zs1K1b\nFwkJCdaIpClH/HP/fgoLCzF06FAkJSXB3d1ddhxVrF+/Hk2bNkVkZKTDjeYBsew5MzMTL730EjIz\nM+Hm5lbpn/32JCsrCwsWLIDJZEJ2djYKCwuxcuVK2bE0pdPpKq05VtmKZ9OmTQ/9+vLly5GamorN\nmzdbI47mmjVrhvPnz1s+Pn/+PPz9/SUmUt+tW7cwZMgQjBkzBgMHDpQdRzU7d+7EunXrkJqaihs3\nbuDatWsYO3YsVqxYITuaKvz9/eHv74+OHTsCAIYOHepQhX7v3r3o0qULGjduDAAYPHgwdu7cidGj\nR0tOpi5vb2/k5ubCx8cHOTk5aNq06UO/X/rfpmlpaZg3bx7Wrl2Lxx57THYcVURHR+PUqVMwmUwo\nLS3FF1+m33ZKAAAE20lEQVR8gQEDBsiOpRpFUTBx4kTo9XpMmzZNdhxVvf/++zh//jzOnj2L5ORk\n9OzZ02GKPCCurzRv3hwnT54EAKSnpyO4phup2JDAwEBkZGSgpKQEiqIgPT0der1edizVDRgwAJ9+\n+ikA4NNPP618sFWjfQ5U0KZNGyUgIECJiIhQIiIilBdffFF2JFWkpqYq7dq1U1q3bq28//77suOo\natu2bYpOp1PCw8Mt/96+++472bFUZzQalf79+8uOoboDBw4o0dHRSlhYmDJo0CAlPz9fdiRVffDB\nB4per1dCQkKUsWPHKqWlpbIj1cjIkSMVX19fxcXFRfH391eWLl2q/Pbbb0qvXr2Utm3bKvHx8crV\nq1cf+hq8YYqIyMFJn7ohIiJtsdATETk4FnoiIgfHQk9E5OBY6ImIHBwLPRGRg2OhJ7tWUFCAf/7z\nnwCAnJwcDBs2TLXXXrRoEZYvX67a6w0fPhxnz55V7fWIqorr6MmumUwm9O/fH4cPH1b1dRVFQVRU\nFPbs2QNnZ3V2Ctm0aRNSUlIccv9+sm0c0ZNde+ONN5CVlYXIyEgMHz7ccjjD8uXLMXDgQPTu3Rut\nWrXCokWLMH/+fERFRaFz5864evUqALEJVt++fREdHY1u3brhxIkTAIAdO3YgMDDQUuQXLlyI4OBg\nhIeHY9SoUQCAoqIiTJgwATExMYiKisK6desAiPMIZs6cidDQUISHh2PRokUAAIPBgNTUVKv+8yEC\nIH8LBKKaMJlMSkhIyD3Ply1bprRp00YpLCxULl++rHh6eiqLFy9WFEVRpk+frixYsEBRFEXp2bOn\ncurUKUVRFCUjI0Pp2bOnoiiKMmfOHGX+/PmWfvz8/Cy30hcUFCiKoihvvvmm8tlnnymKoihXr15V\n2rVrpxQVFSkfffSRMmzYMMVsNiuKoih5eXmW1+nWrZty9OhRbf5hED2AVXavJNKKcsfMo/K7Wcge\nPXrAzc0Nbm5uaNiwoeVYwNDQUBw6dAhFRUXYuXPnXfP6paWlAIBz584hNjbW8vmwsDAkJCRg4MCB\nlg2kNm7ciJSUFMyfPx8AcPPmTZw7dw6bN2/Giy++aNnP/s5DI/z8/GAymRzqVCeyfSz05LDq1atn\neV6nTh3Lx3Xq1EFZWRnKy8vRqFEj7N+//74/f+cvjg0bNuDHH39ESkoKZs+ebbkm8M0336Bt27YP\n/dnff94RDzQh28b/4siueXh44Pr164/0M7eLsIeHB1q1aoXVq1dbPn/o0CEAQIsWLZCbm2v5/Llz\n52AwGDB37lwUFBSgsLAQffr0uevC6u1fGPHx8Vi8eDHMZjMAWK4HAGJlUIsWLar5bomqh4We7Frj\nxo3x1FNPITQ0FK+99prlpJ3fn7rz++e3P165ciX+9a9/ISIiAiEhIZYLqrGxsdi7dy8AcSrT888/\nj7CwMERFReGVV15BgwYN8Pbbb+PWrVsICwtDSEgIZs2aBQCYNGkSAgICEBYWhoiICKxatQqAOKzl\nwoULCAwM1P4fDNEduLyS6D6U/yyv3LVrF+rWravKa27cuBEbNmxAUlKSKq9HVFUc0RPdh06nw+TJ\nk1U9b/STTz7B9OnTVXs9oqriiJ6IyMFxRE9E5OBY6ImIHBwLPRGRg2OhJyJycCz0REQOjoWeiMjB\n/T/TLOQZYjmougAAAABJRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x77abf28>"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " \n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)the  current  flowing  in  the  winding  3  s  after  being  shorted-out  is   1.64   A\n",
        "\n",
        "  (b)the  time  for  the  current  to  decay  to  5  A  is   0.77   sec\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 11, page no. 273</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determine: (a) the resistance of the coil,\n",
      "#(b) the current flowing in the circuit one second after the shorting link has been placed in the circuit, and \n",
      "#(c) the time taken for the current to fall to 10% of its initial value.\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "L  =  6;#  in  Henry\n",
      "r  =  10;#  in  ohms\n",
      "V  =  120;#  in  Volts\n",
      "tou  =  0.3;#  in  secs\n",
      "t1  =  1;#  in  secs\n",
      "\n",
      "#calculation:\n",
      "R  =  (L/tou)  -  r\n",
      "Rt  =  R  +  r\n",
      "I  =  V/Rt\n",
      "i2  =  0.1*I\n",
      "i1  =  I*(math.e**(-1*t1/tou))\n",
      "t2  =  -1*tou*math.log((i2/I))\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"  \\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  (a)  resistance  of  the  coil  is  \",round(R,2),\"  ohm\"\n",
      "print  \"\\n  (b)  current  flowing  in  circuit  one  second  after  the  shorting  link  has  been  placed  is  \",round(i1,2),\"  A\"\n",
      "print  \"\\n  (c)the  time  for  the  current  to  decay  to  0.1  times  of  initial  value  is  \",round(t2,2),\"  sec\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "  \n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  (a)  resistance  of  the  coil  is   10.0   ohm\n",
        "\n",
        "  (b)  current  flowing  in  circuit  one  second  after  the  shorting  link  has  been  placed  is   0.21   A\n",
        "\n",
        "  (c)the  time  for  the  current  to  decay  to  0.1  times  of  initial  value  is   0.69   sec\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 12, page no. 274</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determine the time constant of the circuit and the steady-state value of the current flowing in the circuit. \n",
      "#Find (a) the current flowing in the circuit at a time equal to one time constant, \n",
      "#(b) the voltage drop across the inductor at a time equal to two time constants and \n",
      "#(c) the voltage drop across the resistor after a time equal to three time constants.\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "L  =  0.2;#  in  Henry\n",
      "R  =  1000;#  in  ohms\n",
      "V  =  24;#  in  Volts\n",
      "t1  =  1*L/R;#  in  secs\n",
      "t2  =  2*L/R;#  in  secs\n",
      "t3  =  3*L/R;#  in  secs\n",
      "\n",
      "#calculation:\n",
      "tou  =  L/R\n",
      "I  =  V/R\n",
      "i1  =  I*(1  -  math.e**(-1*t1/tou))\n",
      "VL  =  V*(math.e**(-1*t2/tou))\n",
      "VR  =  V*(1  -  math.e**(-1*t3/tou))\n",
      "\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\n  Result  \\n\\n\"\n",
      "print  \"\\n  time  constant  of  circuit  is  \",round(tou*1000,6),\"msec, and steady-state  value  of current  is  \",round(I*1000,2),\"mA\"\n",
      "print  \"\\n  (a)  urrent  flowing  in  the  circuit  at  a  time  equal  to  one  time  constant  is  \",round(i1*1000,2),\"mA\"\n",
      "print  \"\\n  (b)  voltage  drop  across  the  inductor  at  a  time  equal  to  two  time  constants  is  \",round(VL,3),\"  V\"\n",
      "print  \"\\n  (c)the  voltage  drop  across  the  resistor  after  a  time  equal  to  three  time  constants  is  \",round(VR,2),\"  V\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "  Result  \n",
        "\n",
        "\n",
        "\n",
        "  time  constant  of  circuit  is   0.2 msec, and steady-state  value  of current  is   24.0 mA\n",
        "\n",
        "  (a)  urrent  flowing  in  the  circuit  at  a  time  equal  to  one  time  constant  is   15.17 mA\n",
        "\n",
        "  (b)  voltage  drop  across  the  inductor  at  a  time  equal  to  two  time  constants  is   3.248   V\n",
        "\n",
        "  (c)the  voltage  drop  across  the  resistor  after  a  time  equal  to  three  time  constants  is   22.81   V\n"
       ]
      }
     ],
     "prompt_number": 18
    }
   ],
   "metadata": {}
  }
 ]
}