summaryrefslogtreecommitdiff
path: root/Electrical_Circuit_Theory_And_Technology/chapter_08-checkpoint_2.ipynb
blob: 1d749dd1287951aa4e82dec4bcce336fc87c1bcc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h1>Chapter 8: Electromagnetism</h1>"
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 2, page no. 93</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate the force acting on the conductor.\n",
      "#Determine also the value of the force\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "B  =  0.9;#  in  tesla\n",
      "I  =  20;#  in  Amperes\n",
      "l  =  0.30;#  in  m\n",
      "alpha  =  30;#  in  degree\n",
      "u0  =  4*math.pi*1E-7;\n",
      "\n",
      "#calculation:\n",
      "F1  =  B*I*l\n",
      "F2  =  B*I*l*math.sin(alpha*math.pi/180)\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\nResult\\n\\n\"\n",
      "print  \"\\n  (a)Force  when  the  conductor  is  at  right  angles  to  the  field  =  \",F1,\"  N\\n\"\n",
      "print  \"\\n  (b)Force  when  the  conductor  is  at  30\u00b0  angle  to  the  field  =  \",F2,\"  N\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "Result\n",
        "\n",
        "\n",
        "\n",
        "  (a)Force  when  the  conductor  is  at  right  angles  to  the  field  =   5.4   N\n",
        "\n",
        "\n",
        "  (b)Force  when  the  conductor  is  at  30\u00c2\u00b0  angle  to  the  field  =   2.7   N"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 3, page no. 94</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determine the current required?\n",
      "#what is the direction of the force?\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "F  =  1.92;#  in  newton\n",
      "B  =  1.2;#  in  tesla\n",
      "l  =  0.40;#  in  m\n",
      "u0  =  4*math.pi*1E-7;\n",
      "\n",
      "#calculation:\n",
      "I  =  F/(B*l)\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\nResult\\n\\n\"\n",
      "print  \"\\n  (a)Current  I  =  \",I,\"  Amperes(A)\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "Result\n",
        "\n",
        "\n",
        "\n",
        "  (a)Current  I  =   4.0   Amperes(A)"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 4, page no. 95</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate the magnitude of the force exerted on the conductor.\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "r  =  0.06;#  in  m\n",
      "I  =  10;#  in  Amperes\n",
      "l  =  0.35;#  in  m\n",
      "Phi  =  0.5E-3;#  in  Wb\n",
      "u0  =  4*math.pi*1E-7;\n",
      "\n",
      "#calculation:\n",
      "A  =  math.pi*r*r\n",
      "B  =  Phi/A\n",
      "F  =  B*I*l\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\nResult\\n\\n\"\n",
      "print  \"\\n  (a)Force  F  =  \",round(F,2),\"  N\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "Result\n",
        "\n",
        "\n",
        "\n",
        "  (a)Force  F  =   0.15   N"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 6, page no. 95</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#determine the force on each coil side (a) for a single-turn coil,\n",
      "#(b) for a coil wound with 300 turns.\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "N1  =  1;#  for  a  single-turn  coil\n",
      "N2  =  300;#  no.  of  turns\n",
      "b  =  0.024;#  in  m\n",
      "B  =  0.8;#  in  Tesla\n",
      "I  =  0.05;#  in  Amperes\n",
      "l  =  0.030;#  in  m\n",
      "u0  =  4*math.pi*1E-7;\n",
      "\n",
      "#calculation:\n",
      "#For  a  single-turn  coil,\n",
      "F1  =  N1*B*I*l\n",
      "#for  a  coil  wound  with  300  turns.\n",
      "F2  =  N2*B*I*l\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\nResult\\n\\n\"\n",
      "print  \"\\n  (a)For  a  single-turn  coil,  force  on  each  coil  side  =  \",F1,\"  N\\n\"\n",
      "print  \"\\n  (b)For  a  300-turn  coil,  force  on  each  coil  side  =  \",F2,\"  N\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "Result\n",
        "\n",
        "\n",
        "\n",
        "  (a)For  a  single-turn  coil,  force  on  each  coil  side  =   0.0012   N\n",
        "\n",
        "\n",
        "  (b)For  a  300-turn  coil,  force  on  each  coil  side  =   0.36   N"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 7, page no. 98</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determine the force exerted on the electron in the field.\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "Q  =  1.6E-19;#  in  Coulomb\n",
      "v  =  3E7;#  in  m/s\n",
      "B  =  18.5E-6;#  in  Tesla\n",
      "u0  =  4*math.pi*1E-7;\n",
      "\n",
      "#calculation:\n",
      "F  =  Q*v*B\n",
      "\n",
      "#Results\n",
      "print  \"\\n\\nResult\\n\\n\"\n",
      "print  \"\\n  Force  exerted  on  the  electron  in  the  field.  =  \",(F/1E-17),\"E-17  N\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "Result\n",
        "\n",
        "\n",
        "\n",
        "  Force  exerted  on  the  electron  in  the  field.  =   8.88 E-17  N"
       ]
      }
     ],
     "prompt_number": 5
    }
   ],
   "metadata": {}
  }
 ]
}