summaryrefslogtreecommitdiff
path: root/Electrical_Circuit_Theory_And_Technology/chapter_05-checkpoint_1.ipynb
blob: b881dd4103b34bb5159f682cf8c37a71d6a0bd96 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h1>Chapter 5: Series and parallel\n",
      "networks</h1>"
     ]
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 1, page no. 43</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#determine (a) the battery voltage V, (b) the total resistance of the circuit, and \n",
      "#(c) the values of resistance of resistors R1, R2 and R3,\n",
      "from __future__ import division\n",
      "#initializing the variables:\n",
      "V1 = 5; # in volts\n",
      "V2 = 2; # in volts\n",
      "V3 = 6; # in volts\n",
      "I = 4; # in Amperes\n",
      "\n",
      "#calculation:\n",
      "Vt = V1 + V2 + V3\n",
      "Rt = Vt/I\n",
      "R1 = V1/I\n",
      "R2 = V2/I\n",
      "R3 = V3/I\n",
      "\n",
      "#results\n",
      "print \"(a) Total Voltage\", Vt,\"Volts(V)\"\n",
      "print \"(b)Total Resistance\", Rt,\"Ohms\"\n",
      "print \"(c)Resistance(R1)\", R1,\"Ohms; Resistance(R2)\", R2,\"Ohms and\"\n",
      "print \"Resistance(R3)\", R3,\"Ohms\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a) Total Voltage 13 Volts(V)\n",
        "(b)Total Resistance 3.25 Ohms\n",
        "(c)Resistance(R1) 1.25 Ohms; Resistance(R2) 0.5 Ohms and\n",
        "Resistance(R3) 1.5 Ohms"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 2, page no. 43</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#determine the p.d. across resistor R3.\n",
      "#Find value of resistor R2\n",
      "from __future__ import division\n",
      "#initializing the variables:\n",
      "V1 = 10; # in volts\n",
      "V2 = 4; # in volts\n",
      "Vt = 25; # in volts\n",
      "Rt = 100; # in ohms\n",
      "\n",
      "#calculation:\n",
      "V3 = Vt - V1 - V2\n",
      "I = Vt/Rt\n",
      "R2 = V2/I\n",
      "\n",
      "#results\n",
      "print \"(a)Voltage(V3)\", V3,\"Volts(V)\"\n",
      "print \"(b)current\", I,\"Amperes(A)\"\n",
      "print \"(c)Resistance(R2)\", R2,\"Ohms\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)Voltage(V3) 11 Volts(V)\n",
        "(b)current 0.25 Amperes(A)\n",
        "(c)Resistance(R2) 16.0 Ohms"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 3, page no. 44</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determine the current flowing through, and the p.d. across the 9 ohm resistor. \n",
      "#Find also the power dissipated in the 11 ohm resistor.\n",
      "from __future__ import division\n",
      "#initializing the variables:\n",
      "Vt = 12; # in volts\n",
      "R1 = 4; # in ohms\n",
      "R2 = 9; # in ohms\n",
      "R3 = 11; # in ohms\n",
      "\n",
      "#calculation:\n",
      "Rt = R1 + R2 + R3\n",
      "I = Vt/Rt\n",
      "V9 = I*R2\n",
      "P11 = I*I*R3\n",
      "#results\n",
      "print \"a)current\", I,\"Amperes(A)\\n\"\n",
      "print \"b)Voltage(V2)\", V9,\"Volts(V)\\n\"\n",
      "print \"c)Power\", P11,\"Watt(W)\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "a)current 0.5 Amperes(A)\n",
        "\n",
        "b)Voltage(V2) 4.5 Volts(V)\n",
        "\n",
        "c)Power 2.75 Watt(W)"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 4, page no. 44</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determine the value of voltage V\n",
      "from __future__ import division\n",
      "#initializing the variables:\n",
      "Vt = 50; # in volts\n",
      "R1 = 4; # in ohms\n",
      "R2 = 6; # in ohms\n",
      "\n",
      "#calculation:\n",
      "Rt = R1 + R2\n",
      "I = Vt/Rt\n",
      "V2 = I*R2\n",
      "\n",
      "#results\n",
      "print \"Voltage(V)\", V2,\"Volts(V)\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Voltage(V) 30.0 Volts(V)"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 5, page no. 45</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#determine (a) the value of the other resistor, and \n",
      "#(b) the p.d. across the 2 \u0006 resistor. \n",
      "#If the circuit is connected for 50 hours, how much energy is used?\n",
      "from __future__ import division\n",
      "#initializing the variables:\n",
      "Vt = 24; # in volts\n",
      "R1 = 2; # in ohms\n",
      "I = 3; # in Amperes\n",
      "t = 50; # in hrs\n",
      "\n",
      "#calculation:\n",
      "V1 = I*R1\n",
      "R2 = (Vt-(I*R1))/I\n",
      "E = Vt*I*t\n",
      "\n",
      "#results\n",
      "print \"a)Voltage(V1)\", V1,\"Volts(V)\\n\"\n",
      "print \"b)Resistance(R2)\", R2,\"Ohms\\n\"\n",
      "print \"c)Energy(E)\", E/1000,\"kWh\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "a)Voltage(V1) 6 Volts(V)\n",
        "\n",
        "b)Resistance(R2) 6.0 Ohms\n",
        "\n",
        "c)Energy(E) 3.6 kWh"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 6, page no. 46</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#determine (a) the reading on the ammeter, and \n",
      "# (b) the value of resistor R2\n",
      "from __future__ import division\n",
      "#initializing the variables:\n",
      "R1 = 5; # in ohms\n",
      "R3 = 20; # in ohms\n",
      "I1 = 8; # in Amperes\n",
      "It = 11; # in Amperes\n",
      "\n",
      "#calculation:\n",
      "Vt = I1*R1\n",
      "I3 = Vt/R3\n",
      "R2 = Vt/(It - I1 - I3)\n",
      "\n",
      "#results\n",
      "print \"a)Ammeter Reading\", I3,\"Amperes(A)\\n\"\n",
      "print \"b)Resistance(R2)\", R2,\"Ohms\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "a)Ammeter Reading 2.0 Amperes(A)\n",
        "\n",
        "b)Resistance(R2) 40.0 Ohms"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 7, page no. 46</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Determine (a) the total circuit resistance and (b) the current flowing in the 3 ohm resistor.\n",
      "from __future__ import division\n",
      "#initializing the variables:\n",
      "R1 = 3; # in ohms\n",
      "R2 = 6; # in ohms\n",
      "Vt = 12; # in volts\n",
      "\n",
      "#calculation:\n",
      "Rt = R1*R2/(R1 + R2)\n",
      "I1 = (Vt/R1)\n",
      "\n",
      "#Result\n",
      "print \"(a)Total Resistance\", Rt,\"Ohms\\n\"\n",
      "print \"(b)Current(I1)\", I1,\"Amperes(A)\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)Total Resistance 2.0 Ohms\n",
        "\n",
        "(b)Current(I1) 4.0 Amperes(A)"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 8, page no. 47</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#find (a) the value of the supply voltage V and (b) the value of current I.\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "R1  =  10;#  in  ohms\n",
      "R2  =  20;#  in  ohms\n",
      "R3  =  60;#  in  ohms\n",
      "I2  =  3;#  in  Amperes\n",
      "\n",
      "#calculation:\n",
      "Vt  =  I2*R2\n",
      "I1  =  Vt/R1\n",
      "I3  =  Vt/R3\n",
      "I  =  I1  +I2  +  I3\n",
      "\n",
      "print  \"\\nResult\\n\"\n",
      "print  \"\\n(a)Voltage(V)  \",Vt,\"  Volts(V)\\n\"\n",
      "print  \"\\n(b)Total  Current(I)  \",I,\"  Amperes(A)\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Result\n",
        "\n",
        "\n",
        "(a)Voltage(V)   60   Volts(V)\n",
        "\n",
        "\n",
        "(b)Total  Current(I)   10.0   Amperes(A)"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 9, page no. 47</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#state how they must be connected to give an overall resistance of \n",
      "#(a) 1/4 ohm (b) 1 ohm (c) 4/3 ohm (d)2.5 ohm, all four resistors being connected in each case\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "R  =  1;#  in  ohms\n",
      "\n",
      "#calculation\n",
      "R1  =  1/(1/R + 1/R + 1/R + 1/R)\n",
      "R2  =  2*R*2*R/(4*R)\n",
      "R3  =  1/(1/R + 1/R + 1/R) + 1\n",
      "R4  =  R*R/(2*R) + 2*R\n",
      "\n",
      "print  \"\\n\\nResult\\n\\n\"\n",
      "print  \"\\n(a)All four in parallel for \",R1,\"  ohm\\n\"\n",
      "print  \"\\n(b)Two in series, in parallel with another two in series for\",R2,\"  ohm\\n\"\n",
      "print  \"\\n(c)Three in parallel, in series with one for \",round(R3,2),\"  ohm\\n\"\n",
      "print  \"\\n(d)Two in parallel, in series with two in series for \",R4,\"  ohm\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "Result\n",
        "\n",
        "\n",
        "\n",
        "(a)All four in parallel for  0.25   ohm\n",
        "\n",
        "\n",
        "(b)Two in series, in parallel with another two in series for 1.0   ohm\n",
        "\n",
        "\n",
        "(c)Three in parallel, in series with one for  1.33   ohm\n",
        "\n",
        "\n",
        "(d)Two in parallel, in series with two in series for  2.5   ohm\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 10, page no. 48</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Find the equivalent resistance for the circuit\n",
      "from __future__ import division\n",
      "#initializing  the  variables:\n",
      "R1  =  1;#  in  ohms\n",
      "R2  =  2.2;#  in  ohms\n",
      "R3  =  3;#  in  ohms\n",
      "R4  =  6;#  in  ohms\n",
      "R5  =  18;#  in  ohms\n",
      "R6  =  4;#  in  ohms\n",
      "\n",
      "\n",
      "#calculation:\n",
      "R0  =  1/((1/3)  +  (1/6)  +  (1/18))\n",
      "Rt  =  R1  +  R2  +  R0  +  R6\n",
      "\n",
      "print  \"\\n\\nResult\\n\\n\"\n",
      "print  \"\\n  Equivalent  Resistance  \",Rt,\"  Ohms\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "Result\n",
        "\n",
        "\n",
        "\n",
        "  Equivalent  Resistance   9.0   Ohms"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 11, page no. 48</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#find (a) the supply current, (b) the current flowing through each resistor and (c) the p.d. across each resistor.\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "R1  =  2.5;#  in  ohms\n",
      "R2  =  6;#  in  ohms\n",
      "R3  =  2;#  in  ohms\n",
      "R4  =  4;#  in  ohms\n",
      "Vt  =  200;#  in  volts\n",
      "\n",
      "#calculation:\n",
      "R0  =  1/((1/R2)  +  (1/R3))\n",
      "Rt  =  R1  +  R0  +  R4\n",
      "It  =  Vt/Rt\n",
      "I1  =  It\n",
      "I4  =  It\n",
      "I2  =  R3*It/(R3+R2)\n",
      "I3  =  It  -  I2\n",
      "V1  =  I1*R1\n",
      "V2  =  I2*R2\n",
      "V3  =  I3*R3\n",
      "V4  =  I4*R4\n",
      "\n",
      "print  \"\\n\\nResult\\n\\n\"\n",
      "print  \"\\n  (a)Total  Current  Supply  \",It,\"  Amperes(A)\\n\"\n",
      "print  \"\\n  (b)Current  through  resistors  (R1,  R2,  R3,  R4)\\n \",I1,\",  \",  I2,\",  \",  I3,\",  \",  I4,\"  Amperes(A)  respectively\\n\"\n",
      "print  \"\\n  (c)voltage  across  resistors  (R1,  R2,  R3,  R4)\\n  \",V1,\",  \",  V2,\",  \",  V3,\",  \",  V4,\"  Volts(V)  respectively\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "Result\n",
        "\n",
        "\n",
        "\n",
        "  (a)Total  Current  Supply   25.0   Amperes(A)\n",
        "\n",
        "\n",
        "  (b)Current  through  resistors  (R1,  R2,  R3,  R4)\n",
        "  25.0 ,   6.25 ,   18.75 ,   25.0   Amperes(A)  respectively\n",
        "\n",
        "\n",
        "  (c)voltage  across  resistors  (R1,  R2,  R3,  R4)\n",
        "   62.5 ,   37.5 ,   37.5 ,   100.0   Volts(V)  respectively"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 12, page no. 49</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate (a) the value of resistor Rx such that the total power dissipated in the circuit is 2.5 kW, and \n",
      "#(b) the current flowing in each of the four resistors\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "R1  =  15;#  in  ohms\n",
      "R2  =  10;#  in  ohms\n",
      "R3  =  38;#  in  ohms\n",
      "Vt  =  250;#  in  volts\n",
      "P  =  2500;#  in  Watt\n",
      "\n",
      "#calculation:\n",
      "It  =  P/Vt\n",
      "I2  =  R1*It/(R1+R2)\n",
      "I1  =  It  -  I2\n",
      "Re1  =  1/((1/R1)  +  (1/R2))\n",
      "Rt  =  Vt/It\n",
      "Re2  =  Rt  -  Re1\n",
      "Rx  =  1/((1/Re2)  -  (1/R3))\n",
      "I4  =  R3*It/(R3+Rx)\n",
      "I3  =  It  -  I4\n",
      "\n",
      "print  \"\\n\\nResult\\n\\n\"\n",
      "print  \"\\n  (a)Resistance  (Rx)  \",Rx,\"  Ohms\\n\"\n",
      "print  \"\\n  (b)Current  through  resistors  (R1,  R2,  R3,  R4): \\n \",I1,\",  \",  I2,\",  \",  I3,\",  \"\n",
      "print   \",  I4,\"  Amperes(A)  respectively\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "Result\n",
        "\n",
        "\n",
        "\n",
        "  (a)Resistance  (Rx)   38.0   Ohms\n",
        "\n",
        "\n",
        "  (b)Current  through  resistors  (R1,  R2,  R3,  R4): \n",
        "  4.0 ,   6.0 ,   5.0 ,   5.0   Amperes(A)  respectively"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 13, page no. 51</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#find the current Ix\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "R1  =  8;#  in  ohms\n",
      "R2  =  2;#  in  ohms\n",
      "R3  =  1.4;#  in  ohms\n",
      "R4  =  9;#  in  ohms\n",
      "R5  =  2;#  in  ohms\n",
      "Vt  =  17;#  in  volts\n",
      "\n",
      "#calculation:\n",
      "R01  =  R1*R2/(R1  +  R2)\n",
      "R02  =  R01  +  R3\n",
      "R03  =  R4*R02/(R4  +R02)\n",
      "Rt  =  R5  +  R03\n",
      "It  =  Vt/Rt\n",
      "I1  =  R4*It/(R4  +  R02)\n",
      "Ix  =  R2*I1/(R1  +  R2)\n",
      "\n",
      "print  \"\\n\\nResult\\n\\n\"\n",
      "print  \"\\n  Current(Ix)  \",Ix,\"  Amperes(A)\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "Result\n",
        "\n",
        "\n",
        "\n",
        "  Current(Ix)   0.6   Amperes(A)"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 14, page no. 52</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#find the resistance of one lamp.\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "Rt  =  150;#  in  ohms\n",
      "n  =  3;#  no.  of  identical  lamp\n",
      "\n",
      "#calculation:\n",
      "R  =  Rt*3#  (1/Rt)=(1/R)+(1/R)+(1/R)\n",
      "\n",
      "print  \"\\n\\nResult\\n\\n\"\n",
      "print  \"\\n  Resistance  \",R,\"  Ohms\\n\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "Result\n",
        "\n",
        "\n",
        "\n",
        "  Resistance   450   Ohms"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "markdown",
     "metadata": {},
     "source": [
      "<h3>Example 15, page no. 52</h3>"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#State (a) the voltage across each lamp,\n",
      "# and (b) the effect of lamp C failing.\n",
      "from __future__ import division\n",
      "import math\n",
      "#initializing  the  variables:\n",
      "#series  connection\n",
      "n  =  3;#  no.  of  identical  lamp\n",
      "Vt  =  150;#  in  volts\n",
      "\n",
      "#calculation:\n",
      "V  =  Vt/3#  Since  each  lamp  is  identical,  then  V  volts  across  each.\n",
      "\n",
      "print  \"\\n\\nResult\\n\\n\"\n",
      "print  \"\\n  a)Voltage  across  each  resistor  =  \",V,\"  Volts(V)\\n\"\n",
      "print  \"\\n  b)If  lamp  C  fails,  i.e.,  open  circuits,  no  current  will  flow  and lamps  A  and  B  will  not  operate.\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "\n",
        "Result\n",
        "\n",
        "\n",
        "\n",
        "  a)Voltage  across  each  resistor  =   50.0   Volts(V)\n",
        "\n",
        "\n",
        "  b)If  lamp  C  fails,  i.e.,  open  circuits,  no  current  will  flow  and lamps  A  and  B  will  not  operate."
       ]
      }
     ],
     "prompt_number": 21
    }
   ],
   "metadata": {}
  }
 ]
}