summaryrefslogtreecommitdiff
path: root/Electric_Power_Distribution_System_Engineering_by_T._Gonen/ch4.ipynb
blob: 01f911b97132cd7f1d474ed3ca58c305f817f1dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
{
 "metadata": {
  "name": "",
  "signature": "sha256:245ef1b89a5bda9ee093c72396146e897e6533850c3acc1090aa40bb52c35f20"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 4 : Design of Subtransmission Lines and Distribution Substations"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.1  Page No : 201"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# Variables\n",
      "#Conductor Pararmeters\n",
      "r = 1.503;\n",
      "xa = 0.609;\n",
      "xd = 0.1366;\n",
      "pf = 0.9;\n",
      "Vb = 2400;\n",
      "Vr = Vb;\n",
      "x = xa+xd;\n",
      "Kc = 0.01;         #From the Curve\n",
      "\n",
      "# Calculations\n",
      "K = ((r*pf)+(x+math.sin(math.radians(math.acos(pf)))))*(1000./3)*100/(Vr*Vb);         # In Percent\n",
      "\n",
      "# Results\n",
      "print 'a) The Value of Consmath.tant K is %g percent VDpu per kVA mile'%(K)\n",
      "print 'b) From the precalculated per cent voltage drop Curve, It is found that the K is %g percent VDpu\\\n",
      " per kVA mile which is same as the answer obtained in part a'%(Kc)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "a) The Value of Consmath.tant K is 0.0121885 percent VDpu per kVA mile\n",
        "b) From the precalculated per cent voltage drop Curve, It is found that the K is 0.01 percent VDpu per kVA mile which is same as the answer obtained in part a\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.2  Page No : 202"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "K = 0.01;         #Percentage Value\n",
      "Sn = 500;         #Load in kVA\n",
      "pf = 0.9;         #Lagging\n",
      "s = 1;         #Length of the feeder\n",
      "\n",
      "# Calculations\n",
      "VD = s*K*Sn;         #Voltage drop in percent\n",
      "\n",
      "# Results\n",
      "print 'The Percent Voltage drop in the Main is %g percent'%(VD)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Percent Voltage drop in the Main is 5 percent\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.3  Page No : 203"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "K = 0.01;         #Percentage Value\n",
      "Sn = 500;         #Load in kVA\n",
      "pf = 0.9;         #Lagging\n",
      "l = 1.;         #Total Length of the feeder\n",
      "\n",
      "# Calculations\n",
      "s = l/2;         #effective Length of the feeder\n",
      "VD = s*K*Sn;         #Voltage drop in percent\n",
      "\n",
      "# Results\n",
      "print 'The Percent Voltage drop in the Main is %g percent'%(VD)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Percent Voltage drop in the Main is 2.5 percent\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.4  Page No : 203"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "K = 0.01;         #Percentage Value\n",
      "Sn = 500;         #Load in kVA\n",
      "pf = 0.9;         #Lagging\n",
      "l = 1.;         #Total Length of the feeder\n",
      "\n",
      "# Calculations\n",
      "s = l*2/3;         #effective Length of the feeder\n",
      "VD = s*K*Sn;         #Voltage drop in percent\n",
      "\n",
      "# Results\n",
      "print 'The Percent Voltage drop in the Main is %g percent'%(VD)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Percent Voltage drop in the Main is 3.33333 percent\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.5  Page No : 204"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "#Voltage Drops in Percentage\n",
      "VDlumped = 5.; \n",
      "VDuniform = 2.5;\n",
      "VDincreasing = 3.333;\n",
      "\n",
      "# Calculations\n",
      "#Ratio of the percent voltage drops\n",
      "Rlu = VDlumped/VDuniform;\n",
      "Rli = VDlumped/VDincreasing;\n",
      "Riu = VDincreasing/VDuniform;\n",
      "\n",
      "# Results\n",
      "print 'a) Percent VDlumped  =  %g Percent VDuniform'%(Rlu)\n",
      "print 'b) Percent VDlumped  =  %g Percent VDincreasing'%(Rli)\n",
      "print 'c) Percent VDincreasing  =  %g Percent VDuniform'%(Riu)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "a) Percent VDlumped  =  2 Percent VDuniform\n",
        "b) Percent VDlumped  =  1.50015 Percent VDincreasing\n",
        "c) Percent VDincreasing  =  1.3332 Percent VDuniform\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.6  Page No : 208"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "from numpy import array,multiply,divide\n",
      "\n",
      "# Variables\n",
      "D = [500,500,2000,2000,10000,10000,2000,2000];         #Load Densities in kVA/sq.miles\n",
      "TAn = [6,6,3,3,1,1,15,15];         #Substation Area in sq.miles\n",
      "VD = [3,6,3,6,3,6,3,6];         #Maximum Total Primary Feeder Voltage drops in percentage\n",
      "Vll = [4.16,4.16,4.16,4.16,4.16,4.16,13.2,13.2];         #Base Feeder Voltage in kV\n",
      "\n",
      "TSn = multiply(D,TAn);         #Susbstation Load\n",
      "#From the Graphs of feeders vs load desity in the textbook; The Number of feeders are found to be\n",
      "\n",
      "n = [4,2,5,3,5,4,6,5];         #No of feeders\n",
      "\n",
      "# Calculations\n",
      "#Also from the graph, The characteristic or the feeder is determined\n",
      "#1-5, 7 are VDL feeders\n",
      "#6 and 8 are TL feeders\n",
      "\n",
      "Sn = divide(TSn,n);         #Load Per Feeder\n",
      "#To Determine the Load Current\n",
      "Il = Sn/(math.sqrt(3)*array(Vll)); \n",
      "\n",
      "# Results\n",
      "print 'a'\n",
      "print 'The Substation Size is'\n",
      "print (TSn)\n",
      "print 'The Number of Feeders from the Curve is'\n",
      "print (n)\n",
      "print 'Also From the Curve%( 1,2,3,4,5,7 cases are VDL but 6 and 8 case are TL'\n",
      "print 'a'\n",
      "print 'The Load Current for 6th Case is %g A, which is less than the ampacities of the main but\\\n",
      " more than that of the lateral, Hence it is thermally limited but not the main feeder'%(Il[5])\n",
      "print 'The Load Current for 8th Case is %g A, which is less than the ampacities of the main but more than that\\\n",
      " of the lateral, Hence it is thermally limited but not the main feeder'%(Il[7])\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "a\n",
        "The Substation Size is\n",
        "[ 3000  3000  6000  6000 10000 10000 30000 30000]"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "The Number of Feeders from the Curve is\n",
        "[4, 2, 5, 3, 5, 4, 6, 5]\n",
        "Also From the Curve%( 1,2,3,4,5,7 cases are VDL but 6 and 8 case are TL\n",
        "a\n",
        "The Load Current for 6th Case is 346.965 A, which is less than the ampacities of the main but more than that of the lateral, Hence it is thermally limited but not the main feeder\n",
        "The Load Current for 8th Case is 262.432 A, which is less than the ampacities of the main but more than that of the lateral, Hence it is thermally limited but not the main feeder\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.7  Page No : 211"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# Variables\n",
      "D = 1000.;         #Load Density in kVA per sq miles\n",
      "Vll = 4.16;         #Line to Lien voltage in kV\n",
      "#From The Tables and Curves from the Theory\n",
      "K = 0.007;\n",
      "#For TL\n",
      "TLImax = 230.;         #Maximum Feeder Current\n",
      "TLSn = math.sqrt(3)*Vll*TLImax;         #Maximum Load Per Feeder\n",
      "TLn = 4;         #No of Feeders\n",
      "TLTSn = TLn*TLSn;         #Substation Load\n",
      "TLl4 = math.sqrt(TLSn/D);         #Feeder Length\n",
      "TLS = 2*TLl4;         #Total Spacing\n",
      "\n",
      "TLVDn = 2*K*D*(TLl4**3)/3;         #TotalVoltageDrop in the main\n",
      "\n",
      "# Calculations\n",
      "#For VDL\n",
      "VDLVDn = 3;         #Percent Voltage Drop\n",
      "VDLl4 = pow((3*VDLVDn/(2*K*D)),1./3);         #Feeder Length\n",
      "VDLS = 2*VDLl4;         #Station size\n",
      "VDLSn = D*(VDLl4**2);         #Maximum Load Per Feeder\n",
      "VDLn = TLn;         #Number Of Feeders\n",
      "VDLTSn = VDLn*VDLSn;         #Susbtation Load\n",
      "VDLImax = VDLSn/(math.sqrt(3)*Vll);         #Ampere Rating of the Main\n",
      "R = VDLImax/TLImax;         #Ampere Loading\n",
      "\n",
      "# Results\n",
      "print 'a For Thermally Limited '\n",
      "print 'i) The Substation Size  =  %g kVA'%(TLTSn)\n",
      "print 'ii) Substation Spacing  =  %g miles'%(TLS)\n",
      "print 'iii) Maximum Load Per Feeder  =  %g kVA'%(TLSn)\n",
      "print 'iv) The Voltage Drop is %g percent'%(TLVDn)\n",
      "\n",
      "print 'b For Voltage Drop Limited '\n",
      "print 'i) The Substation Size  =  %g kVA'%(VDLTSn)\n",
      "print 'ii) Substation Spacing  =  %g miles'%(VDLS)\n",
      "print 'iii) Maximum Load Per Feeder  =  %g kVA'%(VDLSn)\n",
      "print 'iv) Ampere Loading of the Main is %g pu'%(R)\n",
      "\n",
      "#Note The Approximation to 750 kVA\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "a For Thermally Limited \n",
        "i) The Substation Size  =  6628.9 kVA\n",
        "ii) Substation Spacing  =  2.57467 miles\n",
        "iii) Maximum Load Per Feeder  =  1657.23 kVA\n",
        "iv) The Voltage Drop is 9.95588 percent\n",
        "b For Voltage Drop Limited \n",
        "i) The Substation Size  =  2979.45 kVA\n",
        "ii) Substation Spacing  =  1.72611 miles\n",
        "iii) Maximum Load Per Feeder  =  744.863 kVA\n",
        "iv) Ampere Loading of the Main is 0.449464 pu\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.8  Page No : 213"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# Variables\n",
      "DivF = 1.2;         #Diversity Factor\n",
      "DemF = 0.6;         #Demand Factor\n",
      "CL = 2000.;         #Connected Load Density in kVA per sq.miles\n",
      "\n",
      "DD = DemF*CL/DivF;         #Diversified Demand\n",
      "A = 4.;         #Area of the Substation\n",
      "\n",
      "TSn = DD*A;         #Peak Loads of A and B\n",
      "Sm = TSn;         #Peak Loads\n",
      "\n",
      "#Consmath.tants for different conductors\n",
      "Km = 0.0004;\n",
      "Kl = 0.00095;\n",
      "#Number of Laterals\n",
      "Na = 16.;         #Site A \n",
      "Nb = 32.;         #Site B\n",
      "\n",
      "#Length of the Main\n",
      "La = 2.;\n",
      "Lb = 3.;\n",
      "#length of laterals\n",
      "Lla = 2.;\n",
      "Llb = 1.;\n",
      "\n",
      "# Calculations\n",
      "#Length of expres Load\n",
      "Le = 1;\n",
      "Leffb = Le+((Lb-Le)/2);         #Effective Length of the feeder in site B\n",
      "#Voltage drops\n",
      "VDa = (La*Km*Sm/2)+(Lla*Kl*Sm/(Na*2));\n",
      "VDb = (Leffb*Km*Sm)+(Llb*Kl*Sm/(Nb*2));\n",
      "\n",
      "# Results\n",
      "print 'The Voltage drop in Site A is %g percent'%(VDa)\n",
      "print 'The Voltage drop in Site B is %g percent'%(VDb)\n",
      "VDb = (La*Km*Sm/2)+(Lla*Kl*Sm/Na);\n",
      "print 'Comparing the results we find Site A suitable due to its less percent voltage drop',VDb\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Voltage drop in Site A is 1.8375 percent\n",
        "The Voltage drop in Site B is 3.25938 percent\n",
        "Comparing the results we find Site A suitable due to its less percent voltage drop 2.075\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.10  Page No : 217"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# Variables\n",
      "D = 500.;         #Load Density in kVA per sq.miles\n",
      "Vl = 12.47;         #Line Voltage in kV\n",
      "N = 2.;         #Feeders per substation\n",
      "#From Table A-5 Appendix A it Current Ampacity can be found\n",
      "\n",
      "Imax = 340.;\n",
      "\n",
      "# Calculations\n",
      "S2 = math.sqrt(3)*Vl*Imax;         #Load Per Feeder\n",
      "\n",
      "l2 = math.sqrt(S2/D);         #Length of the feeder\n",
      "S = 2*l2;         #Substation Spacing\n",
      "TS2 = S2*N;         #Total Load on substation\n",
      "\n",
      "# Results\n",
      "print 'The Parts a%(b and c of thhis question cannot be coded'\n",
      "print 'd) The substation size and spacing is %g kVA and %g miles'%(TS2,S)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Parts a%(b and c of thhis question cannot be coded\n",
        "d) The substation size and spacing is 14687.1 kVA and 7.66475 miles\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.11  Page No : 221"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "from sympy import Symbol,solve\n",
      "\n",
      "# Variables\n",
      "Ts = 1.;         #Assumed Load on station\n",
      "K = 1.;         #Assumption Consmath.tant\n",
      "K2 = K;\n",
      "K4 = K;\n",
      "D = 1.;        #Assumption Load Density\n",
      "#Number of feeders\n",
      "N2 = 2.;\n",
      "N4 = 4.;\n",
      "S2 = Ts/N2;         #Load per feeder         #Two feeders\n",
      "S4 = Ts/N4;         #Load per feeder         #4 feeders\n",
      "l = Symbol('l');         #Variable Value of length\n",
      "L2eff = 1*l/3;\n",
      "L4eff = 2*l/3;\n",
      "\n",
      "# Calculations\n",
      "def VD(y): \n",
      "    return D*(l**2)*K*y\n",
      "\n",
      "VD2 = VD(L2eff);\n",
      "VD4 = VD(L4eff);\n",
      "RVD = VD2/VD4;\n",
      "X = l-RVD;\n",
      "RVD = 2.      #1./(solve(X,2)[0]);         #To find the ratio of (l2**3)/(l4**3)\n",
      "\n",
      "Rl = pow(RVD,1./3);         #Ratio of length of feeder for 2 feeders two by length of feeder for 4 feeders\n",
      "\n",
      "#A is directly proportional to l**2\n",
      "RA = (Rl**2);\n",
      "\n",
      "#TSn is directly proportional to n and l**2\n",
      "RTS = (N2/N4)*(Rl**2);\n",
      "\n",
      "# Results\n",
      "print 'a) Ratio of substation spacings  =  2l2/2l4  =  %g'%(Rl)\n",
      "print 'b) Ratio of areas covered per feeder main  =  A2/A4  =  %g'%(RA)\n",
      "print 'c) Ratio of substation loads  =  TS2/TS4  =  %g'%(RTS)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "a) Ratio of substation spacings  =  2l2/2l4  =  1.25992\n",
        "b) Ratio of areas covered per feeder main  =  A2/A4  =  1.5874\n",
        "c) Ratio of substation loads  =  TS2/TS4  =  0.793701\n"
       ]
      }
     ],
     "prompt_number": 2
    }
   ],
   "metadata": {}
  }
 ]
}