1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
|
{
"metadata": {
"name": "",
"signature": "sha256:f499e025f89e71e922f5b5ff841986e94328c0797b70d556107927513cde3781"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 3 : Application of Distribution Transformers"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.1 Page No : 118"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables\n",
"S = 25.*(10**3); #Rating of the transformer in VA\n",
"#Values in per unit\n",
"Rt = 0.014; #Resismath.tance of Transformer\n",
"Xt = 0.012; #Reacmath.tance of transformer\n",
"Vh = 7200; #High Voltage End in V\n",
"Vx = 120; # Low Voltage End in V\n",
"Rb = (Vh**2)/S; #Base Value of Resismath.tance\n",
"#Accroding to Lloyd's Formula\n",
"\n",
"# Calculations\n",
"Zhx12 = (1.5*Rt)+(1j*1.2*Xt); #Impedance referred to HV side when the winding x2x3 is shorted\n",
"\n",
"n = Vh/Vx; #Turns Ratio\n",
"\n",
"Zhx13 = Rt+(1j*Xt); #Use of Entire low voltage winding\n",
"\n",
"#Impedances of the required terms in pu\n",
"A = (2*Zhx13)-Zhx12;\n",
"B = ((2*Zhx12)-(2*Zhx13))/(n**2);\n",
"C = B;\n",
"\n",
"#Angle of Impedances\n",
"ta = math.degrees(math.atan(A.imag/A.real));\n",
"tb = math.degrees(math.atan(B.imag/B.real));\n",
"\n",
"# Results\n",
"print 'The Circuit impedances on the high voltage side is %g/_%g ohm'%(abs(A*Rb),ta)\n",
"print 'Each of the Circuit impedances on the low voltage side is %g/_%g ohm'%(abs(B*Rb),tb)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Circuit impedances on the high voltage side is 24.6366/_53.9017 ohm\n",
"Each of the Circuit impedances on the low voltage side is 0.0085248/_18.9246 ohm\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.2 Page No : 119"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"from numpy import exp\n",
"\n",
"# Variables\n",
"#Impedances from the previous example\n",
"Zh = 24.6437*exp(1j*53.9*math.pi/180);\n",
"Zl = 8.525*(10**-3)*exp(1j*18.9*math.pi/180);\n",
"#Voltages\n",
"Vh = 7200.; #High End\n",
"Vx = 120.; # Low End\n",
"S = 25.*1000; #Transformer Rating in VA\n",
"N = Vh/Vx; #Turns Ratio\n",
"\n",
"# Calculations\n",
"#R of service drop is zero #Line to Neutral Currents\n",
"IfLVn = Vx/(Zl+((1/(N**2))*Zh)); #Secondary Fault Current\n",
"IfHVn = IfLVn/N; #Primary Fault Current\n",
"\n",
"#R of service drop is zero #Line to Line Currents\n",
"Nl = Vh/(2*Vx); #New Truns Ratio\n",
"IfLVl = 2*Vx/((2*Zl)+((1/(Nl**2))*Zh)); #Secondary Fault Current\n",
"IfHVl = IfLVl/Nl; #Primary Fault Current\n",
"\n",
"# Results\n",
"print 'a) The Magnitude of Line to Neutral Fault Currentson HV and LV when R of service drop\\\n",
" is zero are %g A and %g A respectively'%(abs(IfHVn),abs(IfLVn))\n",
"print 'b) The Magnitude of Line to Line Fault Currentson HV and LV when R of service drop is zero are\\\n",
" %g A and %g A respectively'%(abs(IfHVl),abs(IfLVl))\n",
"print 'c) The Minimum Allowable interrupting capacity for circuit breaker isconnected to the LV is %g A'%(abs(IfLVn))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"a) The Magnitude of Line to Neutral Fault Currentson HV and LV when R of service drop is zero are 136.353 A and 8181.2 A respectively\n",
"b) The Magnitude of Line to Line Fault Currentson HV and LV when R of service drop is zero are 188.283 A and 5648.5 A respectively\n",
"c) The Minimum Allowable interrupting capacity for circuit breaker isconnected to the LV is 8181.2 A\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.3 Page No : 121"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"from sympy import solve,Symbol\n",
"from numpy import exp\n",
"\n",
"# Variables\n",
"Vx = 120.; #Low End Voltage\n",
"#When Service drop is Zero\n",
"IfLVn = 8181.7*exp(-1*1j*34.3*math.pi/180); #Line to Neutral Vault Current\n",
"IfLVl = 5649*exp(-1*1j*40.6*math.pi/180); #Line to Line Fault Current\n",
"\n",
"Ral4 = 2.58; # #4 AWG Aluminium Conductor Resismath.tance per mile\n",
"Ralinf = 1.03; # #1/0 AWG Aluminium Conductor Resismath.tance per mile\n",
"\n",
"# Calculations\n",
"#Impedances when Service drop is zero, suffix l denotes line to line\n",
"#Suffix n denotes line to neutral\n",
"Zl0 = (2*Vx)/IfLVl;\n",
"Zn0 = (Vx)/IfLVn;\n",
"\n",
"#When there is R service drop\n",
"#Magnitudes of Line to Line and Line to Earth fault currents are equal\n",
"\n",
"R = Symbol('R'); #Variable Value\n",
"#Effective Impedances\n",
"Zl = Zl0+(2*R);\n",
"Zn = Zn0+(2*R);\n",
"#Fault Currents\n",
"Ifl = 2*Vx/Zl;\n",
"Ifn = Vx/Zn;\n",
"#print Ifl[1]\n",
"#Magnitudes of Currents\n",
"MIfl = abs(240.)/abs(Ifl.subs(R,3));\n",
"MIfn = abs(Ifn.subs(R,2))/abs(Ifn.subs(R,3));\n",
"DI = MIfl-MIfn;\n",
"X = - 1.5781966 + 240*R #DI.subs(R,2); #Polynomial Equation to find 'R'\n",
"R = solve(X)[0]; #Numerical Value\n",
"\n",
"#The Magnitude of R found is Wrong in the Textbook\n",
"\n",
"#Length of service drop cable\n",
"SDL4 = R/Ral4;\n",
"SDLinf = R/Ralinf;\n",
"\n",
"# Results\n",
"print 'a) The Value of Service drop in the Cable is %g ohm'%(R)\n",
"print 'b The Length of service drop cable for:'\n",
"print 'i) #4 AWG Conductor is %g miles'%(SDL4) \n",
"print 'ii) #1/0 AWG Conductor is %g miles'%(SDLinf) \n",
"\n",
"#Length is printed in Miles\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"a) The Value of Service drop in the Cable is 0.00657582 ohm\n",
"b The Length of service drop cable for:\n",
"i) #4 AWG Conductor is 0.00254877 miles\n",
"ii) #1/0 AWG Conductor is 0.00638429 miles\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.4 Page No : 122"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variables\n",
"#Transformer Ratings in kVA\n",
"Sr1 = 250.; \n",
"Sr2 = 500.;\n",
"\n",
"#percentage impedances\n",
"Zr1 = 2.4;\n",
"Zr2 = 3.1;\n",
"\n",
"# Calculations\n",
"#Ratio of Maximum Loads\n",
"R = Sr1*Zr2/(Sr2*Zr1);\n",
"\n",
"#If 500 kVA is chosen as the full load transformer, Transformer 1 becomes overloaded\n",
"SL1 = Sr1; #To Avoid OverLoading of transformer 1\n",
"\n",
"SL2 = SL1/R; #Maximum Load on transformer 2\n",
"\n",
"Tl = SL1+SL2; #Total Load without overloading\n",
"\n",
"# Results\n",
"print 'The Maximum Load Carried without overloading any of the transformer is %g kVA'%(Tl)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Maximum Load Carried without overloading any of the transformer is 637.097 kVA\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.5 Page No : 127"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables\n",
"#Considering Van as reference voltage\n",
"SL3phi = 200*(10**3); #Load to be powered\n",
"pf3 = 0.8; #Power Factor of three phase load\n",
"t3 = math.acos(pf3); #Power FActor Angle for three phase load\n",
"pf1 = 0.9; #Power Factor of math.single phase load\n",
"t1 = math.acos(pf1); #Power Factor angle of math.single phase load\n",
"SL1 = 80.*(10**3); #Single Phase Light Load\n",
"Vll = 240.; #Secondary Voltage\n",
"#Rating of Single Phase Transformers between individual lines\n",
"Sbc = 100.*(10**3);\n",
"Sab = 75.*(10**3);\n",
"Sca = Sab;\n",
"#Angles of Three phase voltages \n",
"ta = 0.;\n",
"tb = -120.;\n",
"tc = 120.;\n",
"#Angles of three line currents\n",
"tai = ta-t3;\n",
"tbi = tb-t3;\n",
"tci = tc-t3;\n",
"\n",
"# Calculations\n",
"I = SL3phi/(math.sqrt(3)*Vll); #Magnitude of Current\n",
"#3 Phase Line Currents\n",
"Ia3 = I*exp(1j*math.pi*tai/180);\n",
"Ib3 = I*exp(1j*math.pi*tbi/180);\n",
"Ic3 = I*exp(1j*math.pi*tci/180);\n",
"\n",
"MIbc = SL1/Vll; #Magnitude Single Phase Current\n",
"\n",
"tbc = -90; #Lagging Van #Angle of Vbc\n",
"tbci = tbc-t1; #Angle of Current Ibc\n",
"Ibc = MIbc*exp(1j*math.pi*tbci/180);\n",
"\n",
"#Load Currents\n",
"Ia = Ia3;\n",
"Ta = math.degrees(math.atan(Ia.imag/Ia.real));\n",
"Ib = Ib3+Ibc;\n",
"Tb = math.degrees(math.atan(Ib.imag/Ib.real));\n",
"Ic = Ic3-Ibc; #Current is wrong in the textbook\n",
"Tc = math.degrees(math.atan(Ic.imag/Ic.real));\n",
"\n",
"#Current Flowing in the secondary winding of the transformers 1,2 and 3\n",
"Iac = ((Ic/Sbc)-(Ia/Sab))/((1/Sab)+(1/Sbc)+(1/Sca));\n",
"T1 = math.degrees(math.atan(Iac.imag/Iac.real)); #Angle of the above current\n",
"Iba = ((Ia/Sca)-(Ib/Sbc))/((1/Sab)+(1/Sbc)+(1/Sca));\n",
"T2 = math.degrees(math.atan(Iba.imag/Iba.real)); #Angle of the above current\n",
"Icb = ((Ib/Sab)-(Ic/Sca))/((1/Sab)+(1/Sbc)+(1/Sca));\n",
"T3 = math.degrees(math.atan(Icb.imag/Icb.real)); #Angle of the above current\n",
"\n",
"#Kilovoltampere Load on each transformer\n",
"SLab = Vll*abs(Iba)/1000;\n",
"SLbc = Vll*abs(Icb)/1000;\n",
"SLca = Vll*abs(Iac)/1000;\n",
"\n",
"Vlls = Vll; #Secondary Voltage\n",
"Vllp = 7620; #Primary Voltage\n",
"n = Vllp/Vlls; #Turns Ratio\n",
"\n",
"#Primary Currents of the transformer\n",
"IAC = Iac/n;\n",
"IBA = Iba/n;\n",
"ICB = Icb/n;\n",
"\n",
"#Primary Current in each each phase wire\n",
"IA = IAC-IBA;\n",
"TA = math.degrees(math.atan(IA.imag/IA.real)); #Angle of the above current\n",
"IB = IBA-ICB;\n",
"TB = math.degrees(math.atan(IB.imag/IB.real)); #Angle of the above current\n",
"IC = ICB-IAC;\n",
"TC = math.degrees(math.atan(IC.imag/IC.real)); #Angle of the above current\n",
"\n",
"# Results\n",
"print 'a The Line Currents flowing in secondary phase wire :'\n",
"print 'A phase is %g/_%g A'%(abs(Ia),Ta)\n",
"print 'B phase is %g/_%g A'%(abs(Ib),Tb)\n",
"print 'C phase is %g/_%g A'%(abs(Ic),Tc)\n",
"print 'b The Current flowing in secondary winding of each transformer:'\n",
"print 'AC is %g/_%g A'%(abs(Iac),T1)\n",
"print 'AB is %g/_%g A'%(abs(Iba),T2)\n",
"print 'BC is %g/_%g A'%(abs(Icb),T3)\n",
"print 'c The Load on Each Transformer is:'\n",
"print '1 : %g kVA'%(SLca)\n",
"print '2 : %g kVA'%(SLab)\n",
"print '3 : %g kVA'%(SLbc)\n",
"print 'd The Current flowing in primary winding of each transformer:'\n",
"print 'AC is %g/_%g A'%(abs(IAC),T1)\n",
"print 'AB is %g/_%g A'%(abs(IBA),T2)\n",
"print 'BC is %g/_%g A'%(abs(ICB),T3)\n",
"print 'e The Line Currents flowing in primary phase wire :'\n",
"print 'A phase is %g/_%g A'%(abs(IA),TA)\n",
"print 'B phase is %g/_%g A'%(abs(IB),TB)\n",
"print 'C phase is %g/_%g A'%(abs(IC),TC)\n",
"\n",
"#Ic is calculation is wrong, the author has added Ibc instead of subtracting, so if you change - into + in line 45, you get the answer as in the textbook\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"a The Line Currents flowing in secondary phase wire :\n",
"A phase is 481.125/_-0.643501 A\n",
"B phase is 787.293/_71.6504 A\n",
"C phase is 787.977/_-72.7823 A\n",
"b The Current flowing in secondary winding of each transformer:\n",
"AC is 316/_-40.9814 A\n",
"AB is 315.535/_39.7662 A\n",
"BC is 545.454/_89.442 A\n",
"c The Load on Each Transformer is:\n",
"1 : 75.84 kVA\n",
"2 : 75.7283 kVA\n",
"3 : 130.909 kVA\n",
"d The Current flowing in primary winding of each transformer:\n",
"AC is 9.95276/_-40.9814 A\n",
"AB is 9.9381/_39.7662 A\n",
"BC is 17.1796/_89.442 A\n",
"e The Line Currents flowing in primary phase wire :\n",
"A phase is 15.1536/_-0.643501 A\n",
"B phase is 24.7966/_71.6504 A\n",
"C phase is 24.8182/_-72.7823 A\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.6 Page No : 140"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables\n",
"#Considering Van as reference voltage\n",
"SL3phi = 100.*(10**3); #Load to be powered\n",
"pf3 = 0.8; #Power Factor of three phase load\n",
"t3 = math.acos(pf3); #Power FActor Angle for three phase load\n",
"pf1 = 0.9; #Power Factor of math.single phase load\n",
"t1 = math.acos(pf1); #Power Factor angle of math.single phase load\n",
"SL1 = 50.*(10**3); #Single Phase Light Load\n",
"Vll = 240.; #Secondary Voltage\n",
"#Angles of Three phase voltages \n",
"ta = 0.;\n",
"tb = -120.;\n",
"tc = 120.;\n",
"#Angles of three line currents\n",
"tai = ta-t3;\n",
"tbi = tb-t3;\n",
"tci = tc-t3;\n",
"\n",
"# Calculations\n",
"I = SL3phi/(math.sqrt(3)*Vll); #Magnitude of Current\n",
"#3 Phase Line Currents\n",
"Ia3 = I*exp(1j*math.pi*tai/180);\n",
"Ib3 = I*exp(1j*math.pi*tbi/180);\n",
"Ic3 = I*exp(1j*math.pi*tci/180);\n",
"\n",
"MI1 = SL1/Vll; #Magnitude Single Phase Current\n",
"\n",
"t1v = 30; #Leading Van #Angle of Vbc\n",
"t1i = t1v-t1; #Angle of Current Ibc\n",
"I1 = MI1*exp(1j*math.pi*t1i/180);\n",
"\n",
"#Load Currents\n",
"Ia = Ia3+I1;\n",
"Ta = math.degrees(math.atan(Ia.imag/Ia.real));\n",
"Ib = Ib3-I1;\n",
"Tb = -180+(math.degrees(math.atan(Ib.imag/Ib.real)));\n",
"Ic = Ic3; #Current is wrong in the textbook\n",
"Tc = math.degrees(math.atan(Ic.imag/Ic.real));\n",
"\n",
"#Current flowing in the secondary of the transformer\n",
"Iba = Ia;\n",
"T2 = math.degrees(math.atan(Iba.imag/Iba.real)); #Angle of the above current\n",
"Icb = Ic;\n",
"T3 = 180+(math.degrees(math.atan(Icb.imag/Icb.real))); #Angle of the above current\n",
"\n",
"#Load on Each Transformer\n",
"SLba = Vll*abs(Iba)/1000;\n",
"SLcb = Vll*abs(Icb)/1000;\n",
"\n",
"Vlls = Vll; #Secondary Voltage\n",
"Vllp = 7620; #Primary Voltage\n",
"n = Vllp/Vlls; #Turns Ratio\n",
"\n",
"#Primary Currents of the transformer\n",
"IA = Iba/n;\n",
"TA = math.degrees(math.atan(IA.imag/IA.real)); #Angle of the above current\n",
"IB = Icb/n;\n",
"TB = T3; #Angle of the above current\n",
"IN = IA+IB; #Neutral Current\n",
"TN = math.degrees(math.atan(IN.imag/IN.real)); #Angle of the above current\n",
"\n",
"# Results\n",
"print 'a The Line Currents flowing in secondary phase wire :'\n",
"print 'A phase is %g/_%g A'%(abs(Ia),Ta)\n",
"print 'B phase is %g/_%g A'%(abs(Ib),Tb)\n",
"print 'C phase is %g/_%g A'%(abs(Ic),Tc)\n",
"print 'b The Current flowing in secondary winding of each transformer:'\n",
"print 'AB is %g/_%g A'%(abs(Iba),T2)\n",
"print 'BC is %g/_%g A'%(abs(Icb),T3)\n",
"print 'c The Load on Each Transformer is:'\n",
"print '1 : %g kVA'%(SLba)\n",
"print '2 : %g kVA'%(SLcb)\n",
"print 'd The Line Currents flowing in primary phase wire :'\n",
"print 'AB is %g/_%g A'%(abs(IA),TA)\n",
"print 'CB is %g/_%g A'%(abs(IB),TB)\n",
"print 'The Neutral Current is %g/_%g'%(abs(IN),TN)\n",
"\n",
"#Note the mistake in the Textbook for the calulation for Neutral Current\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"a The Line Currents flowing in secondary phase wire :\n",
"A phase is 433.486/_13.3432 A\n",
"B phase is 433.874/_-134.453 A\n",
"C phase is 240.563/_-60.6435 A\n",
"b The Current flowing in secondary winding of each transformer:\n",
"AB is 433.486/_13.3432 A\n",
"BC is 240.563/_119.356 A\n",
"c The Load on Each Transformer is:\n",
"1 : 104.037 kVA\n",
"2 : 57.735 kVA\n",
"d The Line Currents flowing in primary phase wire :\n",
"AB is 13.6531/_13.3432 A\n",
"CB is 7.57678/_119.356 A\n",
"The Neutral Current is 13.6653/_45.5475\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.8 Page No : 152"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"from numpy import exp\n",
"\n",
"\n",
"# Variables\n",
"Vll = 480.; #Line to Line Voltage\n",
"Vln = 277.; #Line to neutral Voltage\n",
"\n",
"# Calculations\n",
"#From the Phasor Diagram from the result file\n",
"Vab = Vll*exp(1j*0); #Vab is taken as reference\n",
"Vabh = 50*Vab/100;\n",
"VAB = 4160.;\n",
"VABh = 50*VAB/100; \n",
"VH1H2o = math.sqrt((VAB**2)-(VABh**2));\n",
"VH1H2t = (VABh);\n",
"Vx1x2o = 1*math.sqrt((Vab**2)-(Vabh**2))/3;\n",
"Vx2x3o = 2*math.sqrt((Vab**2)-(Vabh**2))/3;\n",
"VH2H3t = (VABh);\n",
"Vx1x2t = Vabh;\n",
"Vx2x3t = Vabh;\n",
"\n",
"# Results\n",
"print 'a The Phasor diagram is shown in the result file attached to the code'\n",
"print 'b) Vab is %g/_%g V'%(abs(Vab),Vab.imag/Vab.real)\n",
"print 'c The Magnitudes of the following rated winding voltages'\n",
"print 'i) The Voltage VH1H2 on transformer 1 : %g V'%(VH1H2o.real)\n",
"print 'ii) The Voltage Vx1x2 on transformer 1 : %g V'%(Vx1x2o.real)\n",
"print 'iii) The Voltage Vx2x3 on transformer 1 : %g V'%(Vx2x3o.real)\n",
"print 'iv) The Voltage VH1H2 on transformer 2 : %g V'%(VH1H2t.real)\n",
"print 'v) The Voltage VH2H3 on transformer 2 : %g V'%(VH2H3t.real)\n",
"print 'vi) The Voltage Vx1x2 on transformer 2 : %g V'%(Vx1x2t.real)\n",
"print 'vii) The Voltage Vx1x2 on transformer 2 : %g V'%(Vx2x3t.real)\n",
"print 'd i NO ii NO iii YES'\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"a The Phasor diagram is shown in the result file attached to the code\n",
"b) Vab is 480/_0 V\n",
"c The Magnitudes of the following rated winding voltages\n",
"i) The Voltage VH1H2 on transformer 1 : 3602.67 V\n",
"ii) The Voltage Vx1x2 on transformer 1 : 138.564 V\n",
"iii) The Voltage Vx2x3 on transformer 1 : 277.128 V\n",
"iv) The Voltage VH1H2 on transformer 2 : 2080 V\n",
"v) The Voltage VH2H3 on transformer 2 : 2080 V\n",
"vi) The Voltage Vx1x2 on transformer 2 : 240 V\n",
"vii) The Voltage Vx1x2 on transformer 2 : 240 V\n",
"d i NO ii NO iii YES\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.9 Page No : 154"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"from numpy import exp\n",
"\n",
"# Variables\n",
"R = 2.77; #Resismath.tance of the balanced load\n",
"#From Phasor Diagram in Result file\n",
"Vab = 480*exp(1j*0); #Reference Voltage\n",
"MVn = abs(Vab)/math.sqrt(3); #Magnitude of line to neutral voltages\n",
"#Angles of Three phase voltages \n",
"ta = -30.;\n",
"tb = -150.;\n",
"tc = 90.;\n",
"\n",
"# Calculations\n",
"#Angles of Winding according to the Line Currents\n",
"tx3x2 = 30; #Leading\n",
"tx1x2 = -30; #Lagging\n",
"\n",
"I = MVn/R; #Magnitude of current\n",
"\n",
"#Low Voltage Current Phasors\n",
"Ia = I*exp(1j*math.pi*ta/180);\n",
"Ib = I*exp(1j*math.pi*tb/180);\n",
"Ic = I*exp(1j*math.pi*tc/180);\n",
"pfT = math.cos(math.radians(ta-ta)); #Angle of Ia is same as phase voltage #Resismath.tance load\n",
"\n",
"# Results\n",
"print 'a The Low voltage current phasors are:'\n",
"print 'A is %g/_%g A'%(abs(Ia),ta)\n",
"print 'B is %g/_%g A'%(abs(Ib),tb)\n",
"print 'C is %g/_%g A'%(abs(Ic),tc)\n",
"print 'b The Phasor Diagram is the ''b'' diagram of in the result file'\n",
"print 'c) The Power Factor of the Transformer is %g'%(pfT)\n",
"print 'd) Power Factor as seen by winding x3x2 of transformer 2 is %g leading'%(math.cos(math.radians(tx3x2)))\n",
"print 'e) Power Factor as seen by winding x1x2 of transformer 2 is %g lagging'%(math.cos(math.radians(tx1x2)))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"a The Low voltage current phasors are:\n",
"A is 100.046/_-30 A\n",
"B is 100.046/_-150 A\n",
"C is 100.046/_90 A\n",
"b The Phasor Diagram is the b diagram of in the result file\n",
"c) The Power Factor of the Transformer is 1\n",
"d) Power Factor as seen by winding x3x2 of transformer 2 is 0.866025 leading\n",
"e) Power Factor as seen by winding x1x2 of transformer 2 is 0.866025 lagging\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.10 Page No : 156"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"from numpy import exp\n",
"\n",
"#'o' and 't' represent transformer one and two respectively\n",
"# Variables\n",
"#Objective is to find the Factor which has to be multiplied to get VA rating\n",
"Vll = 1.; #Assumption Made\n",
"#From the Phasor Diagram from the result file\n",
"Vab = Vll*exp(1j*0); #Vab is taken as reference\n",
"Vabh = 50.*Vab/100;\n",
"Vx1x2o = 1*math.sqrt((Vab**2)-(Vabh**2))/3;\n",
"Vx2x3o = 2*math.sqrt((Vab**2)-(Vabh**2))/3;\n",
"Vx1x2t = Vabh;\n",
"Vx2x3t = Vabh;\n",
"\n",
"#Let I be unity\n",
"I = 1;\n",
"\n",
"# Calculations\n",
"#VA Ratings of the respective windings\n",
"Sx1x2o = Vx1x2o*I;\n",
"Sx2x3o = Vx2x3o*I;\n",
"Sx1x2t = Vx1x2t*I;\n",
"Sx2x3t = Vx2x3t*I;\n",
"\n",
"#Total VA rating of transformer\n",
"S1 = Sx1x2o+Sx2x3o;\n",
"S2 = Sx1x2t+Sx2x3t;\n",
"\n",
"#Ratio of total rating to maximum rating\n",
"Rt = (S1+S2)/(math.sqrt(3)*Vll*I);\n",
"\n",
"# Results\n",
"print 'a) The voltampere raing of x1x2 of transformer 1 is %g*VI VA'%(Sx1x2o.real)\n",
"print 'b) The voltampere raing of x1x2 of transformer 1 is %g*VI VA'%(Sx2x3o.real)\n",
"print 'c) The Total Output from transformer 1 is %g*VI VA'%(S1.real)\n",
"print 'd) The voltampere raing of x1x2 of transformer 2 is %g*VI VA'%(Sx1x2t.real)\n",
"print 'e) The voltampere raing of x1x2 of transformer 2 is %g*VI VA'%(Sx2x3t.real)\n",
"print 'f) The Total Output from transformer 2 is %g*VI VA'%(S2.real)\n",
"print 'g) The Total Rating to the Maximum Continous Output is %g'%(Rt.real)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"a) The voltampere raing of x1x2 of transformer 1 is 0.288675*VI VA\n",
"b) The voltampere raing of x1x2 of transformer 1 is 0.57735*VI VA\n",
"c) The Total Output from transformer 1 is 0.866025*VI VA\n",
"d) The voltampere raing of x1x2 of transformer 2 is 0.5*VI VA\n",
"e) The voltampere raing of x1x2 of transformer 2 is 0.5*VI VA\n",
"f) The Total Output from transformer 2 is 1*VI VA\n",
"g) The Total Rating to the Maximum Continous Output is 1.07735\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.11 Page No : 157"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"from numpy import exp\n",
"\n",
"# Variables\n",
"#Per unit value\n",
"Zt = 0.01+(1j*0.03); #Transformer impedance\n",
"\n",
"Vll = 240.; #Secondary Voltage\n",
"\n",
"Sl = 90.; #Lighting Load\n",
"pfl = 0.9;\n",
"tl = math.acos(pfl);\n",
"S = 25.; #Balanced Load\n",
"pf = 0.8;\n",
"t = math.acos(pf);\n",
"\n",
"\n",
"# Calculations\n",
"def angle(y): \n",
" return math.degrees(math.atan(y.imag/y.real))\n",
"\n",
"tab = 30; #Phase angle of Vab\n",
"\n",
"Il = Sl*1000/Vll; #Magnitude of Light Load\n",
"#Umath.sing the symmetrical - components theory\n",
"Ia1 = Il*exp(1j*math.pi*(tab-tl)/180);\n",
"Ta1 = angle(Ia1); #Angle for the above current\n",
"Ib1 = -1*Ia1;\n",
"Ic1 = 0; #Neutral Wire\n",
"#Angles of three line to line voltages\n",
"ta = 0;\n",
"tb = -120;\n",
"tc = 120;\n",
"\n",
"Ib = S*1000/(math.sqrt(3)*Vll); #Magnitude of balanced load\n",
"\n",
"#Currents in Three phase load\n",
"Ta2 = ta-t;\n",
"Ia2 = Ib*exp(1j*math.pi*Ta2/180);\n",
"Tb2 = tb-t;\n",
"Ib2 = Ib*exp(1j*math.pi*Tb2/180);\n",
"Tc2 = tc-t;\n",
"Ic2 = Ib*exp(1j*math.pi*Tc2/180);\n",
"\n",
"#Currents in phase wire\n",
"Ia = Ia1+Ia2;\n",
"Ta = angle(Ia); #Angle corresponding to the above angle\n",
"Ib = Ib1+Ib2;\n",
"Tb = angle(Ib); #Angle corresponding to the above angle\n",
"Ic = Ic1+Ic2;\n",
"Tc = angle(Ic); #Angle corresponding to the above angle\n",
"\n",
"#Transformer Loads\n",
"ST1 = Vll*abs(Ia)/1000;\n",
"T1 = 100; #From the above value of Load, this transformer is chosen to meet the specific characteristic\n",
"ST1pu = ST1/T1; #Per unit Load\n",
"ST2 = Vll*abs(Ic)/1000;\n",
"T2 = 15; #From the above value of Load, this transformer is chosen to meet the specific characteristic\n",
"ST2pu = ST2/T2; #Per unit Load\n",
"\n",
"#Transformer Power Factors\n",
"pfT1 = math.cos(math.radians(tab-Ta));\n",
"pfT2 = math.cos(math.radians(90-Tc)); #Vcb makes angle of 90\n",
"\n",
"Vh = 7200; #High End Voltage\n",
"n = Vh/Vll; #Turns Ratio\n",
"\n",
"# The Primary Line Currents\n",
"IA = Ia/n;\n",
"IB = -1*Ic/n;\n",
"IN = -1*(IA+IB);\n",
"\n",
"Ibase = T1*1000/Vll; #Base Current\n",
"Iapu = Ia/Ibase;\n",
"Icpu = Ic/Ibase;\n",
"\n",
"#Phase Voltages\n",
"Vab = Vll*exp(1j*math.pi*tab/180); \n",
"Vbc = Vll*exp(-1*1j*math.pi*90/180);\n",
"#Per Unit Voltages\n",
"VANpu = (Vab/Vll)+(Iapu*Zt);\n",
"VBNpu = (Vbc/Vll)-(Icpu*Zt);\n",
"\n",
"#Actual Voltages\n",
"VAN = VANpu*Vh;\n",
"VBN = VBNpu*Vh;\n",
"\n",
"# Results\n",
"print 'a The Phasor Currents:'\n",
"print 'Ia is %g/_%g A'%(abs(Ia),Ta)\n",
"print 'Ib is %g/_%g A'%(abs(Ib),180+Tb)\n",
"print 'Ic is %g/_%g A'%(abs(Ic),Tc)\n",
"print 'b) Suitable ratings of the transformers are %g kVA and %g kVA'%(T1,T2)\n",
"print 'c) The Per Unit kVA load on each transformer is %g pu and %g pu'%(ST1pu,ST2pu)\n",
"print 'd) The power factor of output of each transformer is %g and %g both lagging'%(pfT1,pfT2)\n",
"print 'e The phasor currents at the high voltage leads:'\n",
"print 'IA is %g/_%g A'%(abs(IA),Ta)\n",
"print 'IB is %g/_%g A'%(abs(IB),180+angle(IB))\n",
"print 'IN is %g/_%g A'%(abs(IN),angle(IN))\n",
"print 'f) VAN is %g/_%g V and VBN is %g/_%g V'%(abs(VAN),angle(VAN),abs(VBN),angle(VBN))\n",
"\n",
"#Highly Accuracy of Answers; Upto 5 decimal Places\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"a The Phasor Currents:\n",
"Ia is 428.052/_25.4972 A\n",
"Ib is 428.229/_213.552 A\n",
"Ic is 60.1407/_-60.6435 A\n",
"b) Suitable ratings of the transformers are 100 kVA and 15 kVA\n",
"c) The Per Unit kVA load on each transformer is 1.02732 pu and 0.96225 pu\n",
"d) The power factor of output of each transformer is 0.996914 and -0.871586 both lagging\n",
"e The phasor currents at the high voltage leads:\n",
"IA is 14.2684/_25.4972 A\n",
"IB is 2.00469/_119.356 A\n",
"IN is 14.5415/_17.5913 A\n",
"f) VAN is 7294.34/_31.6923 V and VBN is 7193.85/_-89.743 V\n"
]
}
],
"prompt_number": 20
}
],
"metadata": {}
}
]
}
|