1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
|
{
"metadata": {
"name": "",
"signature": "sha256:45c2bf36a13c4358e12d368504a2e6b1e7cd12f738f3e5c55995bd4950ad15ca"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 2 :\n",
"Load Characteristics"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.1 Page No : 39"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%matplotlib inline\n",
"from numpy import linspace,array\n",
"from matplotlib.pyplot import bar,suptitle,xlabel,ylabel\n",
"\n",
"# Variables\n",
"t = linspace(0,24,25)\n",
"SL = array([100,100,100,100,100,100,100,100,0,0,0,0,0,0,0,0,0,0,100,100,100,100,100,100,100]);\n",
"R = array([200,200,200,200,200,200,200,300,400,500,500,500,500,500,500,500,500,600,700,800,1000,1000,800,600,300]);\n",
"C = array([200,200,200,200,200,200,200,200,300,500,1000,1000,1000,1000,1200,1200,1200,1200,800,400,400,400,200,200,200]);\n",
"\n",
"# Calculations\n",
"Tl = SL+R+C;\n",
"\n",
"# Results\n",
"#To print lay the Load bar curve diagram\n",
"bar(t,Tl,color='red')#,0.5,'red')\n",
"suptitle('Example 2.1')\n",
"xlabel(\"Time in hrs\")\n",
"ylabel(\"Load in kW\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 7,
"text": [
"<matplotlib.text.Text at 0x1098963d0>"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEhCAYAAACDefxEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGslJREFUeJzt3X+4XVV54PHvMSEKkgtc9YlJwEnEZCSKrSDBn+Vo2zRM\nO0naqQSqlJGUkUmrjuNUiXbM9Xk6Tmy1SsdJOjMKhKppU6E8wYGUQDlKRYkiyI+QkmSM5UYTrKYk\nIEKQO3+863J3bu69Wffknr3Puef7eZ7z7H3W2Xuvl8PJee9a6+y1QJIkSZIkSZIkSZIkSZIkSZLU\nhX4O3FN4fLCiOHYDveM4/ovAduB+4PPA1FGO2wzsB248luAkSeFg1QEk32N8SeP8wv6XgMtHOe5t\nwG9g0lDJnld1AFKJTiL+ip+fnm8AVqT9dcC3gAeAvsI5u4GPE62VbwNnAbcAO4F3p2PqwNeAr6Tr\nrwNqI9T/TuCudK2/YOR/fzcX9r8FnDrKf8vfA4+P8pokaZye4fDuqben8l8B7gQuBG4qHH9K2k4B\nbgdenZ5/j6Hk8GfAfcALgRcDe1N5HXgSmEMkgluAf1c4vxc4A9iUrg+wFrh4jPiPA+4G3jTGMXVs\naahko/WXSp3uSeC1I5TfClwAfBZ4TaF8OXAZ8W9iJrCAaHVAfNlDjDO8EHgiPZ4CetJrW4lWCUQL\n5s3Adel5Dfhl4GyitQJwPENJZyRrga8CXx/jGKl0Jg11m+cRf/U/QbQAfgDMBT4AvA54DLgaeEHh\nnKfS9lng6UL5swz9GxoolNfSa8OtBz6cEeNq4EVEEhvLwFFelyacYxrqNu8HHgTeQSSHqURr4Qng\nADCDwweji0Yapxi0kKHuqeXAPxReGwBuA34beEkq6wVeNsJ1fg9YBPzOUf9Lxo5HaglbGpqsjifG\nMgbdDFxDDHyfQySJrwEfAT6Wjt0OPMLhX/hFAxz+131x/1tEl9criEHqvx12zEPAHxHjHc8DDgEr\ngX8aVsc6opvrG+n5dcAfE62gdzPU+rgD+NfAiSnmS4Eto8QtSWojdRyQVpewe0o6dsNbIJIkSZIk\nSZIkSZIkSZIkSZIkSZJUmauAfcTMoIMWErOB3kNMu3BO4bVVwA5iKodFhfKz0zV2AFe2MF5JUoXe\nQkxNXUwaDeDX0v75xLoFENNQ30usITCHWOBmcDK2rUSygVj/YHGrApYkja2V04jcQaxhXPRDYvU0\ngJOBPWl/KbEGwSFisradwLnEugbTicQBcC2wrGURS5LGVPYst1cQM4h+kkhYb0jls4BvFo7rB2YT\nSaS/UL4nlUuSKlD2hIWfB95LrCPwfmLcQ5LUIcpuaSwk1mgG+DLwubS/BzitcNypRAtjT9ovlu9h\nBKeffvrArl27JjRYSeoCu4h1YLKU3dLYCZyX9t8GPJz2NwEXAtOIpTfnEeMYe4nV1M4lBsYvBm4Y\n6cK7du1iYGDAx8AAq1evrjyGdnn4XpT/XsDQXPFHewCT+r3ohAdw+ni+xFvZ0thAJIgXEyuLfRT4\nD8D/BJ4PPJmeA2wDNqbtM8SKZoOfqZXEimvHE7+e2tzCmCVJY2hl0rholPJzRyn/eHoMdzdw5oRE\nJEk6Jq7cNwnV6/WqQ2gbvhdDfC+G+F40r3b0QzrGwGB/qqTq1Gq17LVva4D/bqtVq9VgHLnAloYk\nKZtJQ5KUzaQhScpm0pAkZTNpSJKymTQkSdlMGlKH6e3poVarZT16e3rGfV4z5ww/T5OX92lIHabZ\n+yByz2vmnOJ53qfRWbxPQ5LUMiYNSVI2k4YkKZtJQ5KUzaQhScpm0pAkZWtl0rgK2AfcP6z8PcBD\nwAPAJwrlq4AdwHZgUaH87HSNHcCVrQpWknR0rUwaVwOLh5W9FVgCvAZ4NfDJVL4AWJ62i4G1DP1u\neB2wglg3fN4I15QklaSVSeMOYP+wsv8I/HfgUHr+o7RdSqwpfgjYDewkloWdCUwHtqbjrgWWtSxi\nSdKYyh7TmAf8EvBNoAG8LpXPAvoLx/UDs0co35PKJUkVmFpBfacArwfOATYCL5+oi/f19T23X6/X\nXQdY6iC9PT3sP3gw69hTpk/nJwcOtDiiyanRaNBoNJo+v9VzT80BbgTOTM9vBtYAX03PdxIJ5PfS\n8zVpuxlYDXwfuB04I5VfBJwHXD5CXc49pa4wWeeecs6qarT73FM3AG9L+/OBacA/A5uAC9PzuUQ3\n1lZgL3CAGN+oARena0iSKtDK7qkNRKvgRcAjwEeJn+FeRfyE9mngd9Ox24iuqm3AM8BKeO6PjpXA\nNcDxwE1EK0SSVAGnRpc6jN1Tdk9NpHbvnpIkdTCThiQpm0lDkpTNpCFJymbSkCRlM2lIkrKZNCRJ\n2UwakqRsJg1Nar09PdRqtaM+ent6xn1Os+dNRF06Nv6/ap53hGtSK+su6DLr6vb4hp/XjDI/F+3O\nO8IlSS1j0pAkZTNpSJKymTQkSdlMGpKkbCYNSVK2ViaNq4B9xCp9w30AeBboLZStAnYA24FFhfKz\n0zV2AFe2JFJJUpZWJo2rgcUjlJ8G/Crw/ULZAmB52i4G1jL0u+F1wApi3fB5o1xTklSCViaNO4D9\nI5T/GfDBYWVLiTXFDwG7gZ3AucBMYDqwNR13LbCsBbFKkjKUPaaxFOgH7htWPiuVD+oHZo9QvieV\nS5IqMLXEuk4APkx0TQ2a0GlM+vr6ntuv1+vU6/WJvLwkdbxGo0Gj0Wj6/FbPPTUHuBE4Mz1uBX6a\nXjuVaDmcC7wrla1J283AamLc43bgjFR+EXAecPkIdTn3lI7g3FOTL77h5zXDuaeGtPPcU/cDM4C5\n6dEPnEX8wmoTcCEwLb02jxjH2AscIBJLDbgYuKHEmCVJBa1MGhuAO4H5wCMMtSYGFdPwNmBj2t4M\nrCy8vhL4HPGT251EK0SSVAGnRtekZvfU5Itv+HnNsHtqSDt3T0mSOpxJQ5KUzaQhScpm0pAkZTNp\nSJKymTQkSdlMGpKkbCYNSVI2k4akjtXb00OtVst69Pb0VB3upFDmLLeSNKH2HzyYf5f2wYMtjaVb\n2NKQJGUzaUiSspk0JEnZTBqSpGwmDUlSNpOGJClbK5PGVcRSrvcXyv4UeAj4LnA9cFLhtVXE6nzb\ngUWF8rPTNXYAV7YwXknSUbQyaVwNLB5WdgvwKuAXgIeJRAGwAFietouBtQytJLUOWEGsGz5vhGtK\nkkrSyqRxB7B/WNkW4Nm0fxdwatpfSqwpfgjYTawFfi4wE5gObE3HXQssa1nEkqQxVTmmcSlwU9qf\nBfQXXusHZo9QvieVS5IqUNU0Ih8Bnga+NJEX7evre26/Xq9Tr9cn8vKS1PEajQaNRqPp82tHP+SY\nzAFuBM4slP174DLgl4GfpbIr0nZN2m4GVgPfB24HzkjlFwHnAZePUNfAwEDuLDTqFrVaLWtuohow\n+PnJPafZ8461rm6Pr8y6JuJz0e5qtRqMIxeU3T21GPhDYgzjZ4XyTcCFwDRgLjHgvRXYCxwgxjdq\nwMXADSXGK0kqaGX31AaiVfBi4BGi5bCKSAxb0jHfAFYC24CNaftMKhtM0yuBa4DjiTGQzS2MWZI0\nhlZ3T5XJ7ikdwe6pyRdfmXXZPXUk7wiXJGUzaUiSspk0JEnZTBqSpGwmDUlSNpOGJCnbWEnjSuAC\nnOtJkpSMlTR2EjPKfp2YzmMD8AfAa49yniQJ6O3poVarZT16e3qqDjdL7g0ds4E3AG8kpgB5CdBu\n/4Xe3KcjeHPf5IuvzLqqiq9M472572jTiNSA1xDJ4o3EIkk7iXUtJEldZqyksYVoTdxLLJj0cWIp\nVv+cl6QuNdbYxP8jEsTgMquvAF5URlCSpPaU0491EvB6YkzjDcSstQ8Cv9vCuJrhmIaO4JjG5Iuv\nzLoc0zhSztToPwN+CjwJPAWcBjy/meAkSZ1trO6pTxNjGXuBjwHTgXXAfODVrQ9NktRuxkoau4kF\nkF4MvA34I+Bm4F8yr30VsA+4v1DWSwywPwzcApxceG0VsIMYbF9UKD87XWMHccOhJKkiR7sj/G5i\nxb2iKcCXMq59NbG8a9EVRNKYD9zG0NrgC4DlabsYWMtQH9s6YAVDA/LDrylJKknOnd0vI1oBEGMZ\n1xMthaO5A9g/rGwJsD7tryfuOIe4YXADcIho4ewk1gWfSXSLbU3HXVs4R5JUspykcSlxg98q4CtA\nA+hrsr4ZRJcVaTsj7c8C+gvH9RN3oQ8v34NzYUlSZcb69dTZDN3I9xngfwF3Al8FzgK+c4x1D+CN\ngpLUUcZKGp/i8C/1fwHOSOUAb22ivn3AS4lfZM0EHk3le4if8g46lWhh7En7xfI9o128r6/vuf16\nvU69Xm8iRLWj3p4e9h88mHXsKdOn85MDB1ockdSZGo0GjUaj6fOzb+ho0hzgRuDM9PxPgB8DnyAG\nwU9O2wXE4PpCovvpVuIO9AHiZ7/vJcY1/i/w58DmEery5r5JrN1v4iqzrm6Pr8y6vLnvSDk39zVr\nA3Ae8ZPdR4CPAmuAjcSvoXYT63UAbEvl24BniJ/6Dr57K4FrgOOBmxg5YUiSStDqlkaZbGlMYu3+\nF2WZdXV7fGXWZUvjSC6mJEnKlts99SZifGLw+AFcU0OSuk5O0vgC8HJiXY2fF8pNGpLUZXKSxtnE\nr5scMJCkLpczpvEAcU+FJKnL5bQ0XkL8FHYrsZ4GRKtjSauCkiS1p5yk0dfqICRJnSEnaTRaHYQk\nqTOMNabx9bR9HDg47OHEPpLUIr09PdRqtaxHb09PqbF5R7g6Qrvf+VtmXd0eX5l1tXt8w89rhneE\nS5JaxqQhScpm0pAkZTNpSJKyjfWT28cZfeqQAaDcIXtJUuXGShonpu0fAz8gJi4EeAcwq5VBSZLa\nU0731BJgLXFvxgFgHbD0GOtdBTwI3E8s8/p8oBfYAjwM3EIsBVs8fgewHVh0jHVLkpqUkzSeAN4J\nTEmPdxBdV82aA1wGnEWsHT4FuJBYK3wLMB+4LT2HmGF3edouJhKYYzGSVIGcL9/fIdby3pceF6Sy\nZh0ADgEnEN1jJxDdX0uA9emY9cCytL+UWG/8ELGu+E5g4THUL0lqUs7cU99jYme0/QnwKeCfgCeB\nvyNaGDOIpETazkj7s4BvFs7vB2ZPYDySpEw5SeN4YAXRPfSCQvmlTdZ5OvCfiG6qx4C/Ibq/igYY\ne9En5wuRpArkJI2/BB4ixhM+RnzBP3QMdb4OuBP4cXp+PfAGYC/w0rSdCTyaXt8DnFY4/9RUdoS+\nvr7n9uv1OvV6/RjClKTJp9Fo0Gg0mj4/Z5Kqe4FfBO4DXgMcB/wDcG6Tdf4C8EXgHOBnwDXEAk//\nikgknyAGwU9O2wXEL6wWEt1StwKv4MjWhhMWTmLtPjFdmXV1e3xl1tXu8Q0/rxnjnbAwp6XxdNo+\nRvzaaS+xml+zvgtcC3wbeBb4DvC/genARqIrbDcx4A6xauDGtH0GWIndU5JUiZzschlwHZEwriFu\n+vuvwF+0Lqym2NKYxNr9L8oy6+r2+Mqsq93jG35eM8bb0nA9DXWEdv9yKLOubo+vzLraPb7h5zWj\nFetpnAx8Grg7PT4FnNRMcJKkzpaTNK4ibsh7OzHOcBC4upVBSZLaU85A+OnAbxWe9xGD2ZKkLpPT\n0ngSeEvh+ZuBn7YmHElSO8tpaVxO/ER2cBxjP3BJyyKSJLWtnKRxL3FT32DSeIyYBsQuKknqMuOZ\nYvyx9AD4QAtikSS1OdelUOl6e3qo1WpZj94eVxWW2klO95Q0ofYfPJh/49LBgy2NRdL4jJU0Hmf0\nOZ5OaEEskqQ2N1bSOLG0KCRJHcExDUlSNpOGJCmbSUOSlM2kIUnKVlXSOBn4MrHW+DZi6dheYAvw\nMHBLOmbQKmAHsB1YVGqkkqTnVJU0rgRuAs4gpijZTqwHvgWYD9yWnkOsEb48bRcDa7GFJEmVqOLL\n9yRi1tyr0vNniOlJlgDrU9l6YFnaXwpsAA4Ra4fvBBaWFKskqaCKpDEX+BGxkNN3gP8DvBCYAexL\nx+xLzwFmAf2F8/uB2aVEKkk6TBXTiEwFzgL+APgW8BmGuqIGDTD63eiM9lpfX99z+/V6nXq9fgxh\nKkdvTw/7M6b6OGX6dH5y4EAJEUndKfffIsALpk3jQ6tWNVVP9mLiE+ilwDeIFgfEok6rgJcDbwX2\nAjOB24FXMpRQ1qTtZmA1cNew6w4cy+Lqak6tVsuaR6oGDP7/yT2neF4z55QZX5l1dXt8ZdbV7vFN\nVF2MIxdU0T21F3iEGPAG+BXgQeBGhhZ3ugS4Ie1vAi4EphGJZh6wtaxgJUlDqprl9j3AF4lEsAt4\nFzAF2AisIAa8L0jHbkvl24hB85WM3XUlSWqRKrqnWsXuqQpMlma+3VOdE1+ZdbV7fBNVF23ePSVJ\n6lAmDUlSNpOGJCmbSUOSlM2kIUnKZtKQJGUzaUiSspk0JEnZJlXSqNVqWY/enh4gJvga7znjOa+Z\nczopPkndZ3LdEZ55oHeTTkx8ZdbV7vGVWVe3x1dmXe0e30TVhXeES5JawaQhScpm0pAkZTNpSJKy\nmTQkSdlMGpKkbFUmjSnAPcQyrwC9wBbgYeAW4OTCsauAHcB2YFGJMUqSCqpMGu8jlnAd/GnxFUTS\nmA/clp4DLACWp+1iYC22kCSpElV9+Z4K/BvgcwzdVLIEWJ/21wPL0v5SYANwiFg7fCewsKxAJUlD\nqkoanwb+EHi2UDYD2Jf296XnALOA/sJx/cDsVgcoSTrS1Arq/A3gUWI8oz7KMQMw5h3xI77WV9iv\nj3FxSepWjbTt6+tr6vwq5p76OHAx8AzwAqAHuB44h/ie3wvMBG4HXsnQ2MaatN0MrAbuGnZd555y\nvqXK4iuzrm6Pr8y62j2+iaqLNp976sPAacBc4ELg74kksgm4JB1zCXBD2t+UjpuWzpkHbC0xXklS\nUkX31HCDyXENsBFYQQx4X5DKt6XybUTrZCVjd11JklrEqdHHeQ5MnqatXTITF1+ZdXV7fGXW1e7x\nTVRdtHn3lCSpQ5k0JEnZTBqSpGwmDUlSNpOGJCmbSUOSlM2kIUnKZtKQJGUzaUiSspk0JEnZTBqS\npGwmDUlSNpOGJCmbSUOSlM2kIUnKZtKQJGWrImmcRqz//SDwAPDeVN4LbAEeBm4BTi6cswrYAWwH\nFpUWqSTpMFUkjUPA+4FXAa8Hfh84A7iCSBrzgdvSc4AFwPK0XQysxRaSJFWiii/fvcC9af9x4CFg\nNrAEWJ/K1wPL0v5SYAORbHYDO4GFJcUqSSqo+i/2OcBrgbuAGcC+VL4vPQeYBfQXzuknkowkqWRT\nK6z7ROA64H3AwWGvDaTHaEZ8ra+wX08PSdKQRtr29fU1dX5togIZp+OArwA3A59JZduJ7/m9wExi\nsPyVDI1trEnbzcBqonVSNDBWlimqAQMDA9RqtTEz00jnANnnNXNOJ8VXZl3tHl+ZdXV7fGXW1e7x\nTVRdjCMXVNE9VQM+D2xjKGEAbAIuSfuXADcUyi8EpgFzgXnA1lIilSQdporuqTcB7wTuA+5JZauI\nlsRGYAUx4H1Bem1bKt8GPAOsZOyuK0lSi1TVPdUKdk/ZJVNZfGXW1e3xlVlXu8c3UXXR5t1TkqQO\nZdKQJGUzaUiSspk0JEnZTBqSpGwmDUlSNpOGJCmbSUOSlM2kIUnKZtKQJGUzaUiSspk0JEnZTBqS\npGwmDUlSNpOGJClbJyWNxcSSsDuAD1UciyR1pU5JGlOAzxKJYwFwEXBGpRFJUhfqlKSxENhJLAN7\nCPgrYGmVAUlSN+qUpDEbeKTwvD+VSZJK1ClJI3fpW0lSC02tOoBMe4DTCs9PI1obRbtqcHruBdNi\n6vmrqRfOGc95zZxTPK/d4yuzrnaPr8y6uj2+Mutq9/gmoK5d4zitY0wl/sPmANOAe3EgXJI0hvOB\nfyQGxFdVHIskSZKkyc6b/obsBu4D7gG2VhtK6a4C9gH3F8p6gS3Aw8AtwMkVxFWFkd6LPmIc8J70\nWFx+WJU4DbgdeBB4AHhvKu/Gz8Zo70UfXfTZmEJ0V80BjsOxju8R/xi60VuA13L4F+WfAB9M+x8C\n1pQdVEVGei9WA/+5mnAq9VLgF9P+iUQX9xl052djtPdiXJ+NTvnJ7Wi86e9I4/kBxWRyB7B/WNkS\nYH3aXw8sKzWi6oz0XkB3fjb2En9MAjwOPETc49WNn43R3gsYx2ej05OGN/0dbgC4Ffg2cFnFsbSD\nGUQ3DWk7o8JY2sF7gO8Cn6c7umOGm0O0wO7Cz8Yc4r34Znqe/dno9KThTX+HexPxQTgf+H2im0Jh\ngO7+vKwD5hLdEz8EPlVtOKU7EbgOeB9wcNhr3fbZOBH4MvFePM44PxudnjRybvrrJj9M2x8Bf0t0\n33WzfUQ/LsBM4NEKY6naowx9OX6O7vpsHEckjL8Ebkhl3frZGHwvvsDQezGuz0anJ41vA/MYuulv\nObCpyoAqdAIwPe2/EFjE4QOh3WgTcEnav4ShfyTdaGZh/zfpns9Gjehy2QZ8plDejZ+N0d6Lrvts\neNNfmEsMct1L/Jyu296LDcAPgKeJca53Eb8ku5Xu+lklHPleXApcS/wc+7vEF2S39OG/GXiW+HdR\n/ElpN342Rnovzqd7PxuSJEmSJEmSJEmSJEmSJEmSpInzIoZ+q/5DhqaGPgh8tgX1vRu4eBzH14Eb\nWxCHJOkYteO04XXykkanz+qgDuMHTgqDU0PXGfqy7iOmzf4aMf3+bwGfJO6evZlYux7gbKBBTGuz\nmaE5jYr6gA+k/QaxfsNdxGwGbx7h+AFiYrm/Iaaw/kLhtd3p/LuBtxOL6TxI3NG74Sj/ndIxmXr0\nQ6SuNhd4K/AqYhrp3wT+C3A98OvATcD/AP4t8GNi/rP/BqwYdp3iTKoDxAJi5xLTOKwGfnXY8TVi\nxuIFRPfZ14E3Anem8/+ZSFYQE3fOIdaU6Tmm/1rpKEwa0ugGiBbFz4n5vJ4H/F167X7ii3o+kVBu\nTeVTiHmfjub6tP1Ous5IthaudW867s70/K8Lx90HfImYN6gbJt5ThUwa0tieTttnib/kKTyfSrQI\nHiRaAePxVNr+nNH/HT5V2B9+3BOF/V8Hfolo7XwEODMdL004xzSk0eUsgfmPwEuA16fnxxFdSs1e\nb7xqwMuIcZIrgJOIqfGllrClIYXieMNI+3Dk6m4DROvjt4E/J76wpwKfJtYsGK2OnPLc1eSmEIsL\nnUQkkCuBAxnnSZIkSZIkSZIkSZIkSZIkSZIkSZIkqRP8f8mDCJC9Ac4DAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x107575d10>"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.2 Page No : 46"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variables\n",
"Fls = 0.15;\n",
"Ppl = 80*(10**3); #Power Loss at peak load.\n",
"\n",
"# Calculations\n",
"Avgpl = Fls*Ppl; #Average Power Loss\n",
"TAELCu = Avgpl*8760; #Total annual energy loss\n",
"\n",
"# Results\n",
"print 'a) The average annual power loss = %g kW'%(Avgpl/1000)\n",
"print ' b) The total annual energy loss due to the copper losses of the feeder circuits = %g kWh'%(TAELCu/1000)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"a) The average annual power loss = 12 kW\n",
" b) The total annual energy loss due to the copper losses of the feeder circuits = 105120 kWh\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.3 Page No : 47"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"TCDi = [9,9,9,9,9,9]; #Load for each house all in kilowatt\n",
"DFi = 0.65; #Demand factor\n",
"Fd = 1.1; #Diversity factor\n",
"\n",
"# Calculations\n",
"Dg = sum(TCDi)*DFi/Fd;\n",
"\n",
"# Results\n",
"print 'The diversified demand of the group on the distribution transformer is %g kW'%(Dg)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The diversified demand of the group on the distribution transformer is 31.9091 kW\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.4 Page No : 48"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"SP = 3000*(10**3); #System peak in kVA per phase\n",
"Cl = 0.5/100; #Percentage of copper loss\n",
"\n",
"# Calculations\n",
"I2R = Cl*SP; #Copper loss of the feeder per phase\n",
"I2R3 = 3*I2R; #Copper losses of the feeder per 3 phase\n",
"\n",
"# Results\n",
"print 'a) The copper loss of the feeder per phase = %g kW'%(I2R/1000)\n",
"print ' b) The total coper losses of the feeder per three phase = %g kW'%(I2R3/1000)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"a) The copper loss of the feeder per phase = 15 kW\n",
" b) The total coper losses of the feeder per three phase = 45 kW\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.5 Page No : 48"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variables\n",
"Pi = 2000.*(10**3); #Peak for industrial load\n",
"Pr = 2000.*(10**3); #Peak for residential load\n",
"Dg = 3000.*(10**3); #System peak load as specified in the diagram\n",
"P = [Pi,Pr]; #System peaks for various loads \n",
"\n",
"# Calculations\n",
"Fd = sum(P)/Dg; #Diversity factor\n",
"LD = sum(P)-Dg; #Load diversity factor\n",
"Fc = 1/Fd; # Coincidence factor\n",
"\n",
"# Results\n",
"print 'a) The diversity factor of the load is %g'%(Fd)\n",
"print ' b) The load diversity of the load is %g kW'%(LD/1000)\n",
"print ' c) The coincidence factor of the load is %g'%(Fc)\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"a) The diversity factor of the load is 1.33333\n",
" b) The load diversity of the load is 1000 kW\n",
" c) The coincidence factor of the load is 0.75\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.6 Page No : 50"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from numpy import array,transpose\n",
"\n",
"# Variables\n",
"#Refer diagram of the first example of this chapter\n",
"Ps = 100.; #Peak load for street lighting in kW\n",
"Pr = 1000.; #Peak load for Residential in kW\n",
"Pc = 1200.; #Peak Commercial load in kW\n",
"P = array([Ps,Pr,Pc]) #Peaks of various loads\n",
"\n",
"Ls5 = 0.; #Street lighting load at 5.00 PM in kW\n",
"Lr5 = 600.; #Residential load at 5.00 PM in kW\n",
"Lc5 = 1200.; #Commercial Load at 5.00 PM in kW\n",
"\n",
"# Calculations\n",
"Cstreet = Ls5/Ps;\n",
"Cresidential = Lr5/Pr;\n",
"Ccommercial = Lc5/Pc;\n",
"C = array([Cstreet,Cresidential,Ccommercial]); #Class distribution for various factors\n",
"\n",
"Fd = (sum(P))/(sum(P* transpose(C)));\n",
"Dg = (sum(P* transpose(C)));\n",
"Fc = 1/Fd;\n",
"\n",
"print 'a The class distribution factors factor of:'\n",
"print ' i) Street lighting = %g \\\n",
"\\nii) Residential = %g \\\n",
"\\niii) Commercial = %g'%(C[0],C[1],C[2])\n",
"print ' b) The diversity factor for the primary feeder = %g'%(Fd)\n",
"print ' c) The diversified maximum demand of the load group = %g kW'%(Dg) \n",
"print ' d) The coincidence factor of the load group = %g'%(Fc)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"a The class distribution factors factor of:\n",
" i) Street lighting = 0 \n",
"ii) Residential = 0.6 \n",
"iii) Commercial = 1\n",
" b) The diversity factor for the primary feeder = 1.27778\n",
" c) The diversified maximum demand of the load group = 1800 kW\n",
" d) The coincidence factor of the load group = 0.782609\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.7 Page No : 55"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"print 'Assuming a monthly load curve as shown in the figure attached\\\n",
" to this code'\n",
"\n",
"# Variables\n",
"TAE = 10.**7; # Total annual energy in kW\n",
"APL = 3500.; #Annual peak load in kW\n",
"\n",
"# Calculations\n",
"Pav = TAE/8760; #Annual average power demand\n",
"Fld = Pav/APL; #Annual load factor\n",
"\n",
"# Results\n",
"print 'a) The annual power demand is %g kW'%(Pav)\n",
"print 'b) The annual load factor is %g'%(Fld)\n",
"print 'The unsold energy, as shown in the figure is a measure of capacity and investment math.cost. Ideally it should be kept at a minimum'\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Assuming a monthly load curve as shown in the figure attached to this code\n",
"a) The annual power demand is 1141.55 kW\n",
"b) The annual load factor is 0.326158\n",
"The unsold energy, as shown in the figure is a measure of capacity and investment math.cost. Ideally it should be kept at a minimum\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.8 Page No : 57"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"print 'Assuming a monthly load curve as shown in the figure attached to this code'\n",
"\n",
"# Variables\n",
"Nl = 100.; #100% percent load to be supplied\n",
"TAE = 10.**7; # Total annual energy in kW\n",
"APL = 3500.; #Annual peak load in kW\n",
"\n",
"# Calculations\n",
"Pav = TAE/8760; #Annual average power demand\n",
"Fld = (Pav+Nl)/(APL+Nl); #Annual load factor\n",
"Cr = 3; #Capacity math.cost\n",
"Er = 0.03; #Energy math.cost\n",
"ACC = Nl*12*Cr; #Additional capacity math.cost per kWh\n",
"AEC = Nl*8760*Er; #Additional energy math.cost per kWh\n",
"TAC = ACC+AEC; #Total annual math.cost\n",
"\n",
"# Results\n",
"print 'a) The new annual load factor on the substation is %g'%(Fld)\n",
"print 'b) The total annual additional costs to NL&NP to serve this load is $%g'%(TAC)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Assuming a monthly load curve as shown in the figure attached to this code\n",
"a) The new annual load factor on the substation is 0.344876\n",
"b) The total annual additional costs to NL&NP to serve this load is $29880\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.9 Page No : 58"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variables\n",
"TAE = 5.61*(10**6); #Total annual energy in kW\n",
"APL = 2000.; #Annual peak load in kW\n",
"Lc = 0.03; #Cost of energy per kWh in dollars\n",
"Plp = 100.; #Power at peak load in kW\n",
"\n",
"# Calculations\n",
"Fld = TAE/(APL*8760); \n",
"Fls = (0.3*Fld)+(0.7*(Fld**2));\n",
"AvgEL = Fls*Plp; #Average energy loss\n",
"AEL = AvgEL*8760; #Annual energy loss\n",
"Tlc = AEL*Lc; #Cost of total annual copper loss\n",
"\n",
"# Results\n",
"print 'a) The annual loss factor is %g'%(Fls)\n",
"print ' b) The annual copper loss energy is %g kWh and the cost of total annual copper loss is $%g'%(AEL,Tlc)\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"a) The annual loss factor is 0.167834\n",
" b) The annual copper loss energy is 147022 kWh and the cost of total annual copper loss is $4410.67\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.10 Page No : 59"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"from numpy import array,arctan,transpose,arccos,radians\n",
"from sympy import Symbol,solve\n",
"\n",
"Fd = 1.15;\n",
"Pi = [1800,2000,2200]; #Demands of various feeders in kW (Real Power)\n",
"PF = [0.95,0.85,0.90]; #Power factor of the respective feeders\n",
"Dg = sum(Pi)/Fd;\n",
"P = Dg;\n",
"theta = arccos(PF);\n",
"\n",
"Q = sum(Pi*(radians(arctan(theta))))/Fd;\n",
"S = math.sqrt((P**2)+(Q**2));\n",
"LD = sum(Pi)-Dg;\n",
"\n",
" #Transformer sizes\n",
"Tp = array([2500,3750,5000,7500]);\n",
"Ts = array([3125,4687,6250,9375]); \n",
"\n",
"Ol = 1.25; #Maximum overload condition\n",
"Eol = Ts*Ol; #Overload voltages of the transformer\n",
"Ed = abs(Eol-S); # Difference between the overload values of the transformers and the P value of the system\n",
"\n",
"A = sorted(Ed); # To sort the differences and choose the best match\n",
"\n",
"T = [Tp[1],Ts[1]]; #Suitable transformer\n",
"\n",
"g = Symbol('g');\n",
"X = (1+g)-pow(2,1./10); #To find out the fans on rating\n",
"R = solve(X)[0];\n",
"g = R*100;\n",
"\n",
"n = Symbol('n');\n",
"Sn = 9375.; # Rating of the to be installed transformer\n",
" # Equation (1+g)**n * S = Sn\n",
" # a = (1+g)\n",
" # b = Sn/S\n",
"\n",
"a = 1+R;\n",
"b = Sn/S;\n",
"n = math.log(b)/math.log(a);\n",
"\n",
"print 'a) The 30 mins annual maximum deman on the substation transformer are %g kW and %g kVA respectively'%(P,S)\n",
"print ' b) The load diversity is %g kW'%(LD)\n",
"print ' c) Suitable transformer size for 25 percent short time over loads is %g/%g kVA'%(T[0],T[1])\n",
"print ' d) Fans on rating is %g percent and it will loaded for %g more year if a 7599/9375 kVA transformer is installed'%(g,math.ceil(n))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"a) The 30 mins annual maximum deman on the substation transformer are 5217.39 kW and 5217.53 kVA respectively\n",
" b) The load diversity is 782.609 kW\n",
" c) Suitable transformer size for 25 percent short time over loads is 3750/4687 kVA\n",
" d) Fans on rating is 7.17735 percent and it will loaded for 9 more year if a 7599/9375 kVA transformer is installed\n"
]
}
],
"prompt_number": 27
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.11 Page No : 62"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from numpy import array\n",
"\n",
"print 'NOTE'\n",
"print 'The figure 1 attached along with this code is the Maximum diversified 30- min demand characteristics\\\n",
"of various residential loads; A = Clothes dryer; D = range; E = lighting and miscellaneous appliances; \\\n",
"J = refrigerator Only the loads required for this problem have been mentioned '\n",
"\n",
"Ndt = 50.; #Number of distribution transformers\n",
"Nr = 900.; #Number of residences\n",
"\n",
" #When the loads are six.\n",
"PavMax6 = array([1.6,0.8,0.066,0.61]); #Average Maximum diversified demands (in kW) per house for dryer, range, refrigerator, for lighting and misc aapliances respectively according to the figure 1 attached with code. \n",
"\n",
"Mddt = sum(6*PavMax6); #30 min maximum diversified demand on the distribution transformer\n",
"\n",
" #When the loads are 900.\n",
"PavMax900 = array([1.2,0.53,0.044,0.52]); # #Average Maximum diversified demands (in kW) per house for dryer, range, refreigerato, for lighting and misc aapliances respectively according to the figure 1 attached with code.\n",
"\n",
"Mdf = sum(Nr*PavMax900); #30 min maximum diversified demand on the feeder\n",
"\n",
" #From the figure 2 attached to this code\n",
"Hdd4 = array([0.38,0.24,0.9,0.32]); #Hourly variation factor at time 4 PM for dryer, range, refrigerator, lighting and misc appliances\n",
"Hdd5 = array([0.30,0.80,0.9,0.70]); #Hourly variation factor at time 5 PM for dryer, range, refrigerator, lighting and misc appliances\n",
"Hdd6 = array([0.22,1.0,0.9,0.92]); #Hourly variation factor at time 6 PM for dryer, range, refrigerator, lighting and misc appliances\n",
"\n",
"Thdd4 = (6*PavMax6)*(Hdd4.T); #Gives the total hourly diversified demand in kW at time 4 PM\n",
"Thdd5 = (6*PavMax6)*Hdd5; #Gives the total hourly diversified demand in kW at time 5 PM\n",
"Thdd6 = (6*PavMax6)*Hdd6; #Gives the total hourly diversified demand in kW at time 6 PM\n",
"\n",
"print ' a) The 30 min maximum diversified demand on the distribution transformer = %g kW'%(Mddt)\n",
"print ' b) The 30 min maximum diversified demand on the distribution transformer = %g kW'%(Mdf)\n",
"print ' c The total hourly diversified demands at:'\n",
"print ' i) 4.00 PM = %g kW'%(sum(Thdd4))\n",
"print ' ii) 5.00 PM = %g kW'%(sum(Thdd5))\n",
"print ' iii) 6.00 PM = %g kW'%(sum(Thdd6))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"NOTE\n",
"The figure 1 attached along with this code is the Maximum diversified 30- min demand characteristicsof various residential loads; A = Clothes dryer; D = range; E = lighting and miscellaneous appliances; J = refrigerator Only the loads required for this problem have been mentioned \n",
" a) The 30 min maximum diversified demand on the distribution transformer = 18.456 kW\n",
" b) The 30 min maximum diversified demand on the distribution transformer = 2064.6 kW\n",
" c The total hourly diversified demands at:\n",
" i) 4.00 PM = 6.3276 kW\n",
" ii) 5.00 PM = 9.6384 kW\n",
" iii) 6.00 PM = 10.6356 kW\n"
]
}
],
"prompt_number": 34
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.12 Page No : 72"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from numpy import array,arctan,radians,degrees,ceil\n",
"\n",
"T = 730; #Average monthly time in hrs\n",
"Pla = 22; #Peak Load for consumer A in kW\n",
"Plb = 39; #Peak load for consumer B in kW\n",
"MEC = array([0.025,0.02,0.015]); #Monthly Energy charges in cents/kWh according to the units consumed\n",
"Uc = array([1000,3000,3000]); #Units consumption according to the Energy charges\n",
"MDC = 2; #Monthly demand charge in dollars/kW\n",
"\n",
"Pa = 7000.; #Units served to Consumer A in kWh\n",
"Pb = 7000.; #Units served to Consumer B in kWh\n",
"\n",
"#Power factors\n",
"Pfa = 0.9; # Lag\n",
"Pfb = 0.76; #Lag\n",
"\n",
"#Monthly Load factors\n",
"Flda = Pa/(Pla*T);\n",
"Fldb = Pb/(Plb*T);\n",
"\n",
"#Continous kilovoltamperes for each distribution transformer\n",
"Sa = Pla/Pfa;\n",
"Sb = Plb/Pfb;\n",
"\n",
"#Ratings of the distribution transformers needed\n",
"Ta = round(Sa/5)*5;\n",
"Tb = round(Sb/5)*5;\n",
"\n",
"#Billing Charges\n",
"#For Consumer A\n",
"Mbda = Pla*(0.85/Pfa); # Monthly billing demand\n",
"Mdca = Mbda*MDC; #Monthly demand charge\n",
"#Since the units served are 7000 it can be split according to the rates as 1000, 3000, 3000 excess units.\n",
"Uca = Uc; #Units consumption by A\n",
"Meca = MEC*Uca.T; #Monthly energy charge\n",
"Tmba = Meca+Mdca; #Total monthly bill\n",
"\n",
"#For Consumer B\n",
"Mbdb = Plb*(0.85/Pfb); # Monthly billing demand\n",
"Mdcb = Mbdb*MDC; #Monthly demand charge\n",
"#Since the units served are 7000 it can be split according to the rates as 1000, 3000, 3000 excess units.\n",
"Ucb = Uc; #Units consumption by B\n",
"Mecb = MEC*Ucb.T; #Monthly energy charge\n",
"Tmbb = Mecb+Mdcb; #Total monthly bill\n",
"\n",
"#To find the capacitor size\n",
"Q1 = Pb*math.radians(arctan(math.acos(Pfb))); #For original power factor\n",
"Q2 = Pb*math.radians(arctan(math.acos(0.85))); #For new power factor\n",
"\n",
"dQ = (Q1-Q2)/T; #Capacitor size\n",
"\n",
"#For new power factor\n",
"#For Consumer B\n",
"Mbdbn = Plb*(1); # Monthly billing demand\n",
"Mdcbn = Mbdbn*MDC; #Monthly demand charge\n",
"#Since the units served are 7000 it can be split according to the rates as 1000, 3000, 3000 excess units.\n",
"Ucbn = Uc; #Units consumption by B\n",
"Mecbn = MEC*Ucbn.T; #Monthly energy charge\n",
"Tmbbn = Mecbn+Mdcbn; #Total monthly bill\n",
"\n",
"Saving = abs(Tmbbn-Tmbb); #Saving due to capacitor installation\n",
"Ci = 30; # Cost of capacitor in dollar per kVAr\n",
"Cc = Ci*dQ; #The math.cost of the installed capacitor\n",
"PP = Cc/Saving; #Payback Period\n",
"PPr = 90/Saving; #Realistic Payback period\n",
"\n",
"print 'a Monthly load factor for :'\n",
"print ' i) Consumer A = %g'%(Flda)\n",
"print ' ii) Consumer B = %g'%(Fldb)\n",
"print ' b Rating of the each of the distribution transformer:'\n",
"print ' i) A = %g kVA'%(Ta)\n",
"print ' ii) B = %g kVA'%(Tb)\n",
"print ' c Monthly bil for:'\n",
"print ' i) Consumer A = $%g'%(sum(Tmba)) \n",
"print ' ii) Consumer B = $%g'%(sum(Tmbb))\n",
"print ' d) The capacitor size required is %g kVAr'%(dQ)\n",
"print ' e Payback period:'\n",
"print ' i) Calculated : %g months'%(sum(ceil(PP)))\n",
"print ' ii) Realistic as capacitor size available is 3 kVAr : %g months'%(sum(ceil(PPr)))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"a Monthly load factor for :\n",
" i) Consumer A = 0.435866\n",
" ii) Consumer B = 0.245873\n",
" b Rating of the each of the distribution transformer:\n",
" i) A = 25 kVA\n",
" ii) B = 50 kVA\n",
" c Monthly bil for:\n",
" i) Consumer A = $254.667\n",
" ii) Consumer B = $391.711\n",
" d) The capacitor size required is 0.018276 kVAr\n",
" e Payback period:\n",
" i) Calculated : 3 months\n",
" ii) Realistic as capacitor size available is 3 kVAr : 30 months\n"
]
}
],
"prompt_number": 40
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.13 Page No : 84"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variables \n",
"Kh = 7.2; #Meter consmath.tant\n",
"Kr1 = 32; #Revolutions of the disk in the first reading\n",
"Kr2 = 27; #Revolutions of the disk in the second reading\n",
"T1 = 59; #Time interval for revolutions of disks for the first reading\n",
"T2 = 40; #Time interval for revolutions of disks for the second reading\n",
"\n",
"# Calculations\n",
"# Self contained watthour meter; D = (3.6*Kr*Kh)/T\n",
"\n",
"def Id1(a,b):\n",
" return ((3.6*Kh*a)/b) #Function to calculate the instaneous demand\n",
"\n",
"D1 = Id1(Kr1,T1);\n",
"D2 = Id1(Kr2,T2);\n",
"Dav = (D1+D2)/2;\n",
"\n",
"# Results\n",
"print 'The instantenous demands are %g kW and %g kW for reading 1 and 2 and the average demand is %g kW'%(D1,D2,Dav)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The instantenous demands are 14.0583 kW and 17.496 kW for reading 1 and 2 and the average demand is 15.7772 kW\n"
]
}
],
"prompt_number": 41
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.14 Page No : 84"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variables\n",
"#For a transformer type watthour meter; D = (3.6*Kr*Kh*CTR*PTR)/T\n",
"CTR = 200.;\n",
"PTR = 1.;\n",
"Kh = 1.8;\n",
"Kr1 = 32.; #Revolutions of the disk in the first reading\n",
"Kr2 = 27.; #Revolutions of the disk in the second reading\n",
"T1 = 59.; #Time interval for revolutions of disks for the first reading\n",
"T2 = 40.; #Time interval for revolutions of disks for the second reading\n",
"\n",
"# Calculations\n",
"def Id1(a,b):\n",
" return ((3.6*Kh*a*CTR*PTR)/b) #Function to calculate the instaneous demand\n",
"\n",
"D1 = Id1(Kr1,T1);\n",
"D2 = Id1(Kr2,T2);\n",
"Dav = (D1+D2)/2;\n",
"\n",
"# Results\n",
"print 'The instantenous demands are %g kW and %g kW for reading 1 and 2 and the average demand is %g kW'%(D1,D2,Dav)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The instantenous demands are 702.915 kW and 874.8 kW for reading 1 and 2 and the average demand is 788.858 kW\n"
]
}
],
"prompt_number": 42
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.15 Page No : 85"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variables\n",
"Kh = 1.2;\n",
"CTR = 80.;\n",
"PTR = 20.;\n",
"#Revolutions of the disk in a watthour meter for 1 and 2 readings respectively\n",
"Kr1 = 20.;\n",
"Kr2 = 30.;\n",
"#Revolutions of the disk in a VArhour meter for 1 and 2 readings respectively\n",
"Kr3 = 10.;\n",
"Kr4 = 20.\n",
"#Time interval for revoltion of disks in watthour meter for 1 and 2 readings respectively\n",
"T1 = 50.;\n",
"T2 = 60.;\n",
"#Time interval for revoltion of disks in VArhour meter for 1 and 2 readings respectively\n",
"T3 = 50.;\n",
"T4 = 60.;\n",
"\n",
"def Id1(a,b):\n",
" return ((3.6*Kh*a*CTR*PTR)/b) #Function to calculate the instaneous demand\n",
"\n",
"#instanmath.taneous kilowatt demands for readings 1 and 2\n",
"D1 = Id1(Kr1,T1);\n",
"D2 = Id1(Kr2,T2);\n",
"\n",
"#instanmath.taneous kilovar deamnds for readings 1 and 2\n",
"D3 = Id1(Kr3,T3);\n",
"D4 = Id1(Kr4,T4);\n",
"\n",
"Davp = (D1+D2)/2; #Average kilowatt demand\n",
"Davq = (D3+D4)/2; #Average kilovar demand\n",
"\n",
"Dav = math.sqrt((Davp**2)+(Davq**2)); #Average kilovoltampere demand\n",
"\n",
"# Results\n",
"print 'a) The instanmath.taneous kilowatt hour demands for readings 1 and 2 are %g kW and %g kW respectively'%(D1,D2)\n",
"print ' b) The average kilowatt demand is %g kW'%(Davp)\n",
"print ' c) The instanmath.taneous kilovar hour demands for readings 1 and 2 are %g kVAr and %g kVAr respectively'%(D3,D4)\n",
"print ' d) The average kilovar demand is %g kVAr'%(Davq)\n",
"print ' e) The average kilovoltampere demand is %g kVA'%(Dav)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"a) The instanmath.taneous kilowatt hour demands for readings 1 and 2 are 2764.8 kW and 3456 kW respectively\n",
" b) The average kilowatt demand is 3110.4 kW\n",
" c) The instanmath.taneous kilovar hour demands for readings 1 and 2 are 1382.4 kVAr and 2304 kVAr respectively\n",
" d) The average kilovar demand is 1843.2 kVAr\n",
" e) The average kilovoltampere demand is 3615.52 kVA\n"
]
}
],
"prompt_number": 43
}
],
"metadata": {}
}
]
}
|