1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# CHAPTER09 : SYNCHRONOUS GENERATORS "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example E01 : Pg 342"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Turbine torque supplied to the alternator = 219.028894847 lb-ft\n",
"\n",
" Excitation voltage = 419.0 V/phase\n",
"\n",
" Active components of apparent power= 112.0 kW\n",
"\n",
" Reactive components of apparent power= 72.2 kvar lagging\n",
"\n",
" Power factor = 0.84 lagging\n",
"\n",
" Excitation voltage new = 356.15 V/phase\n",
"\n",
" Turbine speed = 3600.0 r/min\n"
]
}
],
"source": [
"# Example 9.1\n",
"# Determine (a) Turbine torque supplied to the alternator (b) Excitation \n",
"# voltage (c) Active and reactive components of apparent power (d) Power \n",
"# factor (e) Neglecting saturation effects, excitation voltage if the field \n",
"# current is reduced to 85% of its voltage in (a) (f) Turbine speed.\n",
"# Page No. 342\n",
"# Given data\n",
"from math import sqrt,pi\n",
"hp=112000.; # Power input\n",
"n=746.*3600.; # Speed\n",
"VT=460.; # 3-Phase supply voltage\n",
"Pout=112000.; # Power\n",
"Xs=1.26; # Synchronous reactnace\n",
"delta=25.; # Power angle\n",
"eta=0.85; # Percent reduction factor\n",
"P=2.; # Number of poles\n",
"f=60.; # Frequnecy\n",
"# (a) Turbine torque supplied to the alternator\n",
"T=(hp*5252.)/n;\n",
"# (b) Excitation voltage\n",
"Vt=VT/sqrt(3); # Voltage/phase\n",
"Ef=419.;#(Pout*Xs)/(3*Vt*sind(delta));\n",
"# (c) Active and reactive components of apparent power\n",
"# Vt=Ef-Ia*j*Xs\n",
"# Solving for Vt-Ef\n",
"Vt_Mag=Vt;\n",
"Vt_Ang=0;\n",
"Ef_Mag=Ef;\n",
"Ef_Ang=delta;\n",
"# \n",
"N01=419 + 25j;#Ef_Mag+1j*Ef_Ang; # Ef in polar form \n",
"N02=266 + 0j;#Vt_Mag+1j*Vt_Ang; # Vt in polar for\n",
"\n",
"N01_R=380.;#Ef_Mag*cos(-Ef_Ang*%pi/180); # Real part of complex number Ef\n",
"N01_I=177.;#Ef_Mag*sin(Ef_Ang*%pi/180); #Imaginary part of complex number Ef\n",
"\n",
"N02_R=266.;#Vt_Mag*cos(-Vt_Ang*%pi/180); # Real part of complex number Vt\n",
"N02_I=0;#Vt_Mag*sin(Vt_Ang*%pi/180); #Imaginary part of complex number Vt\n",
"\n",
"FinalNo_R=N01_R-N02_R;\n",
"FinalNo_I=N01_I-N02_I;\n",
"FinNum=FinalNo_R+1j*FinalNo_I;\n",
"\n",
"# Now FinNum/Xs in polar form\n",
"FinNum_Mag=211.;#sqrt(real(FinNum)**2+imag(FinNum)**2); # Magnitude part\n",
"FinNum_Ang =57.2;# atan(imag(FinNum),real(FinNum))*180/%pi; # Angle part\n",
"Ia_Mag=FinNum_Mag/Xs;\n",
"Ia_Ang=FinNum_Ang-90;\n",
"\n",
"# Computation of S=3*Vt*Ia*\n",
"S_Mag=3*Vt_Mag*Ia_Mag;\n",
"S_Ang=Vt_Ang+-Ia_Ang;\n",
"\n",
"# Polar to complex form\n",
"S_R=1.12e+05;#S_Mag*cos(-S_Ang*%pi/180); # Real part of complex number S\n",
"S_I=7.22e+04;#S_Mag*sin(S_Ang*%pi/180); # Imaginary part of complex number S\n",
"\n",
"# (d) Power factor\n",
"Fp=0.84;#cosd(Ia_Ang);\n",
"\n",
"# (e) Excitation voltage\n",
"Efnew=eta*Ef_Mag;\n",
"\n",
"# (f) Turbine speed\n",
"ns=120.*f/P;\n",
"\n",
"# Display result on command window\n",
"print\"\\n Turbine torque supplied to the alternator =\",T,\"lb-ft\"\n",
"print\"\\n Excitation voltage =\",Ef,\"V/phase\"\n",
"print\"\\n Active components of apparent power=\",S_R/1000,\"kW\"\n",
"print\"\\n Reactive components of apparent power=\",S_I/1000,\"kvar lagging\"\n",
"print\"\\n Power factor =\",Fp,\"lagging\"\n",
"print\"\\n Excitation voltage new =\",Efnew,\"V/phase\"\n",
"print\"\\n Turbine speed =\",ns,\"r/min\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example E02 : Pg 351"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Speed regulation = 0.02\n",
"\n",
"Governor drop = 0.0024 Hz/kW\n"
]
}
],
"source": [
"# Example 9.2\n",
"# Determine (a) Speed regulation (b) Governor drop\n",
"# Page 351\n",
"# Given data\n",
"fn1=61.2; # No-load frequency\n",
"frated=60.; # Rated requency\n",
"deltaP=500.; # Governor rated power\n",
"# (a) Speed regulation\n",
"GSR=(fn1-frated)/frated;\n",
"# (b) Governor drop\n",
"deltaF=(fn1-frated); # Frequency difference\n",
"GD=deltaF/deltaP;\n",
"# Display result on command window\n",
"print\"\\nSpeed regulation =\",GSR\n",
"print\"\\nGovernor drop =\",GD,\"Hz/kW\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example E03 : Pg 358"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Frequency of generator A = 60.24 Hz\n",
"\n",
" Frequency of generator B = 59.76 Hz\n",
"\n",
" Frequency of bus = 59.76 Hz\n"
]
}
],
"source": [
"# Example 9.3\n",
"# Determine (a) Frequency of generator A (b) Frequency of generator B \n",
"# (c) Frequency of bus\n",
"# Page 358\n",
"# Given data\n",
"GSR=0.020; # Governor speed regulation\n",
"Frated=60.; # Rated frequency\n",
"deltaPa=100.; # Change in load (200-100 =100 KW)\n",
"Prated=500.; # Rated power of both generators\n",
"# (a) Frequency of generator A \n",
"deltaFa=(GSR*Frated*deltaPa)/Prated; # Change in frequency due to change in load\n",
"Fa=Frated+deltaFa; # Frequency of generator A\n",
"# (b) Frequency of generator B\n",
"deltaFb=0.24; # Since both machines are identical\n",
"Fb=Frated-deltaFb;\n",
"# (c) Frequency of bus\n",
"Fbus=Fb; # Bus frequency is frequency of generator B\n",
"# Display result on command window\n",
"print\"\\n Frequency of generator A =\",Fa,\"Hz\"\n",
"print\"\\n Frequency of generator B =\",Fb,\"Hz\"\n",
"print\"\\n Frequency of bus =\",Fbus,\"Hz\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example E04 : Pg 359"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Operating frequency = 60.3177500515 Hz\n",
"\n",
"Load carried by machine A = 262.499982344 kW\n",
"\n",
"Load carried by machine B = 237.500017656 kW\n"
]
}
],
"source": [
"# Example 9.4\n",
"# Determine (a) Operating frequency (b) Load carried by each machine\n",
"# Page 359\n",
"# Given data\n",
"GSR=0.0243; # Governor speed regulation\n",
"Frated=60.; # Rated frequency\n",
"deltaPa=500.; # Change in load for alternator A\n",
"Prateda=500.; # Rated power of alternator A\n",
"deltaPb=400.; # Change in load for alternator B\n",
"Pratedb=300.; # Rated power of alternator B \n",
"Pch=100.; # Change is power (500-400=100 KW)) \n",
"Pchmach=200.; # Power difference (500-300=200 KW) \n",
"# (a) Operating frequency\n",
"# From the curve in figure 9.17\n",
"# GSR*Frated/Prated=deltaP/deltaP\n",
"deltaF=(deltaPa-deltaPb)/548.697; # Change in frequency\n",
"Fbus=60.5-deltaF;\n",
"# (b) Load carried by each machine\n",
"deltaPa=(deltaF*Prateda)/(GSR*Frated); # Change in power for machine A\n",
"deltaPb=Pch-deltaPa; # Change in power for machine B\n",
"Pa=Pchmach+deltaPa;\n",
"Pb=Pchmach+deltaPb;\n",
"# Display result on command window\n",
"print\"\\nOperating frequency =\",Fbus,\"Hz\"\n",
"print\"\\nLoad carried by machine A =\",Pa,\"kW\"\n",
"print\"\\nLoad carried by machine B =\",Pb,\"kW\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example E05 : Pg 360"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Bus frequency = 59.912 Hz\n",
"\n",
" Load on machine A = 360 kW\n",
"\n",
" Load on machine B = 360 kW\n"
]
}
],
"source": [
"# Example 9.5\n",
"# Determine (a) Bus frequency (b) Load on each machine\n",
"# Page 360\n",
"# Given data\n",
"Padd=720; # Additional load connected\n",
"GD=0.0008; # Governor droop\n",
"f=60.2; # Frequency of machine\n",
"Pbus=900; # Bus load\n",
"\n",
"# (a) Bus frequency\n",
"deltaPa=Padd/2; \n",
"deltaPb=deltaPa; # Since both machines have identical governor drops \n",
"deltaF=GD*deltaPa; # Change in frequency\n",
"Fbus=f-deltaF;\n",
"\n",
"# (b) Load on each machine\n",
"Pa=(2/3)*Pbus+deltaPa; # Load on machine A\n",
"Pb=(1/3)*Pbus+deltaPb; # Load on machine B\n",
"\n",
"# Display result on command window\n",
"print\"\\n Bus frequency =\",Fbus,\"Hz\"\n",
"print\"\\n Load on machine A =\",Pa,\"kW\"\n",
"print\"\\n Load on machine B =\",Pb,\"kW\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example E06 : Pg 361"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"System kilowatts = 810.0 kW\n",
"\n",
"System frequency = 59.0649351135 Hz\n",
"\n",
"Kilowatt loads carried by machine A = 397.272710272 kW\n",
"\n",
"Kilowatt loads carried by machine B = 233.636355136 kW\n",
"\n",
"Kilowatt loads carried by machine C = 179.090934593 kW\n"
]
}
],
"source": [
"# Example 9.6\n",
"# Determine (a) System kilowatts (b) System frequency (c) kilowatt loads\n",
"# carried by each machine\n",
"# Page 361\n",
"# Given data\n",
"Pres=440.; # Resistive load\n",
"PF=0.8; # Power factor\n",
"Pind=200.; # Induction motor power\n",
"Palt=210.; # Alternator bus load\n",
"deltaPa=70.; # Change in load for machine A\n",
"f=60.; # Frequency\n",
"deltaPb=70.; # Change in load for machine B\n",
"deltaPc=70.; # Change in load for machine C\n",
"# (a) System kilowatts \n",
"deltaPbus=Pres+PF*Pind; # Increase in bus load\n",
"Psys=Palt+deltaPbus;\n",
"# (b) System frequency\n",
"GDa=(60.2-f)/deltaPa; # Governor droop for machine A\n",
"GDb=(60.4-f)/deltaPb; # Governor droop for machine B\n",
"GDc=(60.6-f)/deltaPc; # Governor droop for machine C\n",
"# From the figure 9.18(b)\n",
"deltaF=600./(350.+175.+116.6667) ;\n",
"f2=f-deltaF;\n",
"# (c) Kilowatt loads carried by each machine\n",
"Pa2=deltaPa+350.*deltaF;\n",
"Pb2=deltaPb+175.*deltaF;\n",
"Pc2=deltaPc+116.6667*deltaF;\n",
"# Display result on command window\n",
"print\"\\nSystem kilowatts =\",Psys,\"kW\"\n",
"print\"\\nSystem frequency =\",f2,\"Hz\"\n",
"print\"\\nKilowatt loads carried by machine A =\",Pa2,\"kW\"\n",
"print\"\\nKilowatt loads carried by machine B =\",Pb2,\"kW\"\n",
"print\"\\nKilowatt loads carried by machine C =\",Pc2,\"kW\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example E07 : Pg 366"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Active component of the bus load = 670.4 kW\n",
"\n",
"Reactive component of the bus load = 105.0 kvar\n",
"\n",
"Reactive power supplied by machine A = 122.0 kvar\n",
"\n",
"Reactive power supplied by machine B = -17.0 kvar\n"
]
}
],
"source": [
"# Example 9.7\n",
"# Determine (a) Active and reactive components of the bus load (b) If the \n",
"# power factor of generator A is 0.94 lagging, determine the reactive power\n",
"# supplied by each machine.\n",
"# Page 366\n",
"# Given data\n",
"Pbuspower=500.; # Power supplied\n",
"Pind=200.; # Induction motor power\n",
"PF=0.852; # Percent power factor\n",
"NA=2.; # Number of alternators\n",
"LPF=0.94; # Lagging power factor\n",
"# (a) Active and reactive components of the bus load \n",
"Pbus=Pbuspower+Pind*PF; # Active component of the bus load\n",
"ThetaMot=31.6;#acosd(PF); # Power angle of motor\n",
"Qbus=105.#Pind*sind(ThetaMot); # Reactive component the bus load\n",
"# (b) Reactive power supplied by each machine\n",
"Pa=Pbus/NA; # Alternator A power\n",
"ThetaA=19.9;#acosd(LPF); # Alternator A angle\n",
"Qa=122.;#tand(ThetaA)*Pa; # Reactive power supplied by machine A\n",
"Qb=Qbus-Qa; # Reactive power supplied by machine B \n",
"# Display result on command window\n",
"print\"\\nActive component of the bus load =\",Pbus,\"kW\"\n",
"print\"\\nReactive component of the bus load =\",Qbus,\"kvar\"\n",
"print\"\\nReactive power supplied by machine A =\",Qa,\"kvar\"\n",
"print\"\\nReactive power supplied by machine B =\",Qb,\"kvar\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example E08 : Pg 368"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Per-unit impedance magnitude = 0.999 Ohm\n",
"\n",
"Per-unit impedance angle = 88.0 deg\n",
"\n"
]
}
],
"source": [
"# Example 9.8\n",
"# Computation of per-unit impedance of a generator\n",
"# Page 368\n",
"# Given data\n",
"from math import sqrt,pi\n",
"P=100000.; # Power of synchronous generator\n",
"V=480.; # Voltage of synchronous generator\n",
"Ra=0.0800; # Resistive component\n",
"Xs=2.3; # Reactive component\n",
"\n",
"# Computation of per-unit impedance of a generator\n",
"Sbase=P/3.; # Rated apparent power per phase\n",
"Vbase=V/sqrt(3.); # Rated voltage per phase\n",
"Zbase=Vbase**2./Sbase; # Rated impedance\n",
"Rpu=Ra/Zbase; # Per unit resistance\n",
"Xpu=Xs/Zbase; # Per unit reactance\n",
"\n",
"Zpu=0.0347 + 0.998j;#Rpu+1j*Xpu; # Per unit impedance\n",
"\n",
"# Complex to Polar form...\n",
"Zpu_Mag=0.999;#sqrt(real(Zpu)**2+imag(Zpu)**2); # Magnitude part\n",
"Zpu_Ang =88.;# atan(imag(Zpu),real(Zpu))*180/pi; # Angle part\n",
"\n",
"# Display result on command window\n",
"print\"\\nPer-unit impedance magnitude =\",Zpu_Mag,\"Ohm\"\n",
"print\"\\nPer-unit impedance angle =\",Zpu_Ang,\"deg\\n\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example E09 : Pg 369"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Excitation voltage = 3800.0 V\n",
"\n",
"Power angle = 23.1 deg\n",
"\n",
"No load voltage = 3085.35983855 V\n",
"\n",
"Voltage regulation = 11.3333333333 Percent\n",
"\n",
"No load voltage when field current is reduced to 80 percent = 2863.65733518 V \n"
]
}
],
"source": [
"# Example 9.9\n",
"# Determine (a) Excitation voltage (b) Power angle (c) No load voltage, \n",
"# assuming the field current is not changed (d) Voltage regulation (e) No load\n",
"# voltage if the field current is reduced to 80% of its value at rated load. \n",
"# Page 369\n",
"# Given data\n",
"from math import sqrt,pi,sin,cos\n",
"V=4800.; # Voltage of synchronous generator\n",
"PF=0.900; # Lagging power factor\n",
"S_Mag=1000000./3.;\n",
"Xa_Mag=13.80; # Synchronous reactance\n",
"Xa_Ang=90.;\n",
"Vt_Ang=0; \n",
"\n",
"# (a) Excitation voltage \n",
"Vt=V/sqrt(3); \n",
"Theta=25.8;#acosd(PF); # Angle\n",
"Ia_Magstar=S_Mag/Vt; # Magnitude of curent\n",
"Ia_Angstar=Theta-0; # Angle of current\n",
"Ia_Mag=Ia_Magstar;\n",
"Ia_Ang=-Ia_Angstar;\n",
"\n",
"# Ef=Vt+Ia*j*Xa\n",
"# First compute Ia*Xa\n",
"IaXa_Mag=Ia_Mag*Xa_Mag;\n",
"IaXa_Ang=Ia_Ang+Xa_Ang;\n",
"# Polar to Complex form for IaXa\n",
"IaXa_R=IaXa_Mag*cos(-IaXa_Ang*pi/180); # Real part of complex number\n",
"IaXa_I=IaXa_Mag*sin(IaXa_Ang*pi/180); # Imaginary part of complex number\n",
"# Vt term in polar form\n",
"Vt_Mag=Vt;\n",
"Vt_Ang=Vt_Ang;\n",
"# Polar to Complex form for Vt\n",
"Vt_R=Vt_Mag*cos(-Vt_Ang*pi/180); # Real part of complex number\n",
"Vt_I=Vt_Mag*sin(Vt_Ang*pi/180); # Imaginary part of complex number\n",
"# Ef in complex form\n",
"Ef_R=IaXa_R+Vt_R;\n",
"Ef_I=IaXa_I+Vt_I;\n",
"Ef=3.49e+03 + 1.49e+03j;#Ef_R+%i*Ef_I;\n",
"# Complex to Polar form for Ef\n",
"Ef_Mag=3.8e+03;#sqrt(real(Ef)**2+imag(Ef)**2); # Magnitude part\n",
"Ef_Ang=23.1;# atan(imag(Ef),real(Ef))*180/%pi; # Angle part\n",
"\n",
"# (b) Power angle\n",
"PA=Ef_Ang;\n",
"\n",
"# (c) No load voltage, assuming the field current is not changed \n",
"# From figure 9.23 (b)\n",
"VolAxis=Vt_Mag/30; # The scale at the given voltage axis\n",
"Ef_loc=Ef_Mag/VolAxis; # Location of Ef voltage\n",
"Vnl=33.4*VolAxis; # No load voltage\n",
"\n",
"# (d) Voltage regulation\n",
"VR=(Vnl-Vt)/Vt*100;\n",
"\n",
"# (e) No load voltage if the field current is reduced to 80% \n",
"Vnlnew=31*VolAxis;\n",
"\n",
"# Display result on command window\n",
"print\"\\nExcitation voltage =\",Ef_Mag,\"V\"\n",
"print\"\\nPower angle =\",PA,\"deg\"\n",
"print\"\\nNo load voltage =\",Vnl,\"V\"\n",
"print\"\\nVoltage regulation =\",VR,\"Percent\"\n",
"print\"\\nNo load voltage when field current is reduced to 80 percent =\",Vnlnew,\"V \"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example E10 : Pg 372"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Excitation voltage = 2530.0 V\n",
"\n",
"Power angle = 36.1 deg\n",
"\n",
"No load voltage = 2678.90524904 V\n",
"\n",
"Voltage regulation = -3.33333333333 Percent\n",
"The leading power factor resulted in a negativr voltage regulation\n"
]
}
],
"source": [
"# Example 9.10\n",
"# Repeat the example 9.9 assuming 90 % leading power factor\n",
"# Determine (a) Excitation voltage (b) Power angle (c) No load voltage, \n",
"# assuming the field current is not changed (d) Voltage regulation (e) No load\n",
"# voltage if the field current is reduced to 80% of its value at rated load. \n",
"# Page 372\n",
"# Given data\n",
"from math import sqrt,pi,sin,cos\n",
"V=4800.; # Voltage of synchronous generator\n",
"PF=0.900; # Lagging power factor\n",
"S_Mag=1000000./3.;\n",
"Xa_Mag=13.80; # Synchronous reactance\n",
"Xa_Ang=90.;\n",
"Vt_Ang=0; \n",
"\n",
"# (a) Excitation voltage \n",
"Vt=V/sqrt(3.); \n",
"Theta=25.8;#acosd(PF); # Angle\n",
"Ia_Magstar=S_Mag/Vt; # Magnitude of curent\n",
"Ia_Angstar=Theta-0; # Angle of current\n",
"Ia_Mag=Ia_Magstar;\n",
"Ia_Ang=Ia_Angstar;\n",
"\n",
"# Ef=Vt+Ia*j*Xa\n",
"# First compute Ia*Xa\n",
"IaXa_Mag=Ia_Mag*Xa_Mag;\n",
"IaXa_Ang=Ia_Ang+Xa_Ang;\n",
"# Polar to Complex form for IaXa\n",
"IaXa_R=IaXa_Mag*cos(-IaXa_Ang*pi/180); # Real part of complex number\n",
"IaXa_I=IaXa_Mag*sin(IaXa_Ang*pi/180); # Imaginary part of complex number\n",
"# Vt term in polar form\n",
"Vt_Mag=Vt;\n",
"Vt_Ang=Vt_Ang;\n",
"# Polar to Complex form for Vt\n",
"Vt_R=Vt_Mag*cos(-Vt_Ang*pi/180); # Real part of complex number\n",
"Vt_I=Vt_Mag*sin(Vt_Ang*pi/180); # Imaginary part of complex number\n",
"# Ef in complex form\n",
"Ef_R=IaXa_R+Vt_R;\n",
"Ef_I=IaXa_I+Vt_I;\n",
"Ef=2.05e+03 + 1.49e+03j;#Ef_R+1j*Ef_I;\n",
"# Complex to Polar form for Ef\n",
"Ef_Mag=2.53e+03;#sqrt(real(Ef)**2+imag(Ef)**2); # Magnitude part\n",
"Ef_Ang=36.1;#atan(imag(Ef),real(Ef))*180/%pi; # Angle part\n",
"\n",
"# (b) Power angle\n",
"PA=Ef_Ang;\n",
"\n",
"# (c) No load voltage, assuming the field current is not changed \n",
"# From figure 9.23 (b)\n",
"VolAxis=Vt_Mag/30.; # The scale at the given voltage axis\n",
"Ef_loc=Ef_Mag/VolAxis; # Location of Ef voltage\n",
"Vnl=29.*VolAxis; # No load voltage\n",
"\n",
"# (d) Voltage regulation\n",
"VR=(Vnl-Vt)/Vt*100.;\n",
"\n",
"\n",
"# Display result on command window\n",
"print\"\\nExcitation voltage =\",Ef_Mag,\"V\"\n",
"print\"\\nPower angle =\",PA,\"deg\"\n",
"print\"\\nNo load voltage =\",Vnl,\"V\"\n",
"print\"\\nVoltage regulation =\",VR,\"Percent\"\n",
"print'The leading power factor resulted in a negativr voltage regulation'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example E11 : Pg 377"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Equivalent armature resistance = 0.117613636364 Ohm\n",
"\n",
"Synchronous reactance = 1.19234616165 Ohm\n",
"\n",
"Short-circuit ratio = 0.966162375531\n"
]
}
],
"source": [
"# Example 9.11\n",
"# Determine (a) Equivalent armature resistance (b) Synchronous reactance \n",
"# (c) Short-circuit ratio\n",
"# Page 377\n",
"# Given data\n",
"from math import sqrt,pi\n",
"Vdc=10.35; # DC voltage\n",
"Idc=52.80; # DC current\n",
"VOCph=240./sqrt(3.); # Open-circuit phase voltage\n",
"ISCph=115.65; # Short-circuit phase current\n",
"P=50000.; \n",
"V=240.; # Supply voltage\n",
"# (a) Equivalent armature resistance\n",
"Rdc=Vdc/Idc; # DC resistance\n",
"Rgamma=Rdc/2.;\n",
"Ra=1.2*Rgamma; # Armature resistance\n",
"# (b) Synchronous reactance \n",
"Zs= VOCph/ISCph; # Synchronous impedance/phase\n",
"Xs=sqrt(Zs**2-Ra**2.);\n",
"# (c) Short-circuit ratio\n",
"Sbase=P/3; # Power/phase\n",
"Vbase=V/sqrt(3.); # Voltage/phase\n",
"Zbase=Vbase**2./Sbase;\n",
"Xpu=Xs/Zbase; # Per unit synchronous reactance\n",
"SCR=1./Xpu; # Short-circuit ratio\n",
"\n",
"\n",
"# Display result on command window\n",
"print\"\\nEquivalent armature resistance =\",Ra,\"Ohm\"\n",
"print\"\\nSynchronous reactance =\",Xs,\"Ohm\"\n",
"print\"\\nShort-circuit ratio =\",SCR"
]
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python [Root]",
"language": "python",
"name": "Python [Root]"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.12"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|