1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# CHAPTER06 : SINGLE PHASE INDUCTION MOTORS"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example E01 : Pg 257"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Main winding current magnitude = 29.8 A\n",
"\n",
" Main winding current angle = -60.3 deg\n",
"\n",
" Auxillary winding current magnitude = 9.66 A\n",
"\n",
" Auxillary winding current angle = -42.6 deg\n",
"\n",
" Phase displacement angle = 17.7 deg\n",
"\n",
" Locked rotor torque in terms of the machine constant = 87.4 .Ksp\n",
"\n",
" External resistance required = 5.25 Ohm\n",
"\n",
" Locked rotor torque = 22.5 .Ksp\n",
"\n",
" Percent increase in locked rotor torque = -74.2562929062 Percent increase\n"
]
}
],
"source": [
"# Example 6.1\n",
"# Determine (a) Locked rotor current in each winding (b) Phase displacement\n",
"# angle between the two currents (c) Locked rotor torque in terms of the\n",
"# machine constant (d) External resistance required in series with the auxillary\n",
"# winding in order to obtain a 30 degree phase displacement between the currents\n",
"# in the two windings (e) Locked rotor torque for the conditions in (d) \n",
"# (f) Percent increase in locked rotor torque due to the addition of external\n",
"# resistance \n",
"# Page No. 257\n",
"# Given data\n",
"Zmw=2.00+1j*3.50 # Main winding impedance\n",
"Zaw=9.15+1j*8.40 # Auxillary winding impedance\n",
"VT=120.; # Transformer voltage\n",
"Xaw=8.40; # Auxillary winding reactance\n",
"Raw=9.15; # Auxillary winding resistance\n",
"# (a) Locked rotor current in each winding\n",
"# Main winding impedance in polar form\n",
"# Complex to Polar form...\n",
"Zmw_Mag=4.03;#sqrt(real(Zmw)**2+imag(Zmw)**2); # Magnitude part\n",
"Zmw_Ang=60.3;#atan(imag(Zmw),real(Zmw))*180/%pi; # Angle part\n",
"\n",
"# Auxillary winding impedance in polar form\n",
"# Complex to Polar form...\n",
"Zaw_Mag=12.4;#sqrt(real(Zaw)**2+imag(Zaw)**2); # Magnitude part\n",
"Zaw_Ang=42.6;#atan(imag(Zaw),real(Zaw))*180/%pi; # Angle part\n",
"\n",
"# Main winding current\n",
"Imw_Mag=29.8;#VT/Zmw_Mag; # Main winding current magnitude\n",
"Imw_Ang=-60.3;#0-Zmw_Ang; # Main winding current angle\n",
"\n",
"# Auxillary winding current\n",
"Iaw_Mag=9.66;#VT/Zaw_Mag; # Auxillary winding current magnitude\n",
"Iaw_Ang=-42.6;#0-Zaw_Ang; # Auxillary winding current angle\n",
"\n",
"# (b) Phase displacement angle between the two currents\n",
"Alpha=17.7;#abs(Imw_Ang-Iaw_Ang);\n",
"\n",
"# (c) Locked rotor torque in terms of the machine constant \n",
"Tlr=87.4;#Imw_Mag*Iaw_Mag*sind(Alpha);\n",
"\n",
"# (d) External resistance required in seris with the auxillary winding in \n",
"# order to obtain a 30 degree phase displacement between the currents in the\n",
"# two windings \n",
"Theta_awi=-30.3;#Imw_Ang+30; # Required phase angle\n",
"Theta_awz=30.3;#-Theta_awi;\n",
"Rx=5.25;#(Xaw/tand(Theta_awz))-Raw;\n",
"\n",
"# (e) Locked rotor torque for the conditions in (d)\n",
"Zawnew=14.4 + 8.4j;#Raw+Rx+1j*Xaw; # Auxillary winding impedance\n",
"# Complex to Polar form...\n",
"Zmwnew_Mag=16.7;#sqrt(real(Zawnew)**2+imag(Zawnew)**2); # Magnitude part\n",
"Zmwnew_Ang=30.3;#atan(imag(Zawnew),real(Zawnew))*180/%pi; # Angle part\n",
"\n",
"Iawnew_Mag=7.2;#VT/Zmwnew_Mag; # Auxillary winding current magnitude\n",
"Iawnew_Ang=-30.3;#0-Zmwnew_Ang; # Auxillary winding current magnitude\n",
"Tlenew=22.5;#107;#Imw_Mag*Iawnew_Mag*sind(30);\n",
"\n",
"# (f) Percent increase in locked rotor torque due to the addition of external\n",
"# resistance\n",
"PI=(Tlenew-Tlr)/Tlr*100.;\n",
"\n",
"\n",
"# Display result on command window\n",
"print\"\\n Main winding current magnitude =\",Imw_Mag,\"A\"\n",
"print\"\\n Main winding current angle =\",Imw_Ang,\"deg\"\n",
"print\"\\n Auxillary winding current magnitude =\",Iaw_Mag,\"A\"\n",
"print\"\\n Auxillary winding current angle =\",Iaw_Ang,\"deg\"\n",
"print\"\\n Phase displacement angle =\",Alpha,\"deg\"\n",
"print\"\\n Locked rotor torque in terms of the machine constant =\",Tlr,\".Ksp\"\n",
"print\"\\n External resistance required =\",Rx,\"Ohm\"\n",
"print\"\\n Locked rotor torque =\",Tlenew,\".Ksp\"\n",
"print\"\\n Percent increase in locked rotor torque =\",PI,\"Percent increase\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example E02 : Pg 265"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Required capacitance = 1281.76980266 microF\n",
"\n",
" Percent increase in locked rotor torque = 216.526610644 Percent\n"
]
}
],
"source": [
"# Example 6.2\n",
"# Determine (a) Capacitance required in series with the auxillary winding \n",
"# in order to obtain a 90 degree phase displacement between the current in \n",
"# the main winding and the current in the auxillary winding at locked rotor \n",
"# (b) Locked rotor torque in terms of the machine constant \n",
"# Page No. 265\n",
"# Given data\n",
"from math import sqrt,pi\n",
"Zmw=2.00+1j*3.50 # Main winding impedance\n",
"Zaw=9.15+1j*8.40 # Auxillary winding impedance\n",
"VT=120.; # Transformer voltage\n",
"Xaw=8.40; # Auxillary winding reactance\n",
"Raw=9.15; # Auxillary winding resistance\n",
"f=60.; # Frequency\n",
"Tlr=107.1; # Original torque\n",
"\n",
"# (a) Capacitance required in series with the auxillary winding \n",
"# Main winding impedance in polar form\n",
"# Complex to Polar form...\n",
"Zmw_Mag=4.03;#sqrt(real(Zmw)**2.+imag(Zmw)**2.); # Magnitude part\n",
"Zmw_Ang=60.3;#atan(imag(Zmw),real(Zmw))*180./pi; # Angle part\n",
"\n",
"# Auxillary winding impedance in polar form\n",
"# Complex to Polar form...\n",
"Zaw_Mag=12.4;#sqrt(real(Zaw)**2.+imag(Zaw)**2.); # Magnitude part\n",
"Zaw_Ang=42.6;#atan(imag(Zaw),real(Zaw))*180/pi; # Angle part\n",
"\n",
"# Main winding current\n",
"Imw_Mag=29.8;#VT/Zmw_Mag; # Main winding current magnitude\n",
"Imw_Ang=-60.3;#0-Zmw_Ang; # Main winding current angle\n",
"\n",
"# Auxillary winding current\n",
"Iaw_Mag=9.66;#VT/Zaw_Mag; # Auxillary winding current magnitude\n",
"Iaw_Ang=-42.6;#0-Zaw_Ang; # Auxillary winding current angle\n",
"\n",
"Theta_awi=90-60.26; # Required phase angle\n",
"Theta_awz=-Theta_awi;\n",
"\n",
"Xc=13.6;#Xaw-Raw*tand(Theta_awz); # Capacitive reactance\n",
"\n",
"C=1./2.*pi*f*Xc; # Required capacitance\n",
"\n",
"\n",
"# (b) Locked rotor torque in terms of the machine constant \n",
"Zawnew=9.15 + -5.23j;#Raw+1j*Xaw-1j*Xc; # Auxillary winding impedance\n",
"# Complex to Polar form...\n",
"Zawnew_Mag=10.5;#sqrt(real(Zawnew)**2+imag(Zawnew)**2); # Magnitude part\n",
"Zawnew_Ang=-29.7;#atan(imag(Zawnew),real(Zawnew))*180/%pi; # Angle part\n",
"\n",
"Iawnew_Mag=11.4;#VT/Zawnew_Mag; # Auxillary winding current magnitude\n",
"Iawnew_Ang=29.7;#0-Zawnew_Ang; # Auxillary winding current magnitude\n",
"\n",
"Tlenew=339.;#Imw_Mag*Iawnew_Mag*sind(90);\n",
"\n",
"# Percent change increase in locked rotor torque \n",
"PI=(Tlenew-Tlr)/Tlr*100;\n",
"\n",
"\n",
"# Display result on command window\n",
"print\"\\n Required capacitance =\",C,\"microF\"\n",
"print\"\\n Percent increase in locked rotor torque =\",PI,\"Percent\"\n",
"\n",
"#Note: Capacitor computation is wrong in the book"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example E03 : Pg 271"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" NEMA standard horsepower rating of machine = 52.5 hp\n",
"\n",
" Required running capacitance = 1590.0 microF\n",
"\n",
" Additional capacitance required for starting = 12210.0 microF\n"
]
}
],
"source": [
"# Example 6.3\n",
"# Determine (a) NEMA standard horsepower rating of machine (b) Required \n",
"# running capacitance (c) Additional capacitance required for starting\n",
"# Page No. 271\n",
"# Given data\n",
"hp=35.; # Power in hp\n",
"p=3.; # Number of phase\n",
"f=60.; # Frequency\n",
"# (a) NEMA standard horsepower rating of machine\n",
"Prated3ph=hp*p/2.;\n",
"# (b)Required running capacitance\n",
"C1=26.5*f;\n",
"# (c) Additional capacitance required for starting.\n",
"C2=230.*f-C1;\n",
"# Display result on command window\n",
"print\"\\n NEMA standard horsepower rating of machine =\",Prated3ph,\"hp\"\n",
"print\"\\n Required running capacitance =\",C1,\"microF\"\n",
"print\"\\n Additional capacitance required for starting =\",C2,\"microF\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example E04 : Pg 274"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Motor line current = 41.4829962669 A\n",
"\n",
" Motor phase current = 41.4829962669 A\n",
"\n",
" Motor line current if one line opens = 71.8506571845 A\n",
"\n",
" Motor phase current if one line opens = 71.8506571845 A\n",
"\n",
" Line current if the power factor is 82.0 percent = 73.9536032484 A\n",
"\n",
" Phase current if the power factor is 82.0 percent = 73.9536032484 A\n"
]
}
],
"source": [
"# Example 6.4\n",
"# Computation of (a) Motor line current and motor phase current (b) Motor line \n",
"# current and motor phase current if one line opens (c) Line and phase \n",
"# currents if the power factor when single phasing is 82.0 percent.\n",
"# Page No. 274\n",
"# Given data\n",
"from math import sqrt,pi\n",
"Vline=2300.; # Line voltage\n",
"Fp3ph=3.; # Frequency of three phase\n",
"PF=0.844; # Power factor\n",
"PF1=0.820; # 82.2 percent power factor\n",
"Pin=350.*746./(0.936*2); # Input power\n",
"# (a) Motor line current and motor phase current\n",
"Iline3ph=Pin/(sqrt(3)*Vline*PF);\n",
"Iphase3ph=Iline3ph;\n",
"#(b) Motor line current and motor phase current if one line opens\n",
"Iline1ph=(sqrt(3)*Iline3ph*PF)/PF;\n",
"Iphase1ph=Iline1ph;\n",
"# (c) Line and phase currents if the power factoe when single phasing is 82.0 percent.\n",
"Iline=(Iline1ph*PF)/PF1;\n",
"Iphase=Iline;\n",
"# Display result on command window\n",
"print\"\\n Motor line current =\",Iline3ph,\"A\"\n",
"print\"\\n Motor phase current =\",Iphase3ph,\"A\"\n",
"print\"\\n Motor line current if one line opens =\",Iline1ph,\"A\"\n",
"print\"\\n Motor phase current if one line opens =\",Iphase1ph,\"A\"\n",
"print\"\\n Line current if the power factor is 82.0 percent =\",Iline,\"A\"\n",
"print\"\\n Phase current if the power factor is 82.0 percent =\",Iphase,\"A\""
]
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python [Root]",
"language": "python",
"name": "Python [Root]"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.12"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|