summaryrefslogtreecommitdiff
path: root/Electric_Machines_by_C._I._Hubert/CHAPTER03.ipynb
blob: 06d165ad8bd6bf7208254467245bd92b8d3bb86b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# CHAPTER03 : TRANSFORMER CONNECTIONS OPERATION AND SPECIALITY TRANSFORMERS"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example E01 : Pg 98"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Load current  = 8.0 A\n",
      "Incoming line current = 2.0 A\n",
      "Transformed current = 6.0 A\n",
      "Apparent power conducted = 1200.0 VA\n",
      "Apparent power transformed = 3600.0 VA\n"
     ]
    }
   ],
   "source": [
    "#  Example 3.1\n",
    "#  Computation of (a) Load current (b) Incoming line current\n",
    "#  (c) Transformed current (d) Apparent power conducted and apparent power transformed\n",
    "#  Page No. 98\n",
    "#  Given data\n",
    "NHS=400.;               #  Number of turns in the high side\n",
    "NLS=0.25*400.;          #  Number of turns in the low side\n",
    "VHS=2400.;              #  Voltage at the high side\n",
    "S=4800.;                #  Supply voltage\n",
    "\n",
    "#  (a) Load current\n",
    "a=NHS/NLS;             #  Transformer turn ratio  \n",
    "VLS=VHS/a;             #  Low side voltage      \n",
    "ILS=S/VLS;             #  Load current\n",
    "\n",
    "#  (b) Incoming line current\n",
    "IHS=ILS/a;    \n",
    "\n",
    "# (c)  Transformed current\n",
    "ITR=ILS-IHS;\n",
    "\n",
    "#  (d) Apparent power conducted and apparent power transformed\n",
    "\n",
    "SCOND=IHS*VLS;     #  Apparent power conducted\n",
    "STRANS=ITR*VLS;    #  Apparent power transformed  \n",
    "\n",
    "\n",
    "#  Display result on command window\n",
    "print\"Load current  =\",ILS,\"A\"\n",
    "print\"Incoming line current =\",IHS,\"A\"\n",
    "print\"Transformed current =\",ITR,\"A\"\n",
    "print\"Apparent power conducted =\",SCOND,\"VA\"\n",
    "print\"Apparent power transformed =\",STRANS,\"VA\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example E02 : Pg 100"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Rated primary current = 41.6666666667 A\n",
      "Rated secondary current = 4.16666666667 A\n",
      "Apparent power rating = 110.0 KVA\n"
     ]
    }
   ],
   "source": [
    "#  Example 3.2\n",
    "#  Computation of (a) Rated primary and secondary currents when connected as \n",
    "#  autotransformer (b) Apparent power rating when connected as an autotransformer\n",
    "#  Page No. 100\n",
    "#  Given data\n",
    "S=10000.;              #  Supply voltage\n",
    "VLS=240.;              #  Voltage at the low side\n",
    "VHS=2400.;             #  Voltage at the high side\n",
    "Sw=10.;                #  Power rating\n",
    "#  (a) Rated primary and secondary currents when connected as autotransformer \n",
    "ILSWINDING=S/VLS;     #  Rated primary current\n",
    "IHSWINDING=S/VHS;     #  Rated secondary current\n",
    "#  (b) Apparent power rating when connected as an autotransformer\n",
    "a=VHS/VLS;                  #  Magnetic drop across R1\n",
    "Sat=(a+1)*Sw;    \n",
    "# Display result on command window\n",
    "print\"Rated primary current =\",ILSWINDING,\"A\"\n",
    "print\"Rated secondary current =\",IHSWINDING,\"A\"\n",
    "print\"Apparent power rating =\",Sat,\"KVA\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example E03 : Pg 102"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Actual output voltage supplied to the air conditioner is = 233.2 V\n",
      "Actual output voltage assuming utilization voltage as 246 V is = 230.617793194 V\n"
     ]
    }
   ],
   "source": [
    "#  Example 3.3\n",
    "#  Computation of (a) Buck boost transformer parameters \n",
    "#  (b) Repeating the same assuming utilization voltage as 246V\n",
    "#  Page No. 102\n",
    "#  Given data\n",
    "S=10000.;              #  Supply voltage\n",
    "VLS=212.;              #  Voltage at the low side\n",
    "VHSNEW=246.;           #  New voltage at the high side\n",
    "a1=1.100;    \n",
    "a11=1.0667;\n",
    "#  (a) Buck boost transformer parameters \n",
    "VHS=a1*VLS;\n",
    "#  (b) Repeating the same assuming utilization voltage as 246V\n",
    "VLSNEW=VHSNEW/a11;  \n",
    "# Display result on command window\n",
    "print\"Actual output voltage supplied to the air conditioner is =\",VHS,\"V\"\n",
    "print\"Actual output voltage assuming utilization voltage as 246 V is =\",VLSNEW,\"V\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example E04 : Pg 104"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Circulating current magnitude = 65.6 A\n",
      "Circulating current angle = -68.0 deg\n",
      "Circulating current as a percent of the rated current = 30.176 Percent\n",
      "Percent difference in secondary voltage = 2.22222222222 Percent\n"
     ]
    }
   ],
   "source": [
    "#  Example 3.4\n",
    "#  Determine (a) Circulating current in the paralleled secondaries \n",
    "#  (b) Circulating current as a percent of the rated current of transformer A \n",
    "#  (c) Percent difference in secondary voltage that caused the circulating current\n",
    "#  Page No. 104\n",
    "#  Given data\n",
    "S=100000.;              #  Transformer A and B rating \n",
    "VLSA=460.;              #  Voltage at the low side of transformer A\n",
    "VLSB=450.;              #  Voltage at the low side of transformer A\n",
    "RPUA=0.0136;           #  Percent resistance of transformer A\n",
    "XPUA=0.0350;           #  Percent reactance of transformer A\n",
    "RPUB=0.0140;           #  Percent resistance of transformer B\n",
    "XPUB=0.0332;           #  Percent reactance of transformer B\n",
    "#  (a) Circulating current in the paralleled secondaries \n",
    "IA= S/VLSA;               #  Rated low side current for transformer A\n",
    "IB= S/VLSB;               #  Rated low side current for transformer B\n",
    "ReqA=RPUA*VLSA/IA;        #  Equivalent resistance of transfomer A\n",
    "ReqB=RPUB*VLSB/IB;        #  Equivalent resistance of transfomer B\n",
    "XeqA=XPUA*VLSA/IA;        #  Equivalent reactance of transfomer A\n",
    "XeqB=XPUB*VLSB/IB;        #  Equivalent reactance of transfomer B\n",
    "#  Impedance of the closed loop formed by two secondaries is\n",
    "Zloop=0.0571+0.14j;#ReqA+%i*XeqA+ReqB+%i*XeqB; \n",
    "#  Complex to Polar form...\n",
    "Zloop_Mag=0.152;#sqrt(real(Zloop)**2+imag(Zloop)**2); #  Magnitude part\n",
    "Zloop_Ang=68.;#atan(imag(Zloop),real(Zloop))*180/%pi; #  Angle part\n",
    "Icirc_Mag=65.6;#(VLSA-VLSB)/Zloop_Mag; #  Circulating current magnitude\n",
    "Icirc_Ang=-68.;#0- Zloop_Ang;          #  Circulating current angle\n",
    "\n",
    "#  (b) Circulating current as a percent of the rated current of transformer A\n",
    "IcircA=Icirc_Mag*100/IA;\n",
    "#  (c) Percent difference in secondary voltage that caused the circulating current\n",
    "PD=(VLSA-VLSB)*100/VLSB;\n",
    "#  Display result on command window\n",
    "print\"Circulating current magnitude =\",Icirc_Mag,\"A\"\n",
    "print\"Circulating current angle =\",Icirc_Ang,\"deg\"\n",
    "print\"Circulating current as a percent of the rated current =\",IcircA,\"Percent\"\n",
    "print\"Percent difference in secondary voltage =\",PD,\"Percent\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example E05 : Pg 107"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Rated high side current of transformer A = 31.25 A\n",
      "Rated high side current of transformer B = 83.3333333333 A\n",
      "Percent of total bank current drawn by transformer A = 3070.0 Percent\n",
      "Percent of total bank current drawn by transformer B = 6980.0 Percent\n",
      "Maximum load that can be handled by the bank = 101.791530945 A\n"
     ]
    }
   ],
   "source": [
    "#  Example 3.5\n",
    "#  Determine (a) Rated high side current of each transformer (b) Percent of the\n",
    "#  total bank-current drawn by each transformer (c) Maximum load that can be \n",
    "#  handled by the bank without overloading by one of the transformer\n",
    "#  Page No. 107\n",
    "#  Given data\n",
    "SA=75000.;              #  Transformer A rating\n",
    "SB=200000.;             #  Transformer B rating\n",
    "VHSA=2400.;             #  Voltage at the high side of transformer A\n",
    "VHSB=2400.;             #  Voltage at the high side of transformer B\n",
    "RPUA=1.64;             #  Percent resistance of transformer A\n",
    "XPUA=3.16;             #  Percent reactance of transformer A\n",
    "RPUB=1.10;             #  Percent resistance of transformer B\n",
    "XPUB=4.03;             #  Percent reactance of transformer B\n",
    "#  (a) Rated high side current of each transformer\n",
    "IArated=SA/VHSA;       #  High side rated current transformer A\n",
    "IBrated=SB/VHSB;       #  High side rated current transformer B\n",
    "#  (b) Percent of the total bank-current drawn by each transformer\n",
    "ZAper=1.64+3.16j;#RPUA+%i*XPUA;    #  Percent impadance for transformer A\n",
    "#  Complex to Polar form...\n",
    "ZAper_Mag=3.56;#sqrt(real(ZAper)**2+imag(ZAper)**2);      #  Magnitude part\n",
    "ZAper_Ang=62.6;#atan(imag(ZAper),real(ZAper))*180/%pi;  #  Angle part\n",
    "\n",
    "ZBper=1.1+4.03j;#RPUB+%i*XPUB;    #  Percent impadance for transformer B\n",
    "#  Complex to Polar form...\n",
    "ZBper_Mag=4.18;#sqrt(real(ZBper)**2+imag(ZBper)**2);      #  Magnitude part\n",
    "ZBper_Ang=74.7;#atan(imag(ZBper),real(ZBper))*180/%pi;  #  Angle part\n",
    "\n",
    "ZAbase=VHSA/IArated;                #  Base impedance of transformer A\n",
    "ZBbase=VHSB/IBrated;                #  Base impedance of transformer A\n",
    "\n",
    "ZeqA_Mag=ZAbase*ZAper_Mag/100;      #  Magnitude of equivalent impedance A\n",
    "ZeqA_Ang=ZAper_Ang;                 #  Angle of equivalent impedance A\n",
    "\n",
    "ZeqB_Mag=ZBbase*ZBper_Mag/100;      #  Magnitude of equivalent impedance B\n",
    "ZeqB_Ang=ZBper_Ang;                 #  Angle of equivalent impedance B\n",
    "\n",
    "YeqA_Mag=0.366;#1/ZeqA_Mag;                #  Magnitude of equivalent admittance A\n",
    "YeqA_Ang=-62.6;#0-ZeqA_Ang;                #  Angle of equivalent admittance A\n",
    "\n",
    "#  Polar to Complex form\n",
    "YeqA_R=0.168;#YeqA_Mag*cos(-YeqA_Ang*%pi/180); #  Real part of complex number\n",
    "YeqA_I=-0.325;#YeqA_Mag*sin(YeqA_Ang*%pi/180); # Imaginary part of complex number\n",
    "\n",
    "YeqB_Mag=0.831;#1/ZeqB_Mag;                #  Magnitude of equivalent admittance B\n",
    "YeqB_Ang=-74.7;#0-ZeqB_Ang;                #  Angle of equivalent admittance B\n",
    "\n",
    "#  Polar to Complex form\n",
    "\n",
    "YeqB_R=0.219;#YeqB_Mag*cos(-YeqB_Ang*%pi/180); #  Real part of complex number\n",
    "YeqB_I=-0.802;#YeqB_Mag*sin(YeqB_Ang*%pi/180); # Imaginary part of complex number\n",
    "YP=0.387+1.13j;#(YeqA_R - %i* YeqA_I)+(YeqB_R - %i* YeqB_I); #  Parallel admittance\n",
    "\n",
    " #  Complex to Polar form...\n",
    "YP_Mag=1.19;#sqrt(real(YP)**2+imag(YP)**2);      #  Magnitude part\n",
    "YP_Ang=71.;#atan(imag(YP),real(YP))*180/%pi;  #  Angle part\n",
    "\n",
    "IA=30.7;#YeqA_Mag/YP_Mag;                      #  Transformer A load\n",
    "IB=69.8;#YeqB_Mag/YP_Mag;                      #  Transformer A load\n",
    "IA=IA*100.;\n",
    "IB=IB*100.;\n",
    "\n",
    "#  (c) Maximum load that can be handled by the bank without overloading by \n",
    "#  one of the transformer\n",
    "Ibank=IArated/0.307;\n",
    "\n",
    "#  Display result on command window\n",
    "\n",
    "print\"Rated high side current of transformer A =\",IArated,\"A\"\n",
    "print\"Rated high side current of transformer B =\",IBrated,\"A\"\n",
    "print\"Percent of total bank current drawn by transformer A =\",IA,\"Percent\"\n",
    "print\"Percent of total bank current drawn by transformer B =\",IB,\"Percent\"\n",
    "print\"Maximum load that can be handled by the bank =\", Ibank,\"A\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example E06 : Pg 109"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Percent of total bank current drawn by transformer A = 55.1594746717 Percent\n",
      "Percent of total bank current drawn by transformer B = 44.8405253283 Percent\n"
     ]
    }
   ],
   "source": [
    "#  Example 3.6\n",
    "#  Determine the percent of the total bank-current drawn by each transformer \n",
    "#  Page No. 109\n",
    "#  Given data\n",
    "ZaPU_R=0.0158;          #  Transformer A impedance real part\n",
    "ZaPU_I=0.0301;          #  Transformer A impedance imaginary part\n",
    "ZbPU_R=0.0109;          #  Transformer B impedance real part\n",
    "ZbPU_I=0.0398;          #  Transformer B impedance imaginary part\n",
    "SB=200000.;             #  Transformer B rating\n",
    "VHSA=2400.;             #  Voltage at the high side of transformer A\n",
    "VHSB=2400.;             #  Voltage at the high side of transformer B\n",
    "RPUA=1.64;             #  Percent resistance of transformer A\n",
    "XPUA=3.16;             #  Percent reactance of transformer A\n",
    "RPUB=1.10;             #  Percent resistance of transformer B\n",
    "XPUB=4.03;             #  Percent reactance of transformer B\n",
    "\n",
    "\n",
    "\n",
    "#  Base impedance of transformer A\n",
    "ZaPU=0.0158 + 0.0301j;#ZaPU_R+%i*ZaPU_I;\n",
    "#  Complex to Polar form...\n",
    "ZaPU_Mag=0.034;#sqrt(real(ZaPU)**2+imag(ZaPU)**2);      #  Magnitude part\n",
    "ZaPU_Ang=62.3;#atan(imag(ZaPU),real(ZaPU))*180/%pi;  #  Angle part\n",
    "\n",
    "#  Base impedance of transformer B\n",
    "ZbPU=0.0109+0.0398j;#ZbPU_R+%i*ZbPU_I;\n",
    "#  Complex to Polar form...\n",
    "ZbPU_Mag=0.0413;#sqrt(real(ZbPU)**2+imag(ZbPU)**2);      #  Magnitude part\n",
    "ZbPU_Ang=74.7;#atan(imag(ZbPU),real(ZbPU))*180/%pi;  #  Angle part\n",
    "\n",
    "#  Admittance of transformer A\n",
    "YaPU_Mag=29.4;#1/ZaPU_Mag;                #  Magnitude of equivalent admittance A\n",
    "YaPU_Ang=-62.3;#0-ZaPU_Ang;                #  Angle of equivalent admittance A\n",
    "\n",
    "#  Polar to Complex form\n",
    "\n",
    "YaPU_R=13.7;#YaPU_Mag*cos(-YaPU_Ang*%pi/180); #  Real part of complex number\n",
    "YaPU_I=-26;#YaPU_Mag*sin(YaPU_Ang*%pi/180); # Imaginary part of complex number\n",
    "\n",
    "#  Admittance of transformer B\n",
    "YbPU_Mag=24.2;#1/ZbPU_Mag;                #  Magnitude of equivalent admittance B\n",
    "YbPU_Ang=-74.7;#0-ZbPU_Ang;                #  Angle of equivalent admittance B\n",
    "#  Polar to Complex form\n",
    "\n",
    "YbPU_R=6.4;#YbPU_Mag*cos(-YbPU_Ang*%pi/180); #  Real part of complex number\n",
    "YbPU_I=-23.4;#YbPU_Mag*sin(YbPU_Ang*%pi/180); # Imaginary part of complex number\n",
    "\n",
    "#  Parallel admittance\n",
    "YP=20.1+49.4j;#(YaPU_R-%i*YaPU_I)+(YbPU_R-%i*YbPU_I);\n",
    "#  Complex to Polar form...\n",
    "YP_Mag=53.3;#sqrt(real(YP)**2+imag(YP)**2);      #  Magnitude part\n",
    "YP_Ang=67.9;#atan(imag(YP),real(YP))*180/%pi;  #  Angle part\n",
    "\n",
    "IA=YaPU_Mag/YP_Mag*100;                  #  Percent current drawn by transformer A \n",
    "IB=100-IA; \n",
    "\n",
    "#  Display the result on the command window\n",
    "print\"Percent of total bank current drawn by transformer A =\",IA,\"Percent\"\n",
    "print\"Percent of total bank current drawn by transformer B =\",IB,\"Percent\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example E07 : Pg 113"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Bank ratio = 17.3333333333\n",
      "Transformer ratio = 10.007404666\n",
      "Rated line current for the high side = 20.8179183602 A\n",
      "Rated phase current for the high side = 20.8179183602 A\n",
      "Rated line  current for the low side = 360.843918244 A\n",
      "Rated phase current for the low side = 208.333333333 A\n"
     ]
    }
   ],
   "source": [
    "#  Example 3.7\n",
    "#  Computation of (a) Bank ratio (b) Transformer ratio (c) Rated line and phase \n",
    "#  currents for the high side (d) Rated line and phase currents for the low side\n",
    "#  Page No. 113\n",
    "#  Given data\n",
    "import math \n",
    "VLINEHS=4160.;               #  Number of turns in the high side\n",
    "VLINELS=240.;                #  Number of turns in the low side\n",
    "VHS=2400.;                   #  Voltage at the high side\n",
    "S=4800.;                     #  Supply voltage\n",
    "Vline=150000.;               #  Transformer rating\n",
    "\n",
    "#  (a) Bank ratio\n",
    "bankratio=VLINEHS/VLINELS;    \n",
    "\n",
    "#  (b) Transformer ratio\n",
    "Vphasep= VLINEHS/  math.sqrt(3);   #  For wye primary\n",
    "Vphases=VLINELS               #  For secondary\n",
    "TR=Vphasep/Vphases;           #  Transformer ratio \n",
    "\n",
    "# (c) Rated line and phase currents for the high side \n",
    "Ilinew=Vline/(math.sqrt(3)*VLINEHS);\n",
    "Iphasew=Ilinew;\n",
    "\n",
    "#  (d) Rated line and phase currents for the low side\n",
    "Ilined=Vline/(math.sqrt(3)*VLINELS);   \n",
    "Iphased=Ilined/math.sqrt(3);\n",
    "\n",
    "\n",
    "#  Display result on command window\n",
    "print\"Bank ratio =\",bankratio\n",
    "print\"Transformer ratio =\",TR\n",
    "print\"Rated line current for the high side =\",Ilinew,\"A\"\n",
    "print\"Rated phase current for the high side =\",Iphasew,\"A\"\n",
    "print\"Rated line  current for the low side =\",Ilined,\"A\"\n",
    "print\"Rated phase current for the low side =\",Iphased,\"A\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example E08 : Pg 117"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Capacity of the bank when operating open-delta is = 43.275 kVA\n"
     ]
    }
   ],
   "source": [
    "#  Example 3.8\n",
    "#  Determine the maximum allowable power that the open-delta bank handle \n",
    "#  without overheating\n",
    "#  Page No. 117\n",
    "#  Given data\n",
    "S=25.;# Transformer rating\n",
    "#  Capacity of the delta-delta bank is\n",
    "Cddb=S*3;\n",
    "#  Capacity of the bank when operating open-delta is\n",
    "Cob=Cddb*0.577;\n",
    "# Display result on command window\n",
    "print\"Capacity of the bank when operating open-delta is =\",Cob,\"kVA\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example E09 : Pg 117"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Minimum power rating required for each transformer = 32.075014955 kVA\n"
     ]
    }
   ],
   "source": [
    "# Example 3.9\n",
    "# Determine the minimum power rating required for each transformer\n",
    "# Page No. 117\n",
    "# Given data\n",
    "import math\n",
    "P=50000.;                      #  Transformer power rating\n",
    "Eline=120.;                    #  Line voltage\n",
    "FP=0.9                        #  Power factor lagging\n",
    "VL=120.;\n",
    "#Line current is\n",
    "Iline=P/(math.sqrt(3.)*Eline*FP);\n",
    "#Minimum power rating required for each transformer\n",
    "Pmin=VL*Iline/1000.;\n",
    "#Display result on command window\n",
    "print\"Minimum power rating required for each transformer =\",Pmin,\"kVA\""
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python [Root]",
   "language": "python",
   "name": "Python [Root]"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}