1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER 8: AC DYNAMO TORQUE RELATIONS-SYNCHRONOUS MOTORS"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.1, Page number 225"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import cmath\n",
"\n",
"#Variable declaration\n",
"P = 20.0 #Number of poles\n",
"hp = 40.0 #Power rating of the synchronous motor(hp)\n",
"V_L = 660.0 #Line voltage(V)\n",
"beta = 0.5 #At no-load, the rotor is retarded 0.5 mechanical degree from its synchronous position\n",
"X_s = 10.0 #Synchronous reactance(ohm)\n",
"R_a = 1.0 #Effective armature resistance(ohm)\n",
"\n",
"#Calculation\n",
"#Case(a)\n",
"alpha = P*(beta/2) #Rotor shift from the synchronous position in electrical degrees\n",
"#Case(b)\n",
"V_p = V_L/3**0.5 #Phase voltage(V)\n",
"E_gp = V_p #Generated voltage/phase at no-load(V)\n",
"E_r = complex((V_p-E_gp*math.cos(alpha*math.pi/180)),(E_gp*math.sin(alpha*math.pi/180))) #Resultant emf across the armature per phase(V/phase)\n",
"#Case(c)\n",
"Z_s = complex(R_a,X_s) #Synchronous impedance(ohm/phase)\n",
"I_a = E_r/Z_s #Armature current/phase(A/phase)\n",
"#Case(d)\n",
"Ia = abs(I_a) #Magnitude of armature current/phase(A/phase)\n",
"theta = cmath.phase(I_a)*180/math.pi #Phase angle of armature current(degree)\n",
"P_p = V_p*Ia*math.cos(theta*math.pi/180) #Power per phase drawn by the motor from the bus(W/phase)\n",
"P_t = 3*P_p #Total power drawn by the motor from the bus(W)\n",
"#Case(e)\n",
"P_a = 3*Ia**2*R_a #Armature power loss at no-load(W)\n",
"P_d = (P_t-P_a)/746.0 #Internal developed horsepower at no-load\n",
"\n",
"#Result\n",
"print('Case(a): Rotor shift from the synchronous position in electrical degrees , \u03b1 = %.f\u00b0 ' %alpha)\n",
"print('Case(b): Resultant EMF across the armature per phase , E_r = %.1f\u2220%.1f\u00b0 V/phase' %(abs(E_r),cmath.phase(E_r)*180/math.pi))\n",
"print('Case(c): Armature current per phase , I_a = %.2f\u2220%.1f\u00b0 A/phase' %(Ia,theta))\n",
"print('Case(d): Power per phase drawn by the motor from the bus , P_p = %.f W/phase' %P_p)\n",
"print(' Total power drawn by the motor from the bus , P_t = %.f W' %P_t)\n",
"print('Case(e): Armature power loss = %.f W' %P_a)\n",
"print(' Internal developed horsepower at no-load , P_d = %.f hp' %P_d)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Rotor shift from the synchronous position in electrical degrees , \u03b1 = 5\u00b0 \n",
"Case(b): Resultant EMF across the armature per phase , E_r = 33.2\u222087.5\u00b0 V/phase\n",
"Case(c): Armature current per phase , I_a = 3.31\u22203.2\u00b0 A/phase\n",
"Case(d): Power per phase drawn by the motor from the bus , P_p = 1258 W/phase\n",
" Total power drawn by the motor from the bus , P_t = 3775 W\n",
"Case(e): Armature power loss = 33 W\n",
" Internal developed horsepower at no-load , P_d = 5 hp\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.2, Page number 226"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import cmath\n",
"\n",
"#Variable declaration\n",
"P = 20.0 #Number of poles\n",
"hp = 40.0 #Power rating of the synchronous motor(hp)\n",
"V_L = 660.0 #Line voltage(V)\n",
"beta = 5.0 #At no-load, the rotor is retarded 0.5 mechanical degree from its synchronous position\n",
"X_s = 10.0 #Synchronous reactance(ohm)\n",
"R_a = 1.0 #Effective armature resistance(ohm)\n",
"\n",
"#Calculation\n",
"#Case(a)\n",
"alpha = P*(beta/2) #Rotor shift from the synchronous position in electrical degrees\n",
"#Case(b)\n",
"V_p = V_L/3**0.5 #Phase voltage(V)\n",
"E_gp = V_p #Generated voltage/phase at no-load(V)\n",
"E_r = complex((V_p-E_gp*math.cos(alpha*math.pi/180)),(E_gp*math.sin(alpha*math.pi/180))) #Resultant emf across the armature per phase(V/phase)\n",
"#Case(c)\n",
"Z_s = complex(R_a,X_s) #Synchronous impedance(ohm/phase)\n",
"I_a = E_r/Z_s #Armature current/phase(A/phase)\n",
"#Case(d)\n",
"Ia = abs(I_a) #Magnitude of armature current/phase(A/phase)\n",
"theta = cmath.phase(I_a)*180/math.pi #Phase angle of armature current(degree)\n",
"P_p = V_p*Ia*math.cos(theta*math.pi/180) #Power per phase drawn by the motor from the bus(W/phase)\n",
"P_t = 3*P_p #Total power drawn by the motor from the bus(W)\n",
"#Case(e)\n",
"P_a = 3*Ia**2*R_a #Armature power loss at no-load(W)\n",
"P_d = (P_t-P_a)/746.0 #Internal developed horsepower at no-load\n",
"\n",
"#Result\n",
"print('Case(a): Rotor shift from the synchronous position in electrical degrees , \u03b1 = %.f\u00b0 ' %alpha)\n",
"print('Case(b): Resultant EMF across the armature per phase , E_r = %.f\u2220%.f\u00b0 V/phase' %(abs(E_r),cmath.phase(E_r)*180/math.pi))\n",
"print('Case(c): Armature current per phase , I_a = %.1f\u2220%.1f\u00b0 A/phase' %(Ia,theta))\n",
"print('Case(d): Power per phase drawn by the motor from the bus , P_p = %.f W/phase' %P_p)\n",
"print(' Total power drawn by the motor from the bus , P_t = %.f W' %P_t)\n",
"print('Case(e): Armature power loss = %.f W' %P_a)\n",
"print(' Internal developed horsepower at no-load , P_d = %.1f hp' %P_d)\n",
"print('\\nNOTE: Changes in obtained answer from that of textbook is due to more precision i.e more number of decimal places')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Rotor shift from the synchronous position in electrical degrees , \u03b1 = 50\u00b0 \n",
"Case(b): Resultant EMF across the armature per phase , E_r = 322\u222065\u00b0 V/phase\n",
"Case(c): Armature current per phase , I_a = 32.0\u2220-19.3\u00b0 A/phase\n",
"Case(d): Power per phase drawn by the motor from the bus , P_p = 11526 W/phase\n",
" Total power drawn by the motor from the bus , P_t = 34579 W\n",
"Case(e): Armature power loss = 3081 W\n",
" Internal developed horsepower at no-load , P_d = 42.2 hp\n",
"\n",
"NOTE: Changes in obtained answer from that of textbook is due to more precision i.e more number of decimal places\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.3, Page number 237"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import cmath\n",
"\n",
"#Variable declaration\n",
"P = 6.0 #Number of poles\n",
"hp = 50.0 #Power rating of the synchronous motor(hp)\n",
"V_L = 440.0 #Line voltage(V)\n",
"alpha = 20.0 #At no-load, the rotor is retarded 0.5 mechanical degree from its synchronous position\n",
"X_s = 2.4 #Synchronous reactance(ohm)\n",
"R_a = 0.1 #Effective armature resistance(ohm)\n",
"E_gp_a = 240.0 #Generated phase voltage(V)\n",
"E_gp_b = 265.0 #Generated phase voltage(V)\n",
"E_gp_c = 290.0 #Generated phase voltage(V)\n",
"\n",
"#Calculation\n",
"#Case(a)\n",
"V_p = V_L /3**0.5 #Phase voltage(V)\n",
"E_ra = complex((V_p-E_gp_a*math.cos(alpha*math.pi/180)),(E_gp_a*math.sin(alpha*math.pi/180))) #Resultant emf\n",
"Z_s = complex(R_a,X_s) #Synchronous impedance(ohm)\n",
"I_ap1 = E_ra/Z_s #Armature current(A)\n",
"theta_1 = cmath.phase(I_ap1)*180/math.pi #Angle(degree)\n",
"pf_1 = math.cos(theta_1*math.pi/180) #Power factor\n",
"I_a1 = abs(I_ap1) #Magnitude of armature current(A)\n",
"P_d1 = 3*E_gp_a*I_a1*math.cos((160-theta_1)*math.pi/180) #Power drawn from the bus(W)\n",
"Horse_power1 = abs(P_d1)/746.0 #Horsepower developed by the armature(hp) \n",
"#Case(b)\n",
"E_rb = complex((V_p-E_gp_b*math.cos(alpha*math.pi/180)),(E_gp_b*math.sin(alpha*math.pi/180))) #Resultant emf\n",
"Z_s = complex(R_a,X_s) #Synchronous impedance(ohm)\n",
"I_ap2 = E_rb/Z_s #Armature current(A)\n",
"theta_2 = cmath.phase(I_ap2)*180/math.pi #Angle(degree)\n",
"pf_2 = math.cos(theta_2*math.pi/180) #Power factor\n",
"I_a2 = abs(I_ap2) #Magnitude of armature current(A)\n",
"P_d2 = 3*E_gp_b*I_a2*math.cos((160-theta_2)*math.pi/180) #Power drawn from the bus(W)\n",
"Horse_power2 = abs(P_d2)/746.0 #Horsepower developed by the armature(hp) \n",
"#Case(c)\n",
"E_rc = complex((V_p-E_gp_c*math.cos(alpha*math.pi/180)),(E_gp_c*math.sin(alpha*math.pi/180))) #Resultant emf\n",
"Z_s = complex(R_a,X_s) #Synchronous impedance(ohm)\n",
"I_ap3 = E_rc/Z_s #Armature current(A)\n",
"theta_3 = cmath.phase(I_ap3)*180/math.pi #Angle(degree)\n",
"pf_3 = math.cos(theta_3*math.pi/180) #Power factor\n",
"I_a3 = abs(I_ap3) #Magnitude of armature current(A)\n",
"P_d3 = 3*E_gp_c*I_a3*math.cos((160-theta_3)*math.pi/180) #Power drawn from the bus(W)\n",
"Horse_power3 = abs(P_d3)/746.0 #Horsepower developed by the armature(hp)\n",
"\n",
"#Result\n",
"print('Case(a): Armature current , I_ap = %.2f\u2220%.2f\u00b0 A' %(I_a1,theta_1))\n",
"print(' Power factor = %.4f lagging' %pf_1)\n",
"print(' Horsepower developed by the armature , Horsepower = %.1f hp' %Horse_power1)\n",
"print('Case(b): Armature current , I_ap = %.2f\u2220%.2f\u00b0 A' %(I_a2,theta_2))\n",
"print(' Power factor = %.f (Unity PF)' %pf_2)\n",
"print(' Horsepower developed by the armature , Horsepower = %.1f hp' %Horse_power2)\n",
"print('Case(c): Armature current , I_ap = %.f\u2220%.2f\u00b0 A' %(I_a3,theta_3))\n",
"print(' Power factor = %.4f leading' %pf_3)\n",
"print(' Horsepower developed by the armature , Horsepower = %.1f hp' %Horse_power3)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Armature current , I_ap = 36.17\u2220-16.77\u00b0 A\n",
" Power factor = 0.9575 lagging\n",
" Horsepower developed by the armature , Horsepower = 34.9 hp\n",
"Case(b): Armature current , I_ap = 37.79\u2220-0.78\u00b0 A\n",
" Power factor = 1 (Unity PF)\n",
" Horsepower developed by the armature , Horsepower = 38.0 hp\n",
"Case(c): Armature current , I_ap = 42\u222012.94\u00b0 A\n",
" Power factor = 0.9746 leading\n",
" Horsepower developed by the armature , Horsepower = 41.1 hp\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.4, Page number 240"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import cmath\n",
"\n",
"#Variable declaration\n",
"P = 2.0 #Number of poles\n",
"hp = 1000.0 #Power rating of the synchronous motor(hp)\n",
"V_L = 6000.0 #Line voltage(V)\n",
"f = 60.0 #Frequency(Hz)\n",
"R_a = 0.52 #Effective armature resistance(ohm)\n",
"X_s = 4.2 #Synchronous reactance(ohm)\n",
"P_t = 811.0 #Input power(kW)\n",
"PF = 0.8 #Power factor leading\n",
"\n",
"#Calculation\n",
"V_p = V_L/3**0.5 #Phase voltage(V)\n",
"I_L = P_t*1000/(3**0.5*V_L*PF) #Line current(A)\n",
"I_ap = I_L #Phase armature current(A)\n",
"Z_p = complex(R_a,X_s) #Impedance per phase(ohm)\n",
"Zp = abs(Z_p) #Magnitude of impedance per phase(ohm)\n",
"beta = cmath.phase(Z_p)*180/math.pi #Phase angle of impedance per phase(degree)\n",
"E_r = I_ap*Zp #EMF(V)\n",
"theta = math.acos(PF)*180/math.pi#Power factor angle(degree)\n",
"delta = beta+theta #Difference angle(degree)\n",
"E_gp_f = (E_r**2+V_p**2-2*E_r*V_p*math.cos(delta*math.pi/180))**0.5 #Generated phase voltage(V)\n",
"E_gp_g = complex((V_p+E_r*math.cos((180-delta)*math.pi/180)),(E_r*math.sin((180-delta)*math.pi/180))) #Generated phase voltage(V)\n",
"E_gp_h = complex((V_p*PF-I_ap*R_a),(V_p*math.sin(theta*math.pi/180)+I_ap*X_s)) #Generated phase voltage(V)\n",
"\n",
"#Result\n",
"print('Case(a): Line current , I_L = %.2f A' %I_L)\n",
"print(' Phase armature current , I_ap = %.2f A' %I_ap)\n",
"print('Case(b): Impedance per phase , Z_p\u2220\u03b2 = %.3f\u2220%.2f\u00b0 \u03a9' %(Zp,beta))\n",
"print('Case(c): Magnitude I_aZ_p = E_r = %.1f V' %E_r)\n",
"print('Case(d): Power factor angle , \u03b8 = %.2f\u00b0 leading' %theta)\n",
"print('Case(e): Difference angle at 0.8 PF , \u03b4 = %.2f\u00b0 ' %delta)\n",
"print('Case(f): Generated phase voltage , E_gp = %.f V' %E_gp_f)\n",
"print('Case(g): Generated phase voltage , E_gp = %.f\u2220%.2f\u00b0 V' %(abs(E_gp_g),cmath.phase(E_gp_g)*180/math.pi))\n",
"print('Case(h): Generated phase voltage , E_gp = %.f\u2220%.2f\u00b0 V' %(abs(E_gp_h),cmath.phase(E_gp_h)*180/math.pi))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Line current , I_L = 97.55 A\n",
" Phase armature current , I_ap = 97.55 A\n",
"Case(b): Impedance per phase , Z_p\u2220\u03b2 = 4.232\u222082.94\u00b0 \u03a9\n",
"Case(c): Magnitude I_aZ_p = E_r = 412.8 V\n",
"Case(d): Power factor angle , \u03b8 = 36.87\u00b0 leading\n",
"Case(e): Difference angle at 0.8 PF , \u03b4 = 119.81\u00b0 \n",
"Case(f): Generated phase voltage , E_gp = 3687 V\n",
"Case(g): Generated phase voltage , E_gp = 3687\u22205.58\u00b0 V\n",
"Case(h): Generated phase voltage , E_gp = 3687\u222042.45\u00b0 V\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.5, Page number 242"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"E_gp = 3687.0 #Generated phase voltage(V)\n",
"V_L = 6000.0 #Line voltage(V)\n",
"E_r = 412.8 #EMF(V)\n",
"V_p = V_L/3**0.5 #Phase voltage(V)\n",
"delta = 119.82 #Difference angle(degree)\n",
"theta = 36.87 #Power factor angle(degree)\n",
"R_a = 0.52 #Effective armature resistance(ohm)\n",
"X_s = 4.2 #Synchronous reactance(ohm)\n",
"I_a = 97.55 #Armature current(A)\n",
"\n",
"#Calculation\n",
"alpha_1 = math.acos((E_gp**2+V_p**2-E_r**2)/(2*E_gp*V_p))*180/math.pi #Torque angle(degree)\n",
"alpha_2 = math.asin(E_r*math.sin(delta*math.pi/180)/E_gp)*180/math.pi #Torque angle(degree)\n",
"alpha_3 = theta-math.atan((V_p*math.sin(theta*math.pi/180)+I_a*X_s)/(V_p*math.cos(theta*math.pi/180)-I_a*R_a))*180/math.pi #Torque angle(degree)\n",
"\n",
"#Result\n",
"print('Case(a): Torque angle , \u03b1 = %.2f\u00b0 '%alpha_1)\n",
"print('Case(b): Torque angle , \u03b1 = %.2f\u00b0 '%alpha_2)\n",
"print('Case(c): Torque angle , \u03b1 = %.2f\u00b0 '%alpha_3)\n",
"print('\\nNOTE: ERROR : Negative sign is not mentioned in angle \u03b1 part(c) in textbook answer')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Torque angle , \u03b1 = 5.57\u00b0 \n",
"Case(b): Torque angle , \u03b1 = 5.57\u00b0 \n",
"Case(c): Torque angle , \u03b1 = -5.58\u00b0 \n",
"\n",
"NOTE: ERROR : Negative sign is not mentioned in angle \u03b1 part(c) in textbook answer\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.6, Page number 242"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"P = 2.0 #Number of poles\n",
"hp = 1000.0 #Power rating of the synchronous motor(hp)\n",
"V_L = 6000.0 #Line voltage(V)\n",
"f = 60.0 #Frequency(Hz)\n",
"P_t = 811.0 #Input power(kW)\n",
"PF = 0.8 #Power factor leading\n",
"E_gp = 3687.0 #Generated phase voltage(V)\n",
"I_a = 97.55 #Armature current(A)\n",
"E_gpI_a = 42.45 #Angle between Generated phase voltage and armature current(degree)\n",
"\n",
"#Calculation\n",
"P_p = E_gp*I_a*math.cos(E_gpI_a*math.pi/180)/1000 #Mechanical power developed per phase(kW)\n",
"P_t_a = 3*P_p #Total mechanical power developed(kW)\n",
"P_t_b = P_t_a/0.746 #Internal power developed at rated load(hp)\n",
"S = 120*f/P #Speed of the motor(rpm)\n",
"T_int = P_t_b*5252/S #Internal torque developed(lb-ft)\n",
"T_ext = hp*5252/3600 #External torque developed(lb-ft)\n",
"n = T_ext/T_int*100 #Motor efficiency(%)\n",
"\n",
"#Result\n",
"print('Case(a): Mechanical power developed in the armature per phase , P_p = %.3f kW' %P_p)\n",
"print(' Total Mechanical power developed in the armature , P_t = %.1f kW' %P_t_a)\n",
"print('Case(b): Internal power developed at rated load , P_t = %.1f hp' %P_t_b)\n",
"print('Case(c): Internal torque developed , T_int = %.f lb-ft' %T_int)\n",
"print('Case(d): Motor efficiency , \u03b7 = %.1f percent' %n)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Mechanical power developed in the armature per phase , P_p = 265.386 kW\n",
" Total Mechanical power developed in the armature , P_t = 796.2 kW\n",
"Case(b): Internal power developed at rated load , P_t = 1067.2 hp\n",
"Case(c): Internal torque developed , T_int = 1557 lb-ft\n",
"Case(d): Motor efficiency , \u03b7 = 93.7 percent\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.7, Page number 244"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import cmath\n",
"\n",
"#Variable declaration\n",
"P_o = 2000.0 #Total power consumed by a factory from the transformer(kW)\n",
"pf_tr = 0.6 #Lagging power factor at which power is consumed from the transformer\n",
"V_L = 6000.0 #Primary line voltage of a transformer(V)\n",
"P = 750.0 #Power expected to be delivered by the dc motor-generator(kW)\n",
"hp = 1000.0 #Rating of the motor(hp)\n",
"V_L_m = 6000.0 #Line voltage of a synchronous motor(V)\n",
"pf_sm = 0.8 #Leading power factor of the synchronous motor\n",
"pf_im = 0.8 #Lagging power factor of the induction motor\n",
"n = 0.92 #Efficiency of each motor\n",
"\n",
"#Calculation\n",
"#Case(a)\n",
"P_m_a = hp*746/n #Induction/synchronous motor load(kW)\n",
"I_1_a = P_m_a/(3**0.5*V_L*pf_im)*cmath.exp(1j*-math.acos(pf_im)) #Lagging current drawn by induction motor(A)\n",
"I_1_prime = P_o*1000/(3**0.5*V_L*pf_tr)*cmath.exp(1j*-math.acos(pf_tr)) #Original lagging factory load current(A)\n",
"I_TM = I_1_a+I_1_prime #Total load current(A)\n",
"angle_I_TM = cmath.phase(I_TM)*180/math.pi #Angle of total load current(degree)\n",
"PF_1 = math.cos(angle_I_TM*math.pi/180) #Overall sysytem PF\n",
"#Case(b)\n",
"I_s1 = P_m_a/(3**0.5*V_L*pf_sm)*cmath.exp(1j*math.acos(pf_sm)) #Leading current drawn by synchronous motor(A)\n",
"I_TSM = I_s1+I_1_prime #Total load current(A)\n",
"angle_I_TSM = cmath.phase(I_TSM)*180/math.pi #Angle of total load current(degree)\n",
"PF_2 = math.cos(angle_I_TSM*math.pi/180) #Overall sysytem PF\n",
"#Case(c)\n",
"percent_I_L = (abs(I_TM)-abs(I_TSM))/abs(I_TM)*100 #Percent reduction in total load current(%)\n",
"\n",
"#Result\n",
"print('Case(a): Total load current of the induction motor , I_TM = %.1f\u2220%.1f\u00b0 A' %(abs(I_TM),angle_I_TM))\n",
"print(' Power factor of the induction motor , Overall system PF = %.4f lagging' %PF_1)\n",
"print('Case(b): Total load current of the synchronous motor , I_TSM = %.1f\u2220%.1f\u00b0 A' %(abs(I_TSM),angle_I_TSM))\n",
"print(' Power factor of the synchronous motor , Overall system PF = %.1f lagging' %PF_2)\n",
"print('Case(c): Percent reduction in total load current = %.1f percent' %percent_I_L)\n",
"print('Case(d): PF improvement: Using the synchronous motor raises the total system PF from %.4f lagging to %.1f lagging' %(PF_1,PF_2))\n",
"print('\\nNOTE: Changes in obtained answer is due to precision and error in some data in the textbook solution')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Total load current of the induction motor , I_TM = 415.3\u2220-49.4\u00b0 A\n",
" Power factor of the induction motor , Overall system PF = 0.6513 lagging\n",
"Case(b): Total load current of the synchronous motor , I_TSM = 335.3\u2220-36.2\u00b0 A\n",
" Power factor of the synchronous motor , Overall system PF = 0.8 lagging\n",
"Case(c): Percent reduction in total load current = 19.3 percent\n",
"Case(d): PF improvement: Using the synchronous motor raises the total system PF from 0.6513 lagging to 0.8 lagging\n",
"\n",
"NOTE: Changes in obtained answer is due to precision and error in some data in the textbook solution\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.8, Page number 245"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"P = 6.0 #Number of poles\n",
"f = 60.0 #Frequency(Hz)\n",
"V_L = 440.0 #Line voltage(V)\n",
"alpha = 20.0 #At no-load, the rotor is retarded 0.5 mechanical degree from its synchronous position\n",
"X_s = 2.4 #Synchronous reactance(ohm)\n",
"R_a = 0.1 #Effective armature resistance(ohm)\n",
"E_gp = 240.0 #Generated phase voltage(V)\n",
"V_p = V_L/3**0.5 #Phase voltage(V)\n",
"\n",
"#Calculation\n",
"S = 120*f/P #Speed(rpm)\n",
"T_p = 7.04*E_gp*V_p*math.sin(alpha*math.pi/180)/(S*X_s) #Torque developed per phase(lb-ft)\n",
"Horsepower = 3*T_p*S/5252 #Total horsepower developed(hp)\n",
"\n",
"#Result\n",
"print('Case(a): Torque developed per phase , T_p = %.2f lb-ft' %T_p)\n",
"print('Case(b): Total horsepower developed , Horsepower = %.1f hp' %Horsepower)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Torque developed per phase , T_p = 50.97 lb-ft\n",
"Case(b): Total horsepower developed , Horsepower = 34.9 hp\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.9, Page number 251"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import cmath\n",
"\n",
"#Variable declaration\n",
"P_o = 2000.0 #Total power consumed by a factory(kW) \n",
"pf = 0.6 #Lagging power factor\n",
"V = 6000.0 #Line voltage(V)\n",
"loss = 275.0 #Synchronous capacitor losses(kW)\n",
"\n",
"#Calculation\n",
"#Case(a)\n",
"S_o_conjugate = P_o/pf #Apparent complex power(kW)\n",
"sin_theta = (1-pf**2)**0.5 #Sin\u03b8\n",
"jQ_o = S_o_conjugate*sin_theta #Original kilovars of lagging load(kvar)\n",
"#Case(b)\n",
"jQ_c = -jQ_o #Kilovars of correction needed to bring the PF to unity(kvar)\n",
"#Case(c)\n",
"R = loss #Synchronous capacitor losses(kW)\n",
"S_c_conjugate = complex(R,jQ_c) #kVA rating of the synchronous capacitor(kVA)\n",
"angle_S_c_conjugate = cmath.phase(S_c_conjugate)*180/math.pi #Angle of #kVA rating of the synchronous capacitor(degree)\n",
"PF = math.cos(angle_S_c_conjugate*math.pi/180) #Power factor of the synchronous capacitor\n",
"#Case(d)\n",
"I_o = S_o_conjugate*1000/V #Original current drawn from the mains(A)\n",
"#Case(e)\n",
"P_f = P_o+loss #Total power(kW)\n",
"S_f = P_f #Total apparent power(kW)\n",
"I_f = S_f*1000/V #Final current drawn from the mains after correction(A)\n",
"\n",
"#Result\n",
"print('Case(a): Original kilovars of lagging load , jQ_o = j%.1f kvar' %jQ_o)\n",
"print('Case(b): Kilovars of correction needed to bring the PF to unity , -jQ_c = %.1fj kvar' %jQ_c)\n",
"print('Case(c): kVA rating of the synchronous capacitor , S_*c = %.f\u2220%.1f\u00b0 kVA' %(abs(S_c_conjugate),angle_S_c_conjugate))\n",
"print(' Power factor of the synchronous capacitor = %.3f leading' %PF)\n",
"print('Case(d): Original current drawn from the mains , I_o = %.1f A' %I_o)\n",
"print('Case(e): Final current drawn from the mains after correction , I_f = %.1f A' %I_f)\n",
"print('Case(f): See fig.8-25 in textbook page no.251')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Original kilovars of lagging load , jQ_o = j2666.7 kvar\n",
"Case(b): Kilovars of correction needed to bring the PF to unity , -jQ_c = -2666.7j kvar\n",
"Case(c): kVA rating of the synchronous capacitor , S_*c = 2681\u2220-84.1\u00b0 kVA\n",
" Power factor of the synchronous capacitor = 0.103 leading\n",
"Case(d): Original current drawn from the mains , I_o = 555.6 A\n",
"Case(e): Final current drawn from the mains after correction , I_f = 379.2 A\n",
"Case(f): See fig.8-25 in textbook page no.251\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.10, Page number 254"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"kVA = 10000.0 #Rating of a system(kVA)\n",
"PF = 0.65 #Power factor of the system\n",
"PF_2 = 0.85 #Raised lagging PF\n",
"cost = 60.0 #Cost of the synchronous capacitor to improve the PF($/kVA)\n",
"\n",
"#Calculation\n",
"#Case(a)\n",
"kW_a = kVA*PF #Power(kW)\n",
"sin_theta = (1-PF**2)**0.5 #Sin\u03b8\n",
"kvar = kVA*sin_theta #Reactive power(kvar)\n",
"kVA_a = kvar\n",
"cost_cap_a = kVA_a*cost #Cost of raising the PF to unity PF($)\n",
"#Case(b)\n",
"kVA_b = kW_a/PF_2 #kVA of final system(kVA)\n",
"sin_theta_b = (1-PF_2**2)**0.5 #Sin\u03b8\n",
"kvar_b = kVA_b*sin_theta_b #kvar of final system(kvar)\n",
"kvar_add = kvar-kvar_b #kvar of correction added(kvar)\n",
"kVA_b = kvar_add\n",
"cost_cap_b = kVA_b*cost #Cost of raising the PF to 0.85 PF($)\n",
"\n",
"#Result\n",
"print('Case(a): Cost of raising the PF to Unity PF = $%.f ' %cost_cap_a)\n",
"print('Case(b): Cost of raising the PF to 0.85 PF lagging = $%.f ' %cost_cap_b)\n",
"print('\\nNOTE: Slight variations in the obtained answer is due to non-approximation of the values while calculating in python')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Cost of raising the PF to Unity PF = $455961 \n",
"Case(b): Cost of raising the PF to 0.85 PF lagging = $214260 \n",
"\n",
"NOTE: Slight variations in the obtained answer is due to non-approximation of the values while calculating in python\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.11, Page number 255"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"S_conjugate = 1000.0 #Apparent complex power(kVA)\n",
"PF = 0.6 #Lagging PF\n",
"\n",
"#Calculation\n",
"P_o = S_conjugate*PF #Active power dissipated by the load(kW)\n",
"sin_theta = (1-PF**2)**0.5 #Sin\u03b8\n",
"jQ_o = S_conjugate*sin_theta #Inductive reactive quadrature power drawn from and returned to the supply(kvar)\n",
"\n",
"#Result\n",
"print('Case(a): Active(true) power originally dissipated by load , P_o = %.f kW' %P_o)\n",
"print('Case(b): Inductive reactive quadrature power drawn from and returned to supply , +jQ_o = j%.f kvar' %jQ_o)\n",
"print('Case(c): The original power triangle is shown in Fig.8-26a in textbook page no.255')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Active(true) power originally dissipated by load , P_o = 600 kW\n",
"Case(b): Inductive reactive quadrature power drawn from and returned to supply , +jQ_o = j800 kvar\n",
"Case(c): The original power triangle is shown in Fig.8-26a in textbook page no.255\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.12, Page number 255"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"S_conjugate = 1000.0 #Apparent complex power(kVA)\n",
"PF = 0.8 #Lagging PF\n",
"jQ_o = 800.0 #Inductive reactive quadrature power drawn from and returned to the supply(kvar)\n",
"P_o = 600.0 #Active power dissipated by the load(kW)\n",
"PF1 = 0.6 #Lagging PF from ex 8.11\n",
"\n",
"#Calculation\n",
"P_f = S_conjugate*PF #Final active power supplied by the alternator(kW)\n",
"sin_theta = (1-PF**2)**0.5 #Sin\u03b8\n",
"jQ_f = S_conjugate*sin_theta #Reactive power stored and returned to the supply(kvar)\n",
"P_a = P_f-P_o #Additional active power that may be supplied to new consumer(kW)\n",
"jQ_a = jQ_f-jQ_o #Correction kilovars required to raise PF from 0.6 to 0.8 lagging(kvar)\n",
"S_c = 0-jQ_a #Rating of correction capacitors needed(kVA)\n",
"\n",
"#Result\n",
"print('Case(a): Final active power supplied by the alternator , P_f = %.f kW' %P_f)\n",
"print('Case(b): Reactive power stored and returned to the supply , +jQ_f = j%.f kvar' %jQ_f)\n",
"print('Case(c): Additional active power that may be supplied to new consumer , P_a = %.f kW' %P_a)\n",
"print('Case(d): Correction kilovars required to raise PF from 0.6 to 0.8 lagging , -jQ_a = %.fj kvar' %jQ_a)\n",
"print('Case(e): Rating of correction capacitors needed to accomplish above correction , S_*c = %.f kVA' %S_c)\n",
"print('Case(f): The power tabulation grid is shown below:')\n",
"print('_____________________________________________________________________')\n",
"print('\\t P(kW) \\t \u00b1jQ(kvar) \\t S*(kVA) \\t Lagging cos\u03b8')\n",
"print('_____________________________________________________________________')\n",
"print('Original %.f \\t\\t j%.f \\t\\t %.f \\t\\t %.1f ' %(P_o,jQ_o,S_conjugate,PF1))\n",
"print('Added %.f \\t\\t %.fj \\t - \\t\\t - ' %(P_a,jQ_a))\n",
"print('Final %.f \\t\\t j%.f \\t\\t %.f \\t\\t %.1f ' %(P_f,jQ_f,S_conjugate,PF))\n",
"print('_____________________________________________________________________')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Final active power supplied by the alternator , P_f = 800 kW\n",
"Case(b): Reactive power stored and returned to the supply , +jQ_f = j600 kvar\n",
"Case(c): Additional active power that may be supplied to new consumer , P_a = 200 kW\n",
"Case(d): Correction kilovars required to raise PF from 0.6 to 0.8 lagging , -jQ_a = -200j kvar\n",
"Case(e): Rating of correction capacitors needed to accomplish above correction , S_*c = 200 kVA\n",
"Case(f): The power tabulation grid is shown below:\n",
"_____________________________________________________________________\n",
"\t P(kW) \t \u00b1jQ(kvar) \t S*(kVA) \t Lagging cos\u03b8\n",
"_____________________________________________________________________\n",
"Original 600 \t\t j800 \t\t 1000 \t\t 0.6 \n",
"Added 200 \t\t -200j \t - \t\t - \n",
"Final 800 \t\t j600 \t\t 1000 \t\t 0.8 \n",
"_____________________________________________________________________\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.13, Page number 256"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"S_conjugate = 1000.0 #Apparent complex power(kVA)\n",
"PF = 1.0 #Unity PF\n",
"jQ_o = 800.0 #Inductive reactive quadrature power drawn from and returned to the supply(kvar)\n",
"P_o = 600.0 #Active power dissipated by the load(kW)\n",
"PF1 = 0.6 #Lagging PF from ex 8.11\n",
"\n",
"#Calculation\n",
"P_f = S_conjugate*PF #Final active power supplied by the alternator(kW)\n",
"sin_theta = (1-PF**2)**0.5 #Sin\u03b8\n",
"jQ_f = S_conjugate*sin_theta #Reactive power stored and returned to the supply(kvar)\n",
"P_a = P_f-P_o #Additional active power that may be supplied to new consumer(kW)\n",
"jQ_a = jQ_f-jQ_o #Correction kilovars required to raise PF from 0.6 to 0.8 lagging(kvar)\n",
"S_c = 0-jQ_a #Rating of correction capacitors needed(kVA)\n",
"\n",
"#Result\n",
"print('Case(a): Final active power supplied by the alternator , P_f = %.f kW' %P_f)\n",
"print('Case(b): Reactive power stored and returned to the supply , +jQ_f = j%.f kvar' %jQ_f)\n",
"print('Case(c): Additional active power that may be supplied to new consumer , P_a = %.f kW' %P_a)\n",
"print('Case(d): Correction kilovars required to raise PF from 0.6 to 0.8 lagging , -jQ_a = %.fj kvar' %jQ_a)\n",
"print('Case(e): Rating of correction capacitors needed to accomplish above correction , S_*c = %.f kVA' %S_c)\n",
"print('Case(f): The power tabulation grid is shown below:')\n",
"print('_____________________________________________________________________')\n",
"print('\\t P(kW) \\t \u00b1jQ(kvar) \\t S*(kVA) \\t cos\u03b8')\n",
"print('_____________________________________________________________________')\n",
"print('Original %.f \\t\\t j%.f \\t\\t %.f \\t\\t %.1f ' %(P_o,jQ_o,S_conjugate,PF1))\n",
"print('Added %.f \\t\\t %.fj \\t - \\t\\t - ' %(P_a,jQ_a))\n",
"print('Final %.f \\t\\t %.f \\t\\t %.f \\t\\t %.1f ' %(P_f,jQ_f,S_conjugate,PF))\n",
"print('_____________________________________________________________________')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Final active power supplied by the alternator , P_f = 1000 kW\n",
"Case(b): Reactive power stored and returned to the supply , +jQ_f = j0 kvar\n",
"Case(c): Additional active power that may be supplied to new consumer , P_a = 400 kW\n",
"Case(d): Correction kilovars required to raise PF from 0.6 to 0.8 lagging , -jQ_a = -800j kvar\n",
"Case(e): Rating of correction capacitors needed to accomplish above correction , S_*c = 800 kVA\n",
"Case(f): The power tabulation grid is shown below:\n",
"_____________________________________________________________________\n",
"\t P(kW) \t \u00b1jQ(kvar) \t S*(kVA) \t cos\u03b8\n",
"_____________________________________________________________________\n",
"Original 600 \t\t j800 \t\t 1000 \t\t 0.6 \n",
"Added 400 \t\t -800j \t - \t\t - \n",
"Final 1000 \t\t 0 \t\t 1000 \t\t 1.0 \n",
"_____________________________________________________________________\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.14, Page number 256"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import cmath\n",
"\n",
"#Variable declaration\n",
"P_o = 2000.0 #Load drawn by a factory(kW)\n",
"pf_o = 0.6 #Lagging PF\n",
"pf_f = 0.85 #lagging PF required\n",
"P_a = 275.0 #Losses in the synchronous capacitor(kW)\n",
"\n",
"#Calculation\n",
"S_o_conjugate = P_o/pf_o #Original kVA load drawn from the utility(kVA) \n",
"sin_theta_o = (1-pf_o**2)**0.5 #Sin\u03b8\n",
"jQ_o = S_o_conjugate*sin_theta_o #Original lagging kilovars(kvar)\n",
"P_f = P_o+P_a #Final system active power consumed from the utility(kW)\n",
"S_f_conjugate = (P_f/pf_f)*cmath.exp(1j*-math.acos(pf_f)) #Final kVA load drawn from the utility(kVA)\n",
"sin_theta_f = (1-pf_f**2)**0.5 #Sin\u03b8\n",
"jQ_f = abs(S_f_conjugate)*sin_theta_f #Final lagging kvar\n",
"jQ_a = jQ_f-jQ_o #Correction kvar produced by the synchronous capacitor(kvar)\n",
"S_a_conjugate = complex(P_a,jQ_a) #kVA rating of the synchronous capacitor(kVA)\n",
"angle_S_a_conjugate = cmath.phase(S_a_conjugate)*180/math.pi #Angle(degree)\n",
"pf_S_a_conjugate = math.cos(angle_S_a_conjugate*math.pi/180) #Leading PF\n",
"\n",
"#Result\n",
"print('Case(a): Original kVA load drawn from the utility , S_*o = %.1f kVA' %S_o_conjugate)\n",
"print('Case(b): Original lagging kilovars , jQ_o = j%.f kvar' %jQ_o)\n",
"print('Case(c): Final system active power consumed from the utility , P_f = %.f kW' %P_f)\n",
"print('Case(d): Final kVA load drawn from the utility , S_*f = %.1f\u2220%.1f\u00b0 kVA' %(abs(S_f_conjugate),cmath.phase(S_f_conjugate)*180/math.pi))\n",
"print('Case(e): Correction kilovars produced by the synchronous capacitor , -jQ_a = %.fj kvar' %jQ_a)\n",
"print('Case(f): kVA rating of the synchronous capacitor , S_*a = %.f\u2220%.2f\u00b0 kVA' %(abs(S_a_conjugate),cmath.phase(S_a_conjugate)*180/math.pi))\n",
"print('Case(g): Power tabulation grid: ')\n",
"print('_____________________________________________________________________')\n",
"print('\\t P(kW) \\t \u00b1jQ(kvar) \\t S*(kVA) \\t cos\u03b8')\n",
"print('_____________________________________________________________________')\n",
"print('Original %.f \\t\\t j%.f \\t %.1f \\t\\t %.1f lag' %(P_o,jQ_o,S_o_conjugate,pf_o))\n",
"print('Added %.f \\t\\t %.fj \\t %.f \\t\\t %.3f lead' %(P_a,jQ_a,abs(S_a_conjugate),pf_S_a_conjugate))\n",
"print('Final %.f \\t\\t j%.f \\t %.1f \\t\\t %.2f lag' %(P_f,jQ_f,abs(S_f_conjugate),pf_f))\n",
"print('_____________________________________________________________________')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Original kVA load drawn from the utility , S_*o = 3333.3 kVA\n",
"Case(b): Original lagging kilovars , jQ_o = j2667 kvar\n",
"Case(c): Final system active power consumed from the utility , P_f = 2275 kW\n",
"Case(d): Final kVA load drawn from the utility , S_*f = 2676.5\u2220-31.8\u00b0 kVA\n",
"Case(e): Correction kilovars produced by the synchronous capacitor , -jQ_a = -1257j kvar\n",
"Case(f): kVA rating of the synchronous capacitor , S_*a = 1286\u2220-77.66\u00b0 kVA\n",
"Case(g): Power tabulation grid: \n",
"_____________________________________________________________________\n",
"\t P(kW) \t \u00b1jQ(kvar) \t S*(kVA) \t cos\u03b8\n",
"_____________________________________________________________________\n",
"Original 2000 \t\t j2667 \t 3333.3 \t\t 0.6 lag\n",
"Added 275 \t\t -1257j \t 1286 \t\t 0.214 lead\n",
"Final 2275 \t\t j1410 \t 2676.5 \t\t 0.85 lag\n",
"_____________________________________________________________________\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.15, Page number 257"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import cmath\n",
"\n",
"#Variable declaration\n",
"S_f_conjugate = 3333.3 #Rating of alternator(kVA)\n",
"S_o_conjugate = complex(2275,1410) #Load(kVA)\n",
"PF = 0.8 #Lagging power factor\n",
"\n",
"#Calculation\n",
"#Case(a)\n",
"a = 1.0 #Co-efficient of x^2\n",
"b = 5332.0 #Co-efficient of x\n",
"c = -3947163.0 #Constant\n",
"sol_1 = (-b+(b**2-4*a*c)**0.5)/(2*a) #Solution 1\n",
"sol_2 = (-b-(b**2-4*a*c)**0.5)/(2*a) #Solution 1\n",
"x = sol_1\n",
"#Case(b)\n",
"P_a = PF*x #Added active power of the additional load(kW)\n",
"sin_theta = (1-PF**2)**0.5 #Sin\u03b8\n",
"Q_a = sin_theta*x #Added reactive power of the additional load(kvar)\n",
"#Case(c)\n",
"P_o = S_o_conjugate.real #Real power(kW)\n",
"Q_o = S_o_conjugate.imag #Reactive power(kvar)\n",
"P_f = P_o+P_a #Final active power supplied by alternator(kW)\n",
"Q_f = Q_o+Q_a #Final reactive power supplied by alternator(kvar)\n",
"#Case(d)\n",
"PF_final = P_f/S_f_conjugate #Final PF of the alternator\n",
"\n",
"#Result\n",
"print('Case(a): Additional kVA load that may be added without overloading the alternator , x = S_*a = %.2f kVA' %x)\n",
"print('Case(b): Added active power of the additional load , P_a = %.1f kW' %P_a)\n",
"print(' Added reactive power of the additional load , Q_a = j%.2f kvar' %Q_a)\n",
"print('Case(c): Final active power supplied by alternator , P_f = %.1f kW' %P_f)\n",
"print(' Final reactive power supplied by alternator , Q_f = j%.1f kvar' %Q_f)\n",
"print('Case(d): Final PF of the alternator , PF = %.3f lagging' %PF_final)\n",
"print('Power tabulation grid: ')\n",
"print('_____________________________________________________________________')\n",
"print('\\t P(kW) \\t \u00b1jQ(kvar) \\t S*(kVA) \\t cos\u03b8')\n",
"print('_____________________________________________________________________')\n",
"print('Original %.f \\t\\t j%.f \\t %.1f \\t\\t %.2f lag' %(P_o,Q_o,abs(S_o_conjugate),math.cos(cmath.phase(S_o_conjugate))))\n",
"print('Added %.1fx \\t\\t j%.1fx \\t %.fx \\t\\t %.1f lag' %(PF,sin_theta,(PF**2+sin_theta**2),PF))\n",
"print('Final (%.f+%.1fx) \\t (%.f+%.1fx) \\t %.1f \\t\\t %.3f lag' %(P_o,PF,Q_o,sin_theta,S_f_conjugate,PF_final))\n",
"print('_____________________________________________________________________')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Additional kVA load that may be added without overloading the alternator , x = S_*a = 658.86 kVA\n",
"Case(b): Added active power of the additional load , P_a = 527.1 kW\n",
" Added reactive power of the additional load , Q_a = j395.32 kvar\n",
"Case(c): Final active power supplied by alternator , P_f = 2802.1 kW\n",
" Final reactive power supplied by alternator , Q_f = j1805.3 kvar\n",
"Case(d): Final PF of the alternator , PF = 0.841 lagging\n",
"Power tabulation grid: \n",
"_____________________________________________________________________\n",
"\t P(kW) \t \u00b1jQ(kvar) \t S*(kVA) \t cos\u03b8\n",
"_____________________________________________________________________\n",
"Original 2275 \t\t j1410 \t 2676.5 \t\t 0.85 lag\n",
"Added 0.8x \t\t j0.6x \t 1x \t\t 0.8 lag\n",
"Final (2275+0.8x) \t (1410+0.6x) \t 3333.3 \t\t 0.841 lag\n",
"_____________________________________________________________________\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.16, Page number 258"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import cmath\n",
"\n",
"#Variable declaration\n",
"S_o_conjugate = complex(2275,1410) #Load(kVA)\n",
"theta_S_o_conjugate = cmath.phase(S_o_conjugate)*180/math.pi #Angle of load(degree)\n",
"S_a_conjugate = complex(527.1,395.32) #Additional load(kVA)\n",
"theta_S_a_conjugate = cmath.phase(S_a_conjugate)*180/math.pi #Angle of additional load(degree)\n",
"S_f_conjugate = complex(2802.1,1805.32) #Final load(kVA)\n",
"theta_S_f_conjugate = cmath.phase(S_f_conjugate)*180/math.pi #Angle of final load(degree)\n",
"\n",
"#Calculation\n",
"x = S_o_conjugate+S_a_conjugate+(-S_f_conjugate) #Tellegens theorem\n",
"\n",
"#Result\n",
"if(x==0):\n",
" print('Validity is checked Tellegens theorem , S_*o + S_*a + (_S_*f) = %.f' %abs(x))\n",
"else:\n",
" print('Validity is not checked')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Validity is checked Tellegens theorem , S_*o + S_*a + (_S_*f) = 0\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.17, Page number 258"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import cmath\n",
"\n",
"#Variable declaration\n",
"kW = 40000.0 #Load on a factory(kW)\n",
"PF = 0.8 #Lagging PF\n",
"hp = 7500.0 #Power rating of the induction motor(hp)\n",
"PF_IM = 0.75 #Lagging PF of the induction motor\n",
"n = 0.91 #Efficiency of induction motor\n",
"PF_SM = 1.0 #Power factor of the synchronous motor\n",
"\n",
"#Calculation\n",
"kVA_original = kW/PF #Original kVA\n",
"sin_theta = (1-PF**2)**0.5 #Sin\u03b8\n",
"kvar_original = kVA_original*sin_theta #Original kvar\n",
"kW_IM = hp*746/(1000*n) #Induction motor(kW)\n",
"kVA_IM = kW_IM/PF_IM #Induction motor(kVA)\n",
"sin_theta_IM = (1-PF_IM**2)**0.5 #Sin\u03b8\n",
"kvar_IM = kVA_IM*sin_theta_IM #Induction motor(kvar)\n",
"kvar_final = kvar_original-kvar_IM #Final kvar\n",
"kVA_final = complex(kW,kvar_final) #Final kVA\n",
"angle_kVA_final = cmath.phase(kVA_final)*180/math.pi #Angle of Final kVA(degree)\n",
"PF_final = math.cos(angle_kVA_final*math.pi/180) #Final power factor\n",
"\n",
"#Result\n",
"print('Overall system PF using a unity PF synchronous motor , Final PF = %.3f lagging' %PF_final)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Overall system PF using a unity PF synchronous motor , Final PF = 0.852 lagging\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.18, Page number 259"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import cmath\n",
"\n",
"#Variable declaration\n",
"kW = 40000.0 #Load on a factory(kW)\n",
"PF = 0.8 #Lagging PF\n",
"hp = 7500.0 #Power rating of the synchronous motor(hp)\n",
"PF_SM = 0.8 #Lagging PF of the synchronous motor\n",
"n = 0.91 #Efficiency of synchronous motor\n",
"hp_IM = 7500.0 #Power rating of the induction motor(hp)\n",
"PF_IM = 0.75 #Lagging PF of the induction motor\n",
"\n",
"\n",
"#Calculation\n",
"kVA_original = kW/PF #Original kVA\n",
"sin_theta = (1-PF**2)**0.5 #Sin\u03b8\n",
"kvar_original = kVA_original*sin_theta #Original kvar\n",
"kW_IM = hp_IM*746/(1000*n) #Induction motor(kW)\n",
"kVA_IM = kW_IM/PF_IM #Induction motor(kVA)\n",
"sin_theta_IM = (1-PF_IM**2)**0.5 #Sin\u03b8\n",
"kvar_IM = kVA_IM*sin_theta_IM #Induction motor(kvar)\n",
"kvar_final_IM = kvar_original-kvar_IM #Final kvar\n",
"kW_SM = hp*746/(1000*n) #synchronous motor(kW)\n",
"kVA_SM = kW_SM/PF_SM #synchronous motor(kVA)\n",
"sin_theta_SM = (1-PF_SM**2)**0.5 #Sin\u03b8\n",
"kvar_SM = kVA_SM*sin_theta_SM #synchronous(kvar)\n",
"kvar_final = kvar_original-kvar_SM-kvar_IM #Final kvar\n",
"kVA_final = complex(kW,kvar_final) #Final kVA\n",
"angle_kVA_final = cmath.phase(kVA_final)*180/math.pi #Angle of Final kVA(degree)\n",
"PF_final = math.cos(angle_kVA_final*math.pi/180) #Final power factor\n",
"\n",
"#Result\n",
"print('Case(a): Overall system PF using a unity PF synchronous motor , Final PF = %.3f lagging' %PF_final)\n",
"print('Case(b): In Ex.8-17, a 6148 kVA, unity PF, 7500 hp synchronous motor is needed. In Ex.8-18, a 7685 kVA, 0.8 PF leading, 7500 hp synchronous motor is needed')\n",
"print(' Ex.8-18b shows that a 0.8 PF leading, 7500 hp synchronous motor must be physically larger than a unity PF, 7500 hp synchronous motor because of its higher kVA rating')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Overall system PF using a unity PF synchronous motor , Final PF = 0.895 lagging\n",
"Case(b): In Ex.8-17, a 6148 kVA, unity PF, 7500 hp synchronous motor is needed. In Ex.8-18, a 7685 kVA, 0.8 PF leading, 7500 hp synchronous motor is needed\n",
" Ex.8-18b shows that a 0.8 PF leading, 7500 hp synchronous motor must be physically larger than a unity PF, 7500 hp synchronous motor because of its higher kVA rating\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.19, Page number 259"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import cmath\n",
"\n",
"#Variable declaration\n",
"kVA_load = 500.0 #Load(kVA)\n",
"PF_load = 0.65 #Lagging PF of load\n",
"hp = 200.0 #Power rating of the system(hp)\n",
"n = 0.88 #Efficiency of the system after adding the load\n",
"PF_final = 0.85 #Final lagging PF after adding the load\n",
"\n",
"#Calculation\n",
"kW_original = kVA_load*PF_load #Original kW\n",
"sin_theta_load = (1-PF_load**2)**0.5 #Sin\u03b8\n",
"kvar_original = kVA_load*sin_theta_load #Original kvar\n",
"kW_SM = hp*746/(1000*n) #Synchronous motor kW\n",
"#Case(a)\n",
"kW_final = kW_original+kW_SM #Final kW of the system with the motor added\n",
"kVA_final = kW_final/PF_final #Final kVA of the system with the motor added\n",
"PF_system = kW_final/kVA_final #Final PF of the system with the motor added\n",
"sin_theta_system = (1-PF_final**2)**0.5 #Sin\u03b8\n",
"kvar_final = kVA_final*sin_theta_system #Final kvar of the system with the motor added\n",
"#Case(b)\n",
"kvar_SM = kvar_final-kvar_original #kvar rating of the synchronous motor\n",
"kVA_SM = complex(kW_SM,kvar_SM) #kVA rating of the synchronous motor\n",
"kVA_SM_a = cmath.phase(kVA_SM)*180/math.pi #Angle of kVA rating of the synchronous motor(degree)\n",
"PF_SM = math.cos(kVA_SM_a*math.pi/180) #PF of the sychronous motor\n",
"\n",
"#Result\n",
"print('Case(a): kVA of the system with the motor added , Final kVA = %.f kVA' %kVA_final)\n",
"print(' PF of the system with the motor added , System PF = %.2f lagging' %PF_system)\n",
"print('Case(b): kVA of the synchronous motor , Synchronous motor kVa = %.f\u2220%.1f\u00b0 kVA' %(abs(kVA_SM),kVA_SM_a))\n",
"print(' PF of the synchronous motor at which it operates , Synchronous motor PF = %.3f leading' %PF_SM)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): kVA of the system with the motor added , Final kVA = 582 kVA\n",
" PF of the system with the motor added , System PF = 0.85 lagging\n",
"Case(b): kVA of the synchronous motor , Synchronous motor kVa = 185\u2220-23.4\u00b0 kVA\n",
" PF of the synchronous motor at which it operates , Synchronous motor PF = 0.918 leading\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.20, Page number 261"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"f_m = 60.0 #Frequency of motor(Hz)\n",
"f_a = 4000.0 #Frequency of alternator(Hz)\n",
"\n",
"#Calculation\n",
"Pole_ratio = f_a/f_m #Ratio of number of poles in alternator to that of motor\n",
"P_a = 20.0\n",
"P_m = 3.0\n",
"P_a1 = 2*P_a #First combination must have 40 poles on the alternator\n",
"P_m1 = 2*P_m #First combination must have 6 poles on the synchronous motor\n",
"S_1 = 120*f_m/P_m1 #Speed of motor and alternator(rpm)\n",
"P_a2 = 4*P_a #Second combination must have 40 poles on the alternator\n",
"P_m2 = 4*P_m #Second combination must have 6 poles on the synchronous motor\n",
"S_2 = 120*f_m/P_m2 #Speed of motor and alternator(rpm)\n",
"P_a3 = 6*P_a #Third combination must have 40 poles on the alternator\n",
"P_m3 = 6*P_m #Third combination must have 6 poles on the synchronous motor\n",
"S_3 = 120*f_m/P_m3 #Speed of motor and alternator(rpm)\n",
"\n",
"#Result\n",
"print('First combination have %.f poles on the alternator and %.f poles on the synchronous motor at a speed %.f rpm' %(P_a1,P_m1,S_1))\n",
"print('Second combination have %.f poles on the alternator and %.f poles on the synchronous motor at a speed %.f rpm' %(P_a2,P_m2,S_2))\n",
"print('Third combination have %.f poles on the alternator and %.f poles on the synchronous motor at a speed %.f rpm' %(P_a3,P_m3,S_3))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"First combination have 40 poles on the alternator and 6 poles on the synchronous motor at a speed 1200 rpm\n",
"Second combination have 80 poles on the alternator and 12 poles on the synchronous motor at a speed 600 rpm\n",
"Third combination have 120 poles on the alternator and 18 poles on the synchronous motor at a speed 400 rpm\n"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|