1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER 7: PARALLEL OPERATION"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.1, Page number 182"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"R_sh = 120.0 #Shunt field resistance(ohm)\n",
"R_a = 0.1 #Armature resistance(ohm)\n",
"V_L = 120.0 #Line voltage(V)\n",
"E_g1 = 125.0 #Generated voltage by dynamo A(V)\n",
"E_g2 = 120.0 #Generated voltage by dynamo B(V)\n",
"E_g3 = 114.0 #Generated voltage by dynamo C(V)\n",
"\n",
"#Calculation\n",
"#Case(a) #1\n",
"I_gA = (E_g1-V_L)/R_a #Current in the generating dynamo A(A)\n",
"I_f = V_L/R_sh #Shunt field current(A)\n",
"I_a1 = I_gA+I_f #Armature current for dynamo A(A)\n",
"I_L1 = I_gA #Current delivered by dynamo A to the bus(A)\n",
"#2\n",
"I_gB = (E_g2-V_L)/R_a #Current in the generating dynamo B(A)\n",
"I_a2 = I_gB+I_f #Armature current for dynamo B(A)\n",
"I_L2 = I_gB #Current delivered by dynamo B to the bus(A)\n",
"#3\n",
"I_gC = (V_L-E_g3)/R_a #Current in the generating dynamo C(A)\n",
"I_a3 = I_gC #Armature current for dynamo C(A)\n",
"I_L3 = I_gC+I_f #Current received by dynamo C from the bus(A)\n",
"#Case(b) #1\n",
"P_LA = V_L*I_L1 #Power delivered to the bus by dynamo A(W)\n",
"P_gA = E_g1*I_a1 #Power generated by dynamo A(W)\n",
"#2\n",
"P_LB = V_L*I_L2 #Power delivered to the bus by dynamo B(W)\n",
"P_gB = E_g2*I_a2 #Power generated by dynamo B(W)\n",
"#3\n",
"P_LC = V_L*I_L3 #Power delivered by the bus to dynamo C(W)\n",
"P_gC = E_g3*I_a3 #Power generated by dynamo C(W)\n",
"\n",
"#Result\n",
"print('Case(a) 1: Line current delivered by dynamo A to the bus , I_LA = %.f A' %I_L1)\n",
"print(' Armature current , I_a = %.f A' %I_a1)\n",
"print(' 2: Line current delivered by dynamo B to the bus , I_LB = %.f A. Thus dynamo B is floating' %I_L2)\n",
"print(' Armature current , I_a = %.f A' %I_a2)\n",
"print(' 3: Line current received by dynamo C from the bus , I_LC = %.f A' %I_L3)\n",
"print(' Armature current , I_a = %.f A' %I_a3)\n",
"print('\\nCase(b) 1: Power delivered to the bus by dynamo A , P_LA = %.f W' %P_LA)\n",
"print(' Power generated by dynamo A , P_gA = %.f W' %P_gA)\n",
"print(' 2: Dynamo B neither receives or delivers power , P_LB = %.f W' %P_LB)\n",
"print(' Power generated by dynamo B to excite its field , P_gB = %.f W' %P_gB)\n",
"print(' 3: Power delivered by the bus to dynamo C , P_LC = %.f W' %P_LC)\n",
"print(' Internal power delivered in the direction of rotation of its prime mover , P_gC = %.f W' %P_gC)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a) 1: Line current delivered by dynamo A to the bus , I_LA = 50 A\n",
" Armature current , I_a = 51 A\n",
" 2: Line current delivered by dynamo B to the bus , I_LB = 0 A. Thus dynamo B is floating\n",
" Armature current , I_a = 1 A\n",
" 3: Line current received by dynamo C from the bus , I_LC = 61 A\n",
" Armature current , I_a = 60 A\n",
"\n",
"Case(b) 1: Power delivered to the bus by dynamo A , P_LA = 6000 W\n",
" Power generated by dynamo A , P_gA = 6375 W\n",
" 2: Dynamo B neither receives or delivers power , P_LB = 0 W\n",
" Power generated by dynamo B to excite its field , P_gB = 120 W\n",
" 3: Power delivered by the bus to dynamo C , P_LC = 7320 W\n",
" Internal power delivered in the direction of rotation of its prime mover , P_gC = 6840 W\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.2, Page number 182"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"R_a = 0.1 #Armature resistance(ohm)\n",
"R_f = 100.0 #Field circuit resistance(ohm)\n",
"V_L_b = 120.0 #Bus voltage(V)\n",
"V_L_a = 140.0 #Generated voltage of the generator(V)\n",
"\n",
"#Calculation\n",
"#Case(a)\n",
"V_f = V_L_a #Voltage across the field(V)\n",
"I_f_a = V_f/R_f #Field current(A)\n",
"I_a_a = I_f_a #Armature current(A)\n",
"E_g_a = V_L_a+I_a_a*R_a #Generated EMF(V)\n",
"P_g_a = E_g_a*I_a_a #Generated power(W)\n",
"#Case(b)\n",
"I_a_b = (E_g_a-V_L_b)/R_a #Armature current(A)\n",
"I_f_b = V_L_b/R_f #Field current(A)\n",
"I_Lg = I_a_b-I_f_b #Generated line current(A)\n",
"P_L = V_L_b*I_Lg #Power generated across the lines(W)\n",
"E_g_b = V_L_a\n",
"P_g_b = E_g_b*I_a_b #Generated power(W)\n",
"\n",
"#Result\n",
"print('Case(a): Generated current before it is connected to the bus , I_a = %.1f A' %I_a_a)\n",
"print(' Generated power before it is connected to the bus , P_g = %.1f W' %P_g_a)\n",
"print('Case(b): Generated armature current after it is connected to the bus , I_a = %.1f A' %I_a_b)\n",
"print(' Generated line current after it is connected to the bus , I_Lg = %.1f A' %I_Lg)\n",
"print(' Generated power across the line after it is connected to the bus , P_g = %.f W' %P_L)\n",
"print(' Generated power after it is connected to the bus , P_g = %.f W' %P_g_b)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Generated current before it is connected to the bus , I_a = 1.4 A\n",
" Generated power before it is connected to the bus , P_g = 196.2 W\n",
"Case(b): Generated armature current after it is connected to the bus , I_a = 201.4 A\n",
" Generated line current after it is connected to the bus , I_Lg = 200.2 A\n",
" Generated power across the line after it is connected to the bus , P_g = 24024 W\n",
" Generated power after it is connected to the bus , P_g = 28196 W\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.3, Page number 183"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"R_a1 = 0.1 #Armature resistance of shunt generator 1(ohm)\n",
"R_a2 = 0.1 #Armature resistance of shunt generator 2(ohm)\n",
"R_a3 = 0.1 #Armature resistance of shunt generator 3(ohm)\n",
"R_L = 2.0 #Load resistance(ohm)\n",
"E_g1 = 127.0 #Voltage generated by shunt generator 1(V)\n",
"E_g2 = 120.0 #Voltage generated by shunt generator 2(V)\n",
"E_g3 = 119.0 #Voltage generated by shunt generator 3(V)\n",
"\n",
"#Calculation\n",
"#Case(a)\n",
"V_L = ((E_g1/R_a1)+(E_g2/R_a2)+(E_g3/R_a3))/((1/R_a1)+(1/R_a2)+(1/R_a3)+(1/R_L))\n",
"#Case(b)\n",
"I_L1 = (E_g1-V_L)/R_a1 #Current delivered/received by generator 1(A)\n",
"I_L2 = (E_g2-V_L)/R_a2 #Current delivered/received by generator 2(A)\n",
"I_L3 = (E_g3-V_L)/R_a3 #Current delivered/received by generator 3(A)\n",
"I_L = -V_L/R_L #Current received by 2 ohm load(A)\n",
"#Case(c)\n",
"I_a1 = I_L1 #Armature current for generator 1(A)\n",
"I_a2 = I_L2 #Armature current for generator 2(A)\n",
"I_a3 = I_L3 #Armature current for generator 3(A)\n",
"P_g1 = E_g1*I_a1 #Power generated by generator 1(W)\n",
"P_g2 = E_g2*I_a2 #Power generated by generator 2(W)\n",
"P_g3 = E_g3*I_a3 #Power generated by generator 3(W)\n",
"#Case(d)\n",
"P_L1 = V_L*I_L1 #Power delivered/received from generator 1(W)\n",
"P_L2 = V_L*I_L2 #Power delivered/received from generator 2(W)\n",
"P_L3 = V_L*I_L3 #Power delivered/received from generator 3(W)\n",
"P_L = V_L*I_L #Power delivered/received from 2 ohm load(W)\n",
"\n",
"#Result\n",
"print('Case(a): Terminal bus voltage , V_L = %.f V' %V_L)\n",
"print('Case(b): Current delivered to the bus by generator 1 , I_L1 = %.f A (to bus)' %I_L1)\n",
"print(' Current delivered to the bus by generator 2 , I_L2 = %.f A' %I_L2)\n",
"print(' Current received by the generator 3 from the bus , I_L3 = %.f A (from bus)' %I_L3)\n",
"print(' Current received from the bus by load , I_L3 = %.f A (from bus)' %I_L)\n",
"print('Case(c): Power generated by generator 1 , P_g1 = %.f W' %P_g1)\n",
"print(' Power generated by generator 2 , P_g2 = %.f W (floating)' %P_g2)\n",
"print(' Power generated by generator 3 , P_g3 = %.f W' %P_g3)\n",
"print('Case(d): Power delivered to the bus from generator 1 , P_L1 = %.f W' %P_L1)\n",
"print(' Power delivered to the bus from generator 2 , P_L2 = %.f W' %P_L2)\n",
"print(' Power received from the bus by generator 3 , P_L2 = %.f W' %P_L3)\n",
"print(' Power received from the bus by load , P_L = %.f W' %P_L)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Terminal bus voltage , V_L = 120 V\n",
"Case(b): Current delivered to the bus by generator 1 , I_L1 = 70 A (to bus)\n",
" Current delivered to the bus by generator 2 , I_L2 = 0 A\n",
" Current received by the generator 3 from the bus , I_L3 = -10 A (from bus)\n",
" Current received from the bus by load , I_L3 = -60 A (from bus)\n",
"Case(c): Power generated by generator 1 , P_g1 = 8890 W\n",
" Power generated by generator 2 , P_g2 = 0 W (floating)\n",
" Power generated by generator 3 , P_g3 = -1190 W\n",
"Case(d): Power delivered to the bus from generator 1 , P_L1 = 8400 W\n",
" Power delivered to the bus from generator 2 , P_L2 = 0 W\n",
" Power received from the bus by generator 3 , P_L2 = -1200 W\n",
" Power received from the bus by load , P_L = -7200 W\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.4, Page number 184"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"P1 = 300.0 #Power rating of generator 1(kW)\n",
"P2 = 600.0 #Power rating of generator 2(kW)\n",
"V = 220.0 #Voltage rating of generator 1 and 2(V)\n",
"V_o = 250.0 #No-load voltage applied to both the generators(V)\n",
"V_1 = 230.0 #Terminal voltage(V)\n",
"V_2 = 240.0 #Terminal voltage(V)\n",
"\n",
"#Calculation\n",
"#Case(a)\n",
"kW1_a = (V_o-V_1)/(V_o-V)*P1 #Load carried by generator 1(kW)\n",
"kW2_a = (V_o-V_1)/(V_o-V)*P2 #Load carried by generator 2(kW)\n",
"#Case(b)\n",
"kW1_b = (V_o-V_2)/(V_o-V)*P1 #Load carried by generator 1(kW)\n",
"kW2_b = (V_o-V_2)/(V_o-V)*P2 #Load carried by generator 2(kW)\n",
"#Case(c)\n",
"frac_a = (V_o-V_1)/(V_o-V) #Fraction of rated kW carried by each generator\n",
"frac_b = (V_o-V_2)/(V_o-V) #Fraction of rated kW carried by each generator\n",
"\n",
"#Result\n",
"print('Case(a): When the terminal voltage is 230 V Generator 1 carries = %.f kW' %kW1_a)\n",
"print(' When the terminal voltage is 230 V Generator 2 carries = %.f kW' %kW2_a)\n",
"print('Case(b): When the terminal voltage is 240 V Generator 1 carries = %.f kW' %kW1_b)\n",
"print(' When the terminal voltage is 240 V Generator 2 carries = %.f kW' %kW2_b)\n",
"print('Case(c): Both generators carry no-load at 250 V ; %.3f rated load at %d V ; %.3f rated load at %d V ; and rated load at %d V ;' %(frac_b,V_2,frac_a,V_1,V))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): When the terminal voltage is 230 V Generator 1 carries = 200 kW\n",
" When the terminal voltage is 230 V Generator 2 carries = 400 kW\n",
"Case(b): When the terminal voltage is 240 V Generator 1 carries = 100 kW\n",
" When the terminal voltage is 240 V Generator 2 carries = 200 kW\n",
"Case(c): Both generators carry no-load at 250 V ; 0.333 rated load at 240 V ; 0.667 rated load at 230 V ; and rated load at 220 V ;\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.5, Page number 191"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"E_1 = 220.0 #Terminal voltage of alternator 1(V)\n",
"E_2 = 222.0 #Terminal voltage of alternator 2(V)\n",
"f_1 = 60.0 #Frequency of alternator 1(Hz)\n",
"f_2 = 59.5 #Frequency of alternator 2(Hz)\n",
"\n",
"#Calculation\n",
"E_max = (E_1+E_2)/2 #Maximum effective voltage across each lamp(V) \n",
"E_min = (E_2-E_1)/2 #Minimum effective voltage across each lamp(V) \n",
"f = f_1-f_2 #Frequency of the voltage across the lamps(Hz)\n",
"E_peak = E_max/0.7071 #Peak value of the voltage across each lamp(V)\n",
"n = (1.0/2)*f_1 #Number of maximum light pulsations per minute\n",
"\n",
"#Result\n",
"print('Case(a): Maximum effective voltage across each lamp , E_max/lamp = %.f V (rms)' %E_max)\n",
"print(' Minimum effective voltage across each lamp , E_min/lamp = %.f V' %E_min)\n",
"print('Case(b): Frequency of the voltage across the lamps , f = %.1f Hz' %f)\n",
"print('Case(c): Peak value of the voltage across each lamp , E_peak = %.f V' %E_peak)\n",
"print('Case(d): Number of maximum light pulsations per minute , n = %.f pulsations/min' %n)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Maximum effective voltage across each lamp , E_max/lamp = 221 V (rms)\n",
" Minimum effective voltage across each lamp , E_min/lamp = 1 V\n",
"Case(b): Frequency of the voltage across the lamps , f = 0.5 Hz\n",
"Case(c): Peak value of the voltage across each lamp , E_peak = 313 V\n",
"Case(d): Number of maximum light pulsations per minute , n = 30 pulsations/min\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.6, Page number 191"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"E_1 = 220.0 #Voltage generated by alternator 1(V)\n",
"E_2 = 220.0 #Voltage generated by alternator 2(V)\n",
"f_1 = 60.0 #Frequency of alternator 1(Hz)\n",
"f_2 = 58.0 #Frequency of alternator 2(Hz)\n",
"\n",
"#Calculation\n",
"E_max = (E_1+E_2)/2 #Maximum effective voltage across each lamp(V)\n",
"f = f_1-f_2 #Frequency of the voltage across the lamp(Hz)\n",
"E_min = (E_2-E_1)/2 #Minimum effective voltage across each lamp(V) \n",
"\n",
"#Result\n",
"print('Case(a): Maximum effective voltage across each lamp , E_max/lamp = %.f V' %E_max)\n",
"print(' Frequency of the voltage across each lamp , f = %.f Hz' %f)\n",
"print('Case(b): The voltages are equal and opposite in the local circuit')\n",
"print('Case(c): Minimum effective voltage across each lamp , E_min/lamp = %.f V' %E_min)\n",
"print(' Frequency of the voltage across each lamp , f = 0 Hz')\n",
"print('Case(d): The voltages are in phase in the local circuit')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Maximum effective voltage across each lamp , E_max/lamp = 220 V\n",
" Frequency of the voltage across each lamp , f = 2 Hz\n",
"Case(b): The voltages are equal and opposite in the local circuit\n",
"Case(c): Minimum effective voltage across each lamp , E_min/lamp = 0 V\n",
" Frequency of the voltage across each lamp , f = 0 Hz\n",
"Case(d): The voltages are in phase in the local circuit\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.7, Page number 193"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import cmath\n",
"\n",
"#Variable declaration\n",
"E_1 = 220.0 #Terminal voltage of alternator 1(V) From Ex. 7-5\n",
"E_2 = 222.0 #Terminal voltage of alternator 2(V)\n",
"f_1 = 60.0 #Frequency of alternator 1(Hz)\n",
"f_2 = 59.5 #Frequency of alternator 2(Hz)\n",
"E1 = 220.0 #Voltage generated by alternator 1(V) From Ex. 7-6\n",
"E2 = 220.0 #Voltage generated by alternator 2(V)\n",
"f1 = 60.0 #Frequency of alternator 1(Hz)\n",
"f2 = 58.0 #Frequency of alternator 2(Hz)\n",
"R_a1 = 0.1 #Armature resistance of alternator 1(ohm)\n",
"R_a2 = 0.1 #Armature resistance of alternator 2(ohm)\n",
"X_a1 = 0.9 #Armature reactance of alternator 1(ohm)\n",
"X_a2 = 0.9 #Armature reactance of alternator 2(ohm)\n",
"\n",
"#Calculation\n",
"Z_1 = complex(R_a1,X_a1) #Effective impedance of alternator 1(ohm)\n",
"Z_2 = complex(R_a2,X_a2) #Effective impedance of alternator 2(ohm)\n",
"#In Ex.7-5\n",
"E_r = E_2-E_1 #Effective voltage generated(V) \n",
"I_s = E_r/(Z_1+Z_2) #Synchronizing current in the armature(A)\n",
"#In Ex.7-6\n",
"Er = E2 -E1 #Effective voltage generated(V)\n",
"Is = Er/(Z_1+Z_2) #Synchronizing current in the armature(A)\n",
"\n",
"#Result\n",
"print('In Ex.7-5 the synchronizing current in the armatures of both alternators , I_s = %.3f\u2220%.2f\u00b0 A' %(abs(I_s),cmath.phase(I_s)*180/math.pi))\n",
"print('In Ex.7-6 the synchronizing current in the armatures of both alternators , I_s = %.f\u2220%.f\u00b0 A' %(abs(Is),cmath.phase(Is)*180/math.pi))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"In Ex.7-5 the synchronizing current in the armatures of both alternators , I_s = 1.104\u2220-83.66\u00b0 A\n",
"In Ex.7-6 the synchronizing current in the armatures of both alternators , I_s = 0\u22200\u00b0 A\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.8, Page number 195"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import cmath\n",
"\n",
"#Variable declaration\n",
"E_gp1 = 200.0 #Terminal voltage of alternator 1(V)\n",
"E_gp2 = 220.0 #Terminal voltage of alternator 2(V)\n",
"R_a1 = 0.2 #Armature resistance of alternator 1(ohm)\n",
"R_a2 = 0.2 #Armature resistance of alternator 2(ohm)\n",
"X_a1 = 2.0 #Armature reactance of alternator 1(ohm)\n",
"X_a2 = 2.0 #Armature reactance of alternator 1(ohm)\n",
"\n",
"#Calculation\n",
"#Case(a)\n",
"Z_p1 = complex(R_a1,X_a1) #Effective impedance of alternator 1(ohm)\n",
"Z_p2 = complex(R_a2,X_a2) #Effective impedance of alternator 2(ohm)\n",
"E_r = (E_gp2-E_gp1) #Effective voltage generated(V)\n",
"I_s = E_r/(Z_p1+Z_p2) #Synchronizing current in the armature(A)\n",
"Is = abs(I_s) #Magnitude of Synchronizing current(A)\n",
"theta = cmath.phase(I_s)*180/math.pi #Angle of Synchronizing current(degree)\n",
"P_2 = E_gp2*Is*math.cos(theta*math.pi/180) #Generator action developed by alternator 2(W)\n",
"#Case(b)\n",
"P_1 = -E_gp1*Is*math.cos(theta*math.pi/180) #Synchronizing power received by alternator 1(W) \n",
"#Case(c)\n",
"P1 = abs(P_1) #Magnitude of P1(W)\n",
"losses = P_2-P1 #Power loss in both armatures(W)\n",
"check = E_r*Is*math.cos(theta*math.pi/180) #Verifying losses(W) by Eq.7-7\n",
"double_check = Is**2*(R_a1+R_a2) #Verifying losses(W) by Eq.7-7\n",
"#Case(d)\n",
"V_p2 = E_gp2-Is*abs(Z_p2) #Generator action(V)\n",
"V_p1 = E_gp1+Is*abs(Z_p1) #Motor action(V)\n",
"\n",
"#Result\n",
"print('Case(a): Generator action developed by alternator 2 , P_2 = %.1f W' %P_2)\n",
"print('Case(b): Synchronizing power received by alternator 1 , P_1 = %.1f W' %P_1)\n",
"print('Case(c): Power loss in both armature , Losses = %.f W' %losses)\n",
"print('Case(d): Terminal voltage of alternator 2 , V_p2 = %.f V (generator action)' %V_p2)\n",
"print(' Terminal voltage of alternator 1 , V_p2 = %.f V (motor action)' %V_p1)\n",
"print('Case(e): Phasor diagram is shown in Fig 7-14 in textbook page no 195')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Generator action developed by alternator 2 , P_2 = 108.9 W\n",
"Case(b): Synchronizing power received by alternator 1 , P_1 = -99.0 W\n",
"Case(c): Power loss in both armature , Losses = 10 W\n",
"Case(d): Terminal voltage of alternator 2 , V_p2 = 210 V (generator action)\n",
" Terminal voltage of alternator 1 , V_p2 = 210 V (motor action)\n",
"Case(e): Phasor diagram is shown in Fig 7-14 in textbook page no 195\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.9, Page number 199"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import cmath\n",
"\n",
"#Variable declaration\n",
"E_2 = 230.0*cmath.exp(1j*180.0*math.pi/180) #Voltage generated by alternator 2(V)\n",
"E_1 = 230.0*cmath.exp(1j*20.0*math.pi/180) #Voltage generated by alternator 1(V)\n",
"Z = 2.01*cmath.exp(1j*84.3*math.pi/180) #Impedance(ohm)\n",
"\n",
"#Calculation\n",
"E_r = E_2+E_1 #Total voltage generated by Alternator 1 and 2(V)\n",
"Z_1 = Z\n",
"Z_2 = Z\n",
"#Case(a)\n",
"I_s = E_r/(Z_1+Z_2) #Synchronizing current(A)\n",
"Is = abs(I_s) #Magnitude of Synchronizing current(A)\n",
"I_s_a = cmath.phase(I_s)*180/math.pi #Phase angle of Synchronizing current(degrees)\n",
"#Case(b)\n",
"E_gp1 = abs(E_1)\n",
"E_gp1_Is = (cmath.phase(E_1)*180/math.pi)-I_s_a #Angle(degree)\n",
"P_1 = E_gp1*Is*math.cos(E_gp1_Is*math.pi/180) #Synchronizing power developed by alternator 1(W)\n",
"#Case(c)\n",
"E_gp2 = abs(E_2)\n",
"E_gp2_Is = (cmath.phase(E_2)*180/math.pi)-I_s_a #Angle(degree)\n",
"P_2 = E_gp2*Is*math.cos(E_gp2_Is*math.pi/180) #Synchronizing power developed by alternator 2(W)\n",
"#Case(d)\n",
"P2 = abs(P_2);\n",
"losses = P_1-P2 #Losses in the armature(W)\n",
"theta = cmath.phase(Z)*180/math.pi #Angle(degree)\n",
"check = abs(E_r)*Is*math.cos(theta*math.pi/180) #Verifying losses(W) by Eq.7-7\n",
"R_aT = 2*Z.real #Total armature resistance of alternator 1 and 2(ohm)\n",
"double_check = Is**2*R_aT #Verifying losses(W) by Eq.7-7\n",
"\n",
"#Result\n",
"print('Case(a): Synchronizing current , I_s = %.2f\u2220%.1f\u00b0 A' %(Is,I_s_a))\n",
"print('Case(b): Synchronizing power developed by alternator 1 , P_1 = %.f W (power delivered to bus)' %P_1)\n",
"print('Case(c): Synchronizing power developed by alternator 2 , P_2 = %.f W (power received from bus)' %P_2)\n",
"print('Case(d): Losses in the armature , Losses = %.f W' %losses)\n",
"print('\\nNOTE: Changes in obtained answer from that of textbook is due to more precision i.e more number of decimal places')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Synchronizing current , I_s = 19.87\u222015.7\u00b0 A\n",
"Case(b): Synchronizing power developed by alternator 1 , P_1 = 4557 W (power delivered to bus)\n",
"Case(c): Synchronizing power developed by alternator 2 , P_2 = -4400 W (power received from bus)\n",
"Case(d): Losses in the armature , Losses = 158 W\n",
"\n",
"NOTE: Changes in obtained answer from that of textbook is due to more precision i.e more number of decimal places\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.10, Page number 200"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import cmath\n",
"\n",
"#Variable declaration\n",
"E_2 = 230.0*cmath.exp(1j*180.0*math.pi/180) #Voltage generated by alternator 2(V)\n",
"E_1 = 230.0*cmath.exp(1j*20.0*math.pi/180) #Voltage generated by alternator 1(V)\n",
"Z = 6.0*cmath.exp(1j*50.0*math.pi/180) #Impedance(ohm)\n",
"\n",
"#Calculation\n",
"E_r = E_2+E_1 #Total voltage generated by Alternator 1 and 2(V)\n",
"Z_1 = Z\n",
"Z_2 = Z\n",
"#Case(a)\n",
"I_s = E_r/(Z_1+Z_2) #Synchronizing current(A)\n",
"Is = abs(I_s) #Magnitude of Synchronizing current(A)\n",
"I_s_a = cmath.phase(I_s)*180/math.pi #Phase angle of Synchronizing current(degrees)\n",
"#Case(b)\n",
"E_gp1 = abs(E_1)\n",
"E_gp1_Is = (cmath.phase(E_1)*180/math.pi)-I_s_a #Angle(degree)\n",
"P_1 = E_gp1*Is*math.cos(E_gp1_Is*math.pi/180) #Synchronizing power developed by alternator 1(W)\n",
"#Case(c)\n",
"E_gp2 = abs(E_2)\n",
"E_gp2_Is = (cmath.phase(E_2)*180/math.pi)-I_s_a #Angle(degree)\n",
"P_2 = E_gp2*Is*math.cos(E_gp2_Is*math.pi/180) #Synchronizing power developed by alternator 2(W)\n",
"#Case(d)\n",
"P2 = abs(P_2);\n",
"losses = P_1-P2 #Losses in the armature(W)\n",
"theta = cmath.phase(Z)*180/math.pi #Angle(degree)\n",
"check = abs(E_r)*Is*math.cos(theta*math.pi/180) #Verifying losses(W) by Eq.7-7\n",
"R_aT = 2*Z.real #Total armature resistance of alternator 1 and 2(ohm)\n",
"double_check = Is**2*R_aT #Verifying losses(W) by Eq.7-7\n",
"\n",
"#Result\n",
"print('Case(a): Synchronizing current , I_s = %.2f\u2220%.1f\u00b0 A' %(Is,I_s_a))\n",
"print('Case(b): Synchronizing power developed by alternator 1 , P_1 = %.f W (power delivered to bus)' %P_1)\n",
"print('Case(c): Synchronizing power developed by alternator 2 , P_2 = %.f W (power received from bus)' %P_2)\n",
"print('Case(d): Losses in the armature , Losses = %.f W' %losses)\n",
"print('\\nNOTE: Changes in obtained answer from that of textbook is due to more precision i.e more number of decimal places')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Synchronizing current , I_s = 6.66\u222050.0\u00b0 A\n",
"Case(b): Synchronizing power developed by alternator 1 , P_1 = 1326 W (power delivered to bus)\n",
"Case(c): Synchronizing power developed by alternator 2 , P_2 = -984 W (power received from bus)\n",
"Case(d): Losses in the armature , Losses = 342 W\n",
"\n",
"NOTE: Changes in obtained answer from that of textbook is due to more precision i.e more number of decimal places\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7.11, Page number 207"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import cmath\n",
"import numpy\n",
"\n",
"#Variable declaration\n",
"V_AB = 100.0*cmath.exp(1j*0.0*math.pi/180) #Voltage supplied across A & B(V)\n",
"V_BC = 100.0*cmath.exp(1j*-120.0*math.pi/180) #Voltage supplied across B & C(V)\n",
"V_CA = 100.0*cmath.exp(1j*120.0*math.pi/180) #Voltage supplied across C & A(V)\n",
"I1_1 = complex(6,0)\n",
"I1_2 = complex(-3,0)\n",
"I2_1 = complex(-3,0)\n",
"I2_2 = complex(3,-4)\n",
"V_1 = complex(100,0)\n",
"V_2 = complex(-50,-86.6)\n",
"\n",
"#Calculation\n",
"A = [[I1_1,I2_1],[I1_2,I2_2]] #Matrix containing mesh equations array\n",
"delta = numpy.linalg.det(A) #Determinant of A\n",
"#Case(a)\n",
"I_1 = numpy.linalg.det([[V_1,I2_1],[V_2,I2_2]])/delta #Mesh current I_1(A) \n",
"I_2 = numpy.linalg.det([[I1_1,V_1],[I1_2,V_2]])/delta #Mesh current I_2(A) \n",
"#Case(b)\n",
"I_A = I_1 #Line current(A)\n",
"I_B = I_2-I_1 #Line current(A)\n",
"I_C = -I_2 #Line current(A)\n",
"#Case(c)\n",
"Z_A = complex(3,0) #Impedance(ohm)\n",
"Z_B = complex(3,0) #Impedance(ohm)\n",
"Z_C = complex(0,-4) #Impedance(ohm)\n",
"V_AO = I_A*Z_A #Phase voltage(V)\n",
"V_BO = I_B*Z_B #Phase voltage(V)\n",
"V_CO = I_C*Z_C #Phase voltage(V)\n",
"\n",
"#Result\n",
"print('Case(a): Mesh current , I_1 = (%.3f%.4fj) A = %.1f\u2220%.2f\u00b0 A' %(I_1.real,I_1.imag,abs(I_1),cmath.phase(I_1)*180/math.pi))\n",
"print(' Mesh current , I_2 = (%.2f%.3fj) A = %.2f\u2220%.2f\u00b0 A' %(I_2.real,I_2.imag,abs(I_2),cmath.phase(I_2)*180/math.pi))\n",
"print('Case(a): Line current , I_A = (%.2f%.3fj) A = %.1f\u2220%.2f\u00b0 A' %(I_A.real,I_A.imag,abs(I_A),cmath.phase(I_A)*180/math.pi))\n",
"print(' Line current , I_B = (%.3f%.3fj) A = %.3f\u2220%.2f\u00b0 A' %(I_B.real,I_B.imag,abs(I_B),cmath.phase(I_B)*180/math.pi))\n",
"print(' Line current , I_C = (%.2f+%.3fj) A = %.2f\u2220%.2f\u00b0 A' %(I_C.real,I_C.imag,abs(I_C),cmath.phase(I_C)*180/math.pi))\n",
"print('Case(c): Phase voltage , V_AO = %.1f\u2220%.2f\u00b0 V' %(abs(V_AO),cmath.phase(V_AO)*180/math.pi))\n",
"print(' Phase voltage , V_BO = %.2f\u2220%.1f\u00b0 V' %(abs(V_BO),cmath.phase(V_BO)*180/math.pi))\n",
"print(' Phase voltage , V_CO = %.2f\u2220%.2f\u00b0 V' %(abs(V_CO),cmath.phase(V_CO)*180/math.pi))\n",
"print('Case(d): The phasor diagram is shown in fig 7-23b in textbook page no.208')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Mesh current , I_1 = (26.157-3.5589j) A = 26.4\u2220-7.75\u00b0 A\n",
" Mesh current , I_2 = (18.98-7.118j) A = 20.27\u2220-20.56\u00b0 A\n",
"Case(a): Line current , I_A = (26.16-3.559j) A = 26.4\u2220-7.75\u00b0 A\n",
" Line current , I_B = (-7.176-3.559j) A = 8.010\u2220-153.62\u00b0 A\n",
" Line current , I_C = (-18.98+7.118j) A = 20.27\u2220159.44\u00b0 A\n",
"Case(c): Phase voltage , V_AO = 79.2\u2220-7.75\u00b0 V\n",
" Phase voltage , V_BO = 24.03\u2220-153.6\u00b0 V\n",
" Phase voltage , V_CO = 81.09\u222069.44\u00b0 V\n",
"Case(d): The phasor diagram is shown in fig 7-23b in textbook page no.208\n"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|