1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER 3: DC DYNAMO VOLTAGE RELATIONS-DC GENERATORS"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.1, Page number 69"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"kW = 150.0 #Power rating of Shunt generator(kW)\n",
"V_1 = 250.0 #Voltage rating of Shunt generator(V)\n",
"V_a = V_1 #Voltage rating of Shunt generator(V)\n",
"R_f = 50.0 #Field resistance(ohm)\n",
"R_a = 0.05 #Armature resistance(ohm)\n",
"\n",
"#Calculation\n",
"I_1 = kW*1000/V_1 #Full-load line current flowing to the load(A)\n",
"I_f = V_1/R_f #Field current(A)\n",
"I_a = I_f+I_1 #Armature current(A)\n",
"E_g = V_a+(I_a*R_a) #Full load generated voltage(V)\n",
"\n",
"#Result\n",
"print('Case(a): Full-load line current flowing to the load , I_1 = %.f A' %I_1)\n",
"print('Case(b): Field current , I_f = %.f A' %I_f)\n",
"print('Case(c): Armature current , I_a = %.f A' %I_a)\n",
"print('Case(d): Full-load generated voltage , E_g = %.2f A' %E_g)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Full-load line current flowing to the load , I_1 = 600 A\n",
"Case(b): Field current , I_f = 5 A\n",
"Case(c): Armature current , I_a = 605 A\n",
"Case(d): Full-load generated voltage , E_g = 280.25 A\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.2, Page number 72"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"kW =100.0 #Power rating of the generator(kW)\n",
"V_1 = 500.0 #Voltage rating of hte generator(V)\n",
"R_a = 0.03 #Armature resistance(ohm)\n",
"R_f = 125.0 #Shunt field resistance(ohm)\n",
"R_s = 0.01 #Series field resistance(ohm)\n",
"I_d = 54.0 #Diverter current(A)\n",
"\n",
"#Calculation\n",
"#Case(a)\n",
"I_1 = kW*1000/V_1 #Full-load line current flowing to the load(A)\n",
"I_f = V_1/R_f #Shunt Field current(A)\n",
"I_a = I_f+I_1 #Armature current(A)\n",
"I_s = I_a-I_d #Series Field current(A)\n",
"R_d = I_s*R_s/I_d #Diverter resistance(ohm)\n",
"#Case(b)\n",
"E_g = V_1+I_a*R_a+I_s*R_s #Generated voltage at full load(V)\n",
"\n",
"#Result\n",
"print('Case(a): Diverter resistance at full load , R_d = %.4f \u03a9' %R_d)\n",
"print('Case(b): Generated voltage at full load , E_g = %.2f V' %E_g)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Diverter resistance at full load , R_d = 0.0278 \u03a9\n",
"Case(b): Generated voltage at full load , E_g = 507.62 V\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.3, Page number 75"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"E_orig = 150.0 #Armature voltage of the generator(V)\n",
"S_orig = 1800.0 #Speed of the generator(rpm)\n",
"S_final_a =2000.0 #Increased Speed of the generator(rpm)\n",
"S_final_b =1600.0 #Increased Speed of the generator(rpm)\n",
"\n",
"#Calculation\n",
"E_final_a = E_orig*(S_final_a/S_orig) #No-load voltage of the generator(V)\n",
"E_final_b = E_orig*(S_final_b/S_orig) #No-load voltage of the generator(V)\n",
"\n",
"#Result\n",
"print('Case(a): No-load voltage of the separately excited generator , E_final = %.2f V' %E_final_a)\n",
"print('Case(b): No-load voltage of the separately excited generator , E_final = %.2f V' %E_final_b)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): No-load voltage of the separately excited generator , E_final = 166.67 V\n",
"Case(b): No-load voltage of the separately excited generator , E_final = 133.33 V\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.4, Page number 75"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"S_final = 1200.0 #Speed of the generator(rpm)\n",
"E_orig_a = 64.3 #Armature voltage of the generator(V) for case a\n",
"S_orig_a = 1205.0 #Varied Speed of the generator(rpm)\n",
"E_orig_b = 82.9 #Armature voltage of the generator(V) for case b\n",
"S_orig_b = 1194.0 #Varied Speed of the generator(rpm)\n",
"E_orig_c = 162.3 #Armature voltage of the generator(V) for case c\n",
"S_orig_c = 1202.0 #Varied Speed of the generator(rpm)\n",
"\n",
"#Calculation\n",
"E_1 = E_orig_a*(S_final/S_orig_a) #No-load voltage of the generator(V)\n",
"E_2 = E_orig_b*(S_final/S_orig_b) #No-load voltage of the generator(V)\n",
"E_3 = E_orig_c*(S_final/S_orig_c) #No-load voltage of the generator(V)\n",
"\n",
"#Result\n",
"print('Case(a): No-load voltage of the generator , E_1 = %.1f V at %.f rpm' %(E_1,S_final))\n",
"print('Case(b): No-load voltage of the generator , E_2 = %.1f V at %.f rpm' %(E_2,S_final))\n",
"print('Case(c): No-load voltage of the generator , E_3 = %.1f V at %.f rpm' %(E_3,S_final))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): No-load voltage of the generator , E_1 = 64.0 V at 1200 rpm\n",
"Case(b): No-load voltage of the generator , E_2 = 83.3 V at 1200 rpm\n",
"Case(c): No-load voltage of the generator , E_3 = 162.0 V at 1200 rpm\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.5, Page number 82"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"V = 125.0 #Rated voltage of the shunt generator(V)\n",
"R_a = 0.15 #Armature resistance(ohm)\n",
"V_a = 0 #Terminal voltage across the load(V)\n",
"I_l = 96.0 #Load current(A)\n",
"I_f = 4.0 #Field current in A\n",
"\n",
"#Calculation\n",
"I_a = I_f+I_l #Armature current(A)\n",
"E_g = V_a+I_a*R_a #Voltage generated in the armature(V)\n",
"\n",
"#Result\n",
"print('Voltage generated in the armature , E_g = %.f V' %E_g)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Voltage generated in the armature , E_g = 15 V\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.6, Page number 84"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"V_nl = 135.0 #No-load voltage of the shunt generator(V)\n",
"V_fl = 125.0 #Full-load voltage of the shunt generator(V)\n",
"\n",
"#Calculation\n",
"VR = (V_nl-V_fl)/V_fl*100 #Voltage regulation(%)\n",
"\n",
"#Result\n",
"print('Voltage regulation , VR = %.f percent' %VR)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Voltage regulation , VR = 8 percent\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.7, Page number 84"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"VR = 0.105 #Voltage regulation\n",
"V_fl = 250.0 #Full-load voltage of the shunt generator(V)\n",
"\n",
"#Calculation\n",
"V_nl = V_fl+(V_fl*VR) #No-load voltage of the generator(V)\n",
"\n",
"#Result\n",
"print('No-load voltage of the generator , V_nl = %.1f V' %V_nl)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"No-load voltage of the generator , V_nl = 276.2 V\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.8, Page number 88"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"N_f = 1000.0 #Shunt field winding(turns/pole)\n",
"N_s = 4.0 #Series field winding(turns/pole)\n",
"I_f = 0.2 #Field current(A)\n",
"I_a = 80.0 #Full-load armature current(A)\n",
"R_s =0.05 #Series field resistance(ohm)\n",
"\n",
"#Calculation\n",
"I_s_N_s = I_f*N_f #Series field ampere-turns\n",
"I_s =(I_s_N_s)/N_s #Desired current in the series field required to produce voltage rise(A)\n",
"I_d = I_a-I_s #Diverter current(A)\n",
"R_d = (I_s*R_s)/I_d #Diverter resistance(ohm)\n",
"\n",
"#Result\n",
"print('Case(a): Number of series field ampere-turns required for flat-compound operation , I_sN_s = %.f At' %I_s_N_s)\n",
"print('Case(b): Diverter resistance required for flat-compound operation , R_d = %.4f \u03a9' %R_d)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Number of series field ampere-turns required for flat-compound operation , I_sN_s = 200 At\n",
"Case(b): Diverter resistance required for flat-compound operation , R_d = 0.0833 \u03a9\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.9, Page number 89"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"kW = 60.0 #Power rating of the generator(kW)\n",
"V = 240.0 #Voltage rating of the generator(V)\n",
"I_f = 3.0 #Increase in the field current(A)\n",
"OC_V = 275.0 #Over-compounded Voltage(V)\n",
"I_l = 250.0 #Rated load current(A)\n",
"N_f = 200.0 #Number of turns per pole in the shunt field winding \n",
"N_s = 5.0 #Number of turns per pole in the series field winding \n",
"R_f = 240.0 #Shunt field resistance(ohm)\n",
"R_s = 0.005 #Series field resistance(ohm)\n",
"\n",
"#Calculation\n",
"#Case(a)\n",
"I_s_N_s = I_f * N_f #Series field ampere-turns\n",
"I_s = (I_s_N_s)/N_s #Desired current in the series field required to produce voltage rise(A)\n",
"I_d = I_l-I_s #Diverter current(A)\n",
"R_d = (I_s*R_s)/I_d #Diverter resistance(ohm)\n",
"#Case(b)\n",
"NL_MMF = (V/R_f)*N_f #No-load MMF(At/pole)\n",
"I_f_N_f = NL_MMF\n",
"FL_MMF = I_f_N_f+I_s_N_s #Full-load MMF(At/pole)\n",
"\n",
"#Result\n",
"print('Case(a): Required diverter resistance , R_d = %.5f \u03a9' %R_d)\n",
"print('Case(b): Total air-gap MMF per pole at no load , No-load MMF = %.f At/pole' %NL_MMF)\n",
"print(' Total air-gap MMF per pole at full load , Full-load MMF = %.f At/pole' %FL_MMF)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Required diverter resistance , R_d = 0.00462 \u03a9\n",
"Case(b): Total air-gap MMF per pole at no load , No-load MMF = 200 At/pole\n",
" Total air-gap MMF per pole at full load , Full-load MMF = 800 At/pole\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.10, Page number 93"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"kW= 50.0 #Power rating of the dynamo(kW)\n",
"V = 125.0 #Rated voltage(V)\n",
"S = 1800.0 #Speed of the dynamo(rpm)\n",
"I_f = 20.0 #Exciting field current(A)\n",
"Max_temp_rise = 25.0 #Maximum Temperature rise(degree celsius)\n",
"I_l = 400.0 #Load Current(A)\n",
"\n",
"#Result\n",
"print('Case(a): Since the speed is reduced in half,we must reduce the kW rating in half.Consequently,the 25kW, 900rpm dynamo has the SAME size');\n",
"print('Case(b): Since we have cut the speed in half but maintained the same kW rating, the dynamo has TWICE the size as the original')\n",
"print('Case(c): HALF the size')\n",
"print('Case(d): SAME size')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Since the speed is reduced in half,we must reduce the kW rating in half.Consequently,the 25kW, 900rpm dynamo has the SAME size\n",
"Case(b): Since we have cut the speed in half but maintained the same kW rating, the dynamo has TWICE the size as the original\n",
"Case(c): HALF the size\n",
"Case(d): SAME size\n"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|