1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER 2: DYNAMO CONSTRUCTION AND WINDINGS"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.1, Page number 48"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"m = 3.0 #Multipicity of the armature\n",
"P = 14.0 #Number of poles\n",
"\n",
"#Calculation\n",
"a_lap = m*P #Number of paths in the armature for lap winding\n",
"a_wave = 2*m #Number of paths in the armature for wave winding\n",
"\n",
"#Result\n",
"print('Case(a): Number of paths in the armature for lap winding , a = %.f paths' %a_lap)\n",
"print('Case(b): Number of paths in the armature for wave winding , a = %.f paths' %a_wave)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Number of paths in the armature for lap winding , a = 42 paths\n",
"Case(b): Number of paths in the armature for wave winding , a = 6 paths\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.2, Page number 48"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"P = 14.0 #Number of poles\n",
"phi = 4.2*10**6 #Flux per pole(lines)\n",
"S = 60.0 #Generator speed(rpm)\n",
"coils = 420.0 #Number of coils\n",
"turns_per_coil = 20.0 #Turns per coil\n",
"conductors_per_turn = 2.0 #Conductors per turn \n",
"a_lap = 42.0 #Number of parallel paths in the armature for a lap winding\n",
"a_wave = 6.0 #Number of parallel paths in the armature for a wave winding\n",
"\n",
"#Calculation\n",
"Z = coils*turns_per_coil*conductors_per_turn #Number of conductors\n",
"E_g_lap = phi*Z*S*P/(60*a_lap)*10**-8 #Generated EMF for lap winding(V)\n",
"E_g_wave = phi*Z*S*P/(60*a_wave)*10**-8 #Generated EMF for wave winding(V)\n",
"\n",
"#Result\n",
"print('Case(a): Generated EMF for lap winding , E_g = %.1f V' %E_g_lap)\n",
"print('Case(b): Generated EMF for wave winding , E_g = %.1f V' %E_g_wave)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Generated EMF for lap winding , E_g = 235.2 V\n",
"Case(b): Generated EMF for wave winding , E_g = 1646.4 V\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.3, Page number 53"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"slots = 72.0 #Number of slots\n",
"P = 4.0 #Number of poles\n",
"coils_spanned = 14.0 #14 slots are spanned while winding the coils\n",
"\n",
"#Calculation\n",
"coil_span = slots/P #Full-pitch coil span(slots/pole)\n",
"p_degree = coils_spanned/coil_span*180 #Span of the coil in electrical degrees\n",
"beta = (180-p_degree) #Beta(degree)\n",
"k_p1 = math.cos(beta/2*(math.pi/180)) #Pitch factor using eq(2-7)\n",
"k_p2 = math.sin(p_degree/2*(math.pi/180)) #Pitch factor using eq(2-8)\n",
"\n",
"#Result\n",
"print('Case(a): Full-pitch coil span = %.f slots/pole' %coil_span)\n",
"print('Case(b): Span of the coil in electrical degrees , p\u00b0 = %.f\u00b0' %p_degree)\n",
"print('Case(c): Pitch factor , k_p = %.2f ' %k_p1)\n",
"print('Case(d): Pitch factor , k_p = %.2f ' %k_p2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Full-pitch coil span = 18 slots/pole\n",
"Case(b): Span of the coil in electrical degrees , p\u00b0 = 140\u00b0\n",
"Case(c): Pitch factor , k_p = 0.94 \n",
"Case(d): Pitch factor , k_p = 0.94 \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.4, Page number 54"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"fractional_pitch = 13.0/16 #Coils having fractional pitch\n",
"slot =96.0 #Number of slots\n",
"P = 6.0 #Number of poles\n",
"\n",
"#Calculation\n",
"p_degree = fractional_pitch*180 #Span of the coil in electrical degrees\n",
"k_p = math.sin(p_degree/2*(math.pi/180)) #Pitch factor\n",
"\n",
"#Result\n",
"print('Pitch factor , k_p = %.4f ' %k_p)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Pitch factor , k_p = 0.9569 \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.5, Page number 54"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"P = 12.0 #Number of poles\n",
"theta = 360.0 #Number of mechanical degrees of rotation\n",
"alpha_b = 180.0 #Number of electrical degrees in case(b)\n",
"\n",
"#Calculation\n",
"alpha = (P*theta)/2 #Number of electrical degrees in one revolution(degree)\n",
"n = alpha/360 #Number of ac cycles\n",
"theta_b = (2*alpha_b)/P #Number of mechanical degrees of rotation\n",
"\n",
"#Result\n",
"print('Case(a): Number of electrical degrees in one revolution , \u03b1 = %.f\u00b0 ' %alpha)\n",
"print(' Number of ac cycles , n = %.f cycles' %n)\n",
"print('Case(b): Mechanical angle , \u03b8 = %.f mechanical degrees' %theta_b)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Number of electrical degrees in one revolution , \u03b1 = 2160\u00b0 \n",
" Number of ac cycles , n = 6 cycles\n",
"Case(b): Mechanical angle , \u03b8 = 30 mechanical degrees\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.6, Page number 56"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"P = 4.0 #Number of poles\n",
"phi = 3.0 #Number of phases\n",
"slot_1 = 12.0 #Number of slots for case 1\n",
"slot_2 = 24.0 #Number of slots for case 2\n",
"slot_3 = 48.0 #Number of slots for case 3\n",
"slot_4 = 84.0 #Number of slots for case 4\n",
"\n",
"#Calculation\n",
"electrical_degrees = 180.0*P #Electrical degrees\n",
"#Case(a)\n",
"alpha_1 = electrical_degrees/slot_1 #Number of electrical degrees(\u00b0/slot)\n",
"n_1 = slot_1/(P*phi) #Number of slots per pole per phase(slot/pole-phase)\n",
"k_d1 = math.sin(n_1*alpha_1/2*(math.pi/180))/(n_1*math.sin(alpha_1/2*(math.pi/180)))#Distribution factor\n",
"#Case(b)\n",
"alpha_2 = electrical_degrees/slot_2 #Number of electrical degrees(\u00b0/slot)\n",
"n_2 = slot_2/(P*phi) #Number of slots per pole per phase(slot/pole-phase)\n",
"k_d2 = math.sin(n_2*alpha_2/2*(math.pi/180))/(n_2*math.sin(alpha_2/2*(math.pi/180)))#Distribution factor\n",
"#Case(c)\n",
"alpha_3 = electrical_degrees/slot_3 #Number of electrical degrees(\u00b0/slot)\n",
"n_3 = slot_3/(P*phi) #Number of slots per pole per phase(slot/pole-phase)\n",
"k_d3 = math.sin(n_3*alpha_3/2*(math.pi/180))/(n_3*math.sin(alpha_3/2*(math.pi/180)))#Distribution factor\n",
"#Case(d)\n",
"alpha_4 = electrical_degrees/slot_4 #Number of electrical degrees(\u00b0/slot)\n",
"n_4 = slot_4/(P*phi) #Number of slots per pole per phase(slot/pole-phase)\n",
"k_d4 = math.sin(n_4*alpha_4/2*(math.pi/180))/(n_4*math.sin(alpha_4/2*(math.pi/180)))#Distribution factor\n",
"\n",
"#Result\n",
"print('Case(a): Distribution factor , k_d')\n",
"print(' 1: k_d = %.1f ' %k_d1)\n",
"print(' 2: k_d = %.3f ' %k_d2)\n",
"print(' 3: k_d = %.3f ' %k_d3)\n",
"print(' 4: k_d = %.3f ' %k_d4)\n",
"print('\\nCase(b): Tabular column')\n",
"print(' ________________________')\n",
"print(' n \\t \u03b1 \\t k_d')\n",
"print(' ________________________')\n",
"print(' %d \\t %d\u00b0 \\t %.1f' %(n_1,alpha_1,k_d1))\n",
"print(' %d \\t %d\u00b0 \\t %.3f' %(n_2,alpha_2,k_d2))\n",
"print(' %d \\t %d\u00b0 \\t %.3f' %(n_3,alpha_3,k_d3))\n",
"print(' %d \\t %.2f\u00b0 \\t %.3f' %(n_4,alpha_4,k_d4))\n",
"print(' ________________________')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Distribution factor , k_d\n",
" 1: k_d = 1.0 \n",
" 2: k_d = 0.966 \n",
" 3: k_d = 0.958 \n",
" 4: k_d = 0.956 \n",
"\n",
"Case(b): Tabular column\n",
" ________________________\n",
" n \t \u03b1 \t k_d\n",
" ________________________\n",
" 1 \t 60\u00b0 \t 1.0\n",
" 2 \t 30\u00b0 \t 0.966\n",
" 4 \t 15\u00b0 \t 0.958\n",
" 7 \t 8.57\u00b0 \t 0.956\n",
" ________________________\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.7, Page number 56"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"slots = 72.0 #Number of slots\n",
"P = 6.0 #Number of poles\n",
"phase = 3.0 #Three phase stator armature\n",
"N_c = 20.0 #Number of turns per coil\n",
"pitch = 5.0/6 #Pitch\n",
"phi = 4.8*10**6 #Flux per pole(lines)\n",
"S = 1200.0 #Rotor speed(rpm)\n",
"\n",
"#Calculation\n",
"#Case(a)\n",
"f = (P*S)/120 #Frequency of rotor(Hz)\n",
"E_g_percoil = 4.44*phi*N_c*f*10**-8 #Generated effective voltage per coil of a full pitch coil(V/coil)\n",
"#Case(b)\n",
"N_p = (slots/phase)*N_c #Total number of turns per phase(turns/phase)\n",
"#Case(c)\n",
"n = slots/(phase*P) #Number of slots per pole per phase(slots/pole-phase)\n",
"alpha = (P*180)/slots #Number of electrical degrees between adjacent slots(degree)\n",
"k_d = math.sin(n*alpha/2*(math.pi/180))/(n*math.sin(alpha/2*(math.pi/180))) #Distribution factor\n",
"#Case(d)\n",
"span = pitch*180 #Span of the coil in electrical degrees\n",
"k_p = math.sin(span/2*(math.pi/180)) #Pitch factor\n",
"#Case(e)\n",
"E_gp = 4.44*phi*N_p*f*k_p*k_d*10**-8 #Total generated voltage(V/phase)\n",
"\n",
"#Result\n",
"print('Case(a): Generated effective voltage per coil of a full-pitch coil , E_g/coil = %.f V/coil' %E_g_percoil)\n",
"print('Case(b): Total number of turns per phase , N_p = %.f turns/phase' %N_p)\n",
"print('Case(c): Distribution factor , k_d = %.3f ' %k_d)\n",
"print('Case(d): Pitch factor , k_p = %.3f ' %k_p)\n",
"print('Case(e): Total generated voltage per phase , E_gp = %.f V/phase' %E_gp)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Generated effective voltage per coil of a full-pitch coil , E_g/coil = 256 V/coil\n",
"Case(b): Total number of turns per phase , N_p = 480 turns/phase\n",
"Case(c): Distribution factor , k_d = 0.958 \n",
"Case(d): Pitch factor , k_p = 0.966 \n",
"Case(e): Total generated voltage per phase , E_gp = 5678 V/phase\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.8, Page number 62"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"P = 8.0 #Number of poles\n",
"S = 900.0 #Speed(rev/min)\n",
"f_1 = 50.0 #Frequency(Hz)\n",
"f_2 = 25.0 #Frequency(Hz)\n",
"\n",
"#Calculation\n",
"f = (P*S)/120 #Frequency of the generated voltage(Hz)\n",
"S_1 = (120*f_1)/P #Speed of prime mover to generate 50 Hz(rpm)\n",
"S_2 = (120*f_2)/P #Speed of prime mover to generate 25 Hz(rpm)\n",
"omega_1 = (4*math.pi*f_1)/P #Speed of prime mover to generate 50 Hz(rad/s)\n",
"omega_2 = (4*math.pi*f_2)/P #Speed of prime mover to generate 25 Hz(rad/s)\n",
"\n",
"#Result\n",
"print('Case(a): Frequency of the generated voltage , f = %.f Hz' %f)\n",
"print('Case(b): Prime mover speed required to generate 50 Hz , S = %.f rpm' %S_1)\n",
"print(' Prime mover speed required to generate 25 Hz , S = %.f rpm' %S_2)\n",
"print('Case(c): Prime mover speed required to generate 50 Hz , S = %.f\u03c0 rad/s' %(omega_1/math.pi))\n",
"print(' Prime mover speed required to generate 25 Hz , S = %.1f\u03c0 rad/s' %(omega_2/math.pi))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Frequency of the generated voltage , f = 60 Hz\n",
"Case(b): Prime mover speed required to generate 50 Hz , S = 750 rpm\n",
" Prime mover speed required to generate 25 Hz , S = 375 rpm\n",
"Case(c): Prime mover speed required to generate 50 Hz , S = 25\u03c0 rad/s\n",
" Prime mover speed required to generate 25 Hz , S = 12.5\u03c0 rad/s\n"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|