1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER 11: SPECIALIZED DYNAMOS"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.1, Page number 372"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"#Given Torque-Speed relations shown in Fig.11-3b page no-371 for a dc servomotor\n",
"\n",
"#Calculation\n",
"#Case(a)\n",
"S = 800.0 #Motor speed at point x(rpm). Extrapolating to load line point x\n",
"V = 60.0 #Armature voltage at point x(V)\n",
"#Case(b)\n",
"T = 4.5 #At standstill, 60 V yields 4.5 lb-ft of starting torque\n",
"#Case(c)\n",
"P_c = T*S/5252 #Power delivered to the load(hp). From case(a)\n",
"P_c_watt = P_c*746 #Power delivered to the load(W)\n",
"#Case(d)\n",
"T_d = 1.1 #Torque for continuous duty without cooling fan(lb-ft). At point o\n",
"S_d = 410.0 #Maximum load speed(rpm)\n",
"#Case(e)\n",
"T_e = 2.4 #Torque for continuous duty with cooling fan(lb-ft). At point w\n",
"S_e = 900.0 #Maximum load speed(rpm)\n",
"#Case(f)\n",
"P_d = T_d*S_d/5252 #Power delivered to the load(hp). From case(d)\n",
"P_d_watt = P_d*746 #Power delivered to the load(W)\n",
"#Case(g)\n",
"P_e = T_e*S_e/5252 #Power delivered to the load(hp). From case(e)\n",
"P_e_watt = P_e*746 #Power delivered to the load(W)\n",
"#Case(h)\n",
"A = 65.0 #Upper limit of power range A(W)\n",
"B = 305.0 #Upper limit of power range B(W)\n",
"\n",
"#Result\n",
"print('Case(a): Motor speed when load torque is 2.1 lb-ft at point x , S = %.f rpm' %S)\n",
"print(' Armature voltage when load torque is 2.1 lb-ft at point x , V = %.f V' %V)\n",
"print('Case(b): Motor starting torque using the voltage found in part(a) , T_st = %.1f lb-ft' %T)\n",
"print('Case(c): Power delivered to the load under conditions given in part(a) , P = %.3f hp = %.f W' %(P_c,P_c_watt))\n",
"print('Case(d): Maximum load speed for continuous duty without cooling fan , S = %.f rpm' %S_d)\n",
"print(' Torque for continuous duty without cooling fan , T = %.1f lb-ft' %T_d)\n",
"print('Case(e): Maximum load speed for continuous duty with cooling fan , S = %.f rpm' %S_e)\n",
"print(' Torque for continuous duty with cooling fan , T = %.1f lb-ft' %T_e)\n",
"print('Case(f): Power delivered to load in part(d) , P = %.4f hp = %.1f W' %(P_d,P_d_watt))\n",
"print('Case(g): Power delivered to load in part(e) , P = %.3f hp = %.f W' %(P_e,P_e_watt))\n",
"print('Case(h): Upper limit of power range , A = %.f W' %A)\n",
"print(' Upper limit of power range , B = %.f W' %B)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Motor speed when load torque is 2.1 lb-ft at point x , S = 800 rpm\n",
" Armature voltage when load torque is 2.1 lb-ft at point x , V = 60 V\n",
"Case(b): Motor starting torque using the voltage found in part(a) , T_st = 4.5 lb-ft\n",
"Case(c): Power delivered to the load under conditions given in part(a) , P = 0.685 hp = 511 W\n",
"Case(d): Maximum load speed for continuous duty without cooling fan , S = 410 rpm\n",
" Torque for continuous duty without cooling fan , T = 1.1 lb-ft\n",
"Case(e): Maximum load speed for continuous duty with cooling fan , S = 900 rpm\n",
" Torque for continuous duty with cooling fan , T = 2.4 lb-ft\n",
"Case(f): Power delivered to load in part(d) , P = 0.0859 hp = 64.1 W\n",
"Case(g): Power delivered to load in part(e) , P = 0.411 hp = 307 W\n",
"Case(h): Upper limit of power range , A = 65 W\n",
" Upper limit of power range , B = 305 W\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.2, Page number 379"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"n = 3.0 #Number of stacks or phases\n",
"P_a = 16.0 #Number of rotor teeth\n",
"P_b = 24.0 #Number of rotor poles\n",
"\n",
"#Calculation\n",
"alpha_a = 360/(n*P_a) #Stepping angle(degree/step) \n",
"alpha_b = 360/(n*P_b) #Stepping angle(degree/step)\n",
"\n",
"#Result\n",
"print('Case(a): Stepping angle , \u03b1 = %.1f\u00b0/step' %alpha_a)\n",
"print('Case(b): Stepping angle , \u03b1 = %.1f\u00b0/step' %alpha_b)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Stepping angle , \u03b1 = 7.5\u00b0/step\n",
"Case(b): Stepping angle , \u03b1 = 5.0\u00b0/step\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.3, Page number 381"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"P = 50.0 #Number of rotor teeth\n",
"\n",
"#Calculation\n",
"alpha = 90/P #Stepping length(degrees)\n",
"\n",
"#Result\n",
"print('\u03b1 = %.1f\u00b0 ' %alpha)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\u03b1 = 1.8\u00b0 \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.4, Page number 388"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"tou = 0.1 #Pole pitch of a double-sided primary LIM(m)\n",
"f = 60.0 #Frequency applied to the primary LIM(Hz)\n",
"\n",
"#Calculation\n",
"v_s = 2*f*tou #Synchronous velocity(m/s)\n",
"\n",
"#Result\n",
"print('Synchronous velocity , v_s = %.f m/s' %v_s)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Synchronous velocity , v_s = 12 m/s\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.5, Page number 388"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"v_s = 12.0 #Synchronous velocity(m/s)\n",
"v = 10.0 #Linear velocity of secondary sheet(m/s)\n",
"\n",
"#Calculation\n",
"s = (v_s-v)/v_s #Slip of the DSLIM\n",
"\n",
"#Result\n",
"print('Slip of the DSLIM , s = %.3f' %s)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Slip of the DSLIM , s = 0.167\n"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|