1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER 10: SINGLE-PHASE MOTORS"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.1, Page number 341"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import cmath\n",
"\n",
"#Variable declaration\n",
"hp = 0.25 #Power rating of the single-phase motor(hp)\n",
"V = 110.0 #Voltage rating of the single-phase motor(V)\n",
"I_sw = 4.0 #Starting winding current(A)\n",
"phi_I_sw = 15.0 #Phase angle by which I_sw lags behind V(degree)\n",
"I_rw = 6.0 #Running winding current(A)\n",
"phi_I_rw = 40.0 #Phase angle by which I_rw lags behind V(degree) \n",
"\n",
"#Calculation\n",
"#Case(a)\n",
"I_s = I_sw*cmath.exp(1j*-phi_I_sw*math.pi/180) #Starting current(A)\n",
"I_r = I_rw*cmath.exp(1j*-phi_I_rw*math.pi/180) #Running current(A)\n",
"I_t = I_s+I_r #Total starting current(A)\n",
"I_t_angle = cmath.phase(I_t)*180/math.pi #Angle of total starting current(degree)\n",
"Power_factor = math.cos(I_t_angle*math.pi/180) #Power factor\n",
"#Case(b)\n",
"Is_cos_theta = I_s.real #Component of starting winding current in phase with the supply voltage(A)\n",
"#Case(c)\n",
"Ir_sin_theta = I_r.imag #Component of running winding current that lags the supply voltage by 90\u00b0(A)\n",
"#Case(d)\n",
"phase = (phi_I_rw-phi_I_sw) #Phase angle between the starting and running currents(degree)\n",
"\n",
"#Result\n",
"print('Case(a): Total starting current , I_t = %.2f\u2220%.f\u00b0 A' %(abs(I_t),I_t_angle))\n",
"print(' Power factor = %.3f lagging' %Power_factor)\n",
"print('Case(b): Component of starting winding current in phase with the supply voltage , I_s*cos\u03b8 = %.2f A' %Is_cos_theta)\n",
"print('Case(c): Component of running winding current that lags the supply voltage by 90\u00b0 , I_r*sin\u03b8 = %.2fj A' %Ir_sin_theta)\n",
"print('Case(d): Phase angle between starting and running currents , (\u03b8_r-\u03b8_s) = %.f\u00b0 ' %phase)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Total starting current , I_t = 9.77\u2220-30\u00b0 A\n",
" Power factor = 0.866 lagging\n",
"Case(b): Component of starting winding current in phase with the supply voltage , I_s*cos\u03b8 = 3.86 A\n",
"Case(c): Component of running winding current that lags the supply voltage by 90\u00b0 , I_r*sin\u03b8 = -3.86j A\n",
"Case(d): Phase angle between starting and running currents , (\u03b8_r-\u03b8_s) = 25\u00b0 \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.2, Page number 341"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"hp = 0.25 #Power rating of the single-phase motor(hp)\n",
"V = 110.0 #Voltage rating of the single-phase motor(V)\n",
"I_s = 4.0 #Starting winding current(A)\n",
"phi_I_s = 15.0 #Phase angle by which I_sw lags behind V(degree)\n",
"I_r = 6.0 #Running winding current(A)\n",
"phi_I_r = 40.0 #Phase angle by which I_rw lags behind V(degree) \n",
"\n",
"#Calculation\n",
"P_s = V*I_s*math.cos(phi_I_s*math.pi/180) #Power dissipated by starting winding(W)\n",
"P_r = V*I_r*math.cos(phi_I_r*math.pi/180) #Power dissipated in the running winding(W)\n",
"P_t = P_s+P_r #Total instantaneous power dissipated during starting(W)\n",
"P_r_d = P_r #Total steady-state power dissipated during running(W)\n",
"n = hp*746/P_r*100 #Efficiency(%)\n",
"\n",
"#Result\n",
"print('Case(a): Power dissipated by the starting winding , P_s = %.f W' %P_s)\n",
"print('Case(b): Power dissipated in the running winding , P_r = %.1f W' %P_r)\n",
"print('Case(c): Total instantaneous power dissipated during starting , P_t = %.1f W' %P_t)\n",
"print('Case(d): Total steady-state power dissipated during running , P_r = %.1f W' %P_r_d)\n",
"print('Case(e): Motor efficiency , \u03b7 = %.f percent' %n)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Power dissipated by the starting winding , P_s = 425 W\n",
"Case(b): Power dissipated in the running winding , P_r = 505.6 W\n",
"Case(c): Total instantaneous power dissipated during starting , P_t = 930.6 W\n",
"Case(d): Total steady-state power dissipated during running , P_r = 505.6 W\n",
"Case(e): Motor efficiency , \u03b7 = 37 percent\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.3, Page number 345"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import cmath\n",
"\n",
"#Variable declaration\n",
"hp = 0.25 #Power rating of the single-phase motor(hp)\n",
"V = 110.0 #Voltage rating of the single-phase motor(V)\n",
"I_sw = 4.0 #Starting winding current(A)\n",
"phi_I_sw = 42.0 #Phase angle by which I_sw lead V(degree)\n",
"I_rw = 6.0 #Running winding current(A)\n",
"phi_I_rw = 40.0 #Phase angle by which I_rw lags behind V(degree) \n",
"\n",
"#Calculation\n",
"#Case(a)\n",
"I_s = I_sw*cmath.exp(1j*phi_I_sw*math.pi/180) #Starting current(A)\n",
"I_r = I_rw*cmath.exp(1j*-phi_I_rw*math.pi/180) #Running current(A)\n",
"I_t = I_s+I_r #Total starting current(A)\n",
"I_t_angle = cmath.phase(I_t)*180/math.pi #Angle of total starting current(degree)\n",
"Power_factor = math.cos(I_t_angle*math.pi/180) #Power factor\n",
"#Case(b)\n",
"angle = (phi_I_rw-(-phi_I_sw)) #Angle between starting and running current(degree)\n",
"sin_angle = math.sin(angle*math.pi/180) #Sine of the angle between starting and running currents\n",
"#Case(c)\n",
"T_ratio = sin_angle/math.sin(25*math.pi/180) #Ratio of starting torque\n",
"\n",
"#Result\n",
"print('Case(a): Total starting current , I_t = %.2f\u2220%.1f\u00b0 A' %(abs(I_t),I_t_angle))\n",
"print(' Power factor = %.3f ' %Power_factor)\n",
"print('Case(b): Sine of the angle between starting and running currents = %.4f ' %sin_angle)\n",
"print('Case(c): Steady state starting current has been reduced from 9.88\u2220-30\u00b0 A to %.2f\u2220%.1f\u00b0 A' %(abs(I_t),I_t_angle))\n",
"print(' The power factor has raised from 0.866 lagging to %.3f' %Power_factor)\n",
"print(' The ratio of starting torques , T_cs/T_rs = %.2f ' %T_ratio)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Total starting current , I_t = 7.66\u2220-8.9\u00b0 A\n",
" Power factor = 0.988 \n",
"Case(b): Sine of the angle between starting and running currents = 0.9903 \n",
"Case(c): Steady state starting current has been reduced from 9.88\u2220-30\u00b0 A to 7.66\u2220-8.9\u00b0 A\n",
" The power factor has raised from 0.866 lagging to 0.988\n",
" The ratio of starting torques , T_cs/T_rs = 2.34 \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.4, Page number 345"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"T_r = 1.0 #Rated torque(lb-ft)\n",
"P_in = 400.0 #Rated input power(W)\n",
"V = 115.0 #Rated input voltage(V)\n",
"I_t = 5.35 #Rated input current(A)\n",
"Speed = 1750.0 #Rated speed(rpm)\n",
"hp = 1.0/3 #Rated hp\n",
"T_s = 4.5 #Starting torque(lb-ft) From Locked-Rotor data\n",
"T_br = 2.5 #Breakdown torque(lb-ft) From Breakdown-Torque data\n",
"\n",
"#Calculation\n",
"T_s_r = T_s/T_r #Ratio of starting to rated torque\n",
"T_br_r = T_br/T_r #Ratio of breakdown to rated torque\n",
"P_o = hp*746 #Power output(W) \n",
"n = P_o/P_in*100 #Rated load efficiency(%)\n",
"S = V*I_t #VA rating of the motor\n",
"cos_theta = P_in/S #Rated load power factor\n",
"hp = T_r*Speed/5252 #Rated load horsepower\n",
"\n",
"#Result\n",
"print('Case(a): Ratio of starting to rated torque , T_s/T_r = %.1f ' %T_s_r)\n",
"print('Case(b): Ratio of breakdown to rated torque , T_br/T_r = %.1f ' %T_br_r)\n",
"print('Case(c): Rated load efficiency , \u03b7 = %.1f percent' %n)\n",
"print('Case(d): Rated load power factor , cos\u03b8 = %.4f ' %cos_theta)\n",
"print('Case(e): Rated load horsepower , hp = %.4f hp' %hp)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Ratio of starting to rated torque , T_s/T_r = 4.5 \n",
"Case(b): Ratio of breakdown to rated torque , T_br/T_r = 2.5 \n",
"Case(c): Rated load efficiency , \u03b7 = 62.2 percent\n",
"Case(d): Rated load power factor , cos\u03b8 = 0.6501 \n",
"Case(e): Rated load horsepower , hp = 0.3332 hp\n"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|