1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER 1: ELECTROMECHANICAL FUNDAMENTALS"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.1, Page number 5"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"t = 50.0*10**-3 #Time(second)\n",
"phi = 8.0*10**6 #Uniform magnetic field(maxwells)\n",
"\n",
"#Calculation\n",
"E_av = (phi/t)*10**-8 #Average voltage generated in the conductor(V) \n",
"\n",
"#Result\n",
"print('Average voltage generated in the conductor , E_av = %.1f V' %E_av)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Average voltage generated in the conductor , E_av = 1.6 V\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.2, Page number 6"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"l = 18.0 #Length of the conductor(inches)\n",
"B = 50000.0 #Uniform magnetic field(lines/sq.inches)\n",
"d = 720.0 #Distance travelled by conductor(inches)\n",
"t = 1.0 #Time taken for the conductor to move(second)\n",
"\n",
"#Calculation\n",
"#Case(a)\n",
"v = d/t #Velocity with which the conductor moves(inches/second)\n",
"e = B*l*v*10**-8 #Instantaneous induced EMF(V)\n",
"#Case(b)\n",
"A = d*l #Area swept by the conductor while moving(sq.inches)\n",
"phi = B*A #Uniform magnetic field(lines) \n",
"E = (phi/t)*10**-8 #Average induced EMF(V)\n",
"\n",
"#Result\n",
"print('Case(a): Instantaneous induced EMF , e = %.2f V' %e)\n",
"print('Case(b): Average induced EMF , E = %.2f V' %E)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Instantaneous induced EMF , e = 6.48 V\n",
"Case(b): Average induced EMF , E = 6.48 V\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.3, Page number 8"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"l = 18.0 #Length of the conductor(inches)\n",
"B = 50000.0 #Uniform magnetic field(lines/sq.inches)\n",
"d = 720.0 #Distance travelled by conductor(inches)\n",
"t = 1.0 #Time taken for the conductor to move(second)\n",
"theta = 75.0 #Angle between the motion of the conductor and field(degree)\n",
"\n",
"#Calculation\n",
"v = d/t #Velocity with which the conductor moves(inches/second)\n",
"E = B*l*v*math.sin(theta*math.pi/180)*10**-8 #Instantaneous induced voltage(V)\n",
"\n",
"#Result\n",
"print('Average induced voltage , E = %.2f V' %E)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Average induced voltage , E = 6.26 V\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.4, Page number 9"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"v = 1.5 #Velocity of moving conductor(m/s)\n",
"l = 0.4 #Length of the conductor(m)\n",
"B = 1 #Uniform field(tesla)\n",
"theta_a = 90.0 #Angle between the motion of the conductor and field(Degree)\n",
"theta_b = 35.0 #Angle between the motion of the conductor and field(Degree)\n",
"theta_c = 120.0 #Angle between the motion of the conductor and field(Degree)\n",
"\n",
"#Calculation\n",
"E_a = B*l*v*math.sin(theta_a*math.pi/180) #Voltage induced in the conductor(V)\n",
"E_b = B*l*v*math.sin(theta_b*math.pi/180) #Voltage induced in the conductor(V)\n",
"E_c = B*l*v*math.sin(theta_c*math.pi/180) #Voltage induced in the conductor(V)\n",
"\n",
"#Result\n",
"print('Case(a): Voltage induced in the conductor , E = %.1f V' %E_a)\n",
"print('Case(b): Voltage induced in the conductor , E = %.3f V' %E_b)\n",
"print('Case(c): Voltage induced in the conductor , E = %.2f V' %E_c)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Voltage induced in the conductor , E = 0.6 V\n",
"Case(b): Voltage induced in the conductor , E = 0.344 V\n",
"Case(c): Voltage induced in the conductor , E = 0.52 V\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.5, Page number 19"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"no_of_conductors = 40.0 #Number of conductors\n",
"A = 2.0 #Number of parallel paths\n",
"path = A\n",
"flux_per_pole = 6.48*10**8 #Flux per pole(lines) \n",
"N = 30.0 #Speed of the prime mover(rpm)\n",
"R_per_path = 0.01 #Resistance per path\n",
"I = 10.0 #Current carrying capacity of each conductor(A)\n",
"P = 2.0 #Number of poles\n",
"\n",
"#Calculation\n",
"phi_T = P*flux_per_pole #Total flux linked in one revolution(lines)\n",
"t = (1/N)*(60) #Time for one revolution(s/rev)\n",
"#Case(a)\n",
"e_av_per_conductor = (phi_T/t)*10**-8 #Average voltage generated(V/conductor)\n",
"E_per_path = (e_av_per_conductor)*(no_of_conductors/path) #Average voltage generated(V/path)\n",
"#Case(b)\n",
"E_g = E_per_path #Generated armature voltage(V)\n",
"#Case(c)\n",
"I_a = (I/path)*(2*path) #Armature current delivered to an external load(A)\n",
"#Case(d)\n",
"R_a = (R_per_path)/path*(no_of_conductors/P) #Armature resistance(ohm)\n",
"#Case(e)\n",
"V_t = E_g-(I_a*R_a) #Terminal voltage of the generator(V)\n",
"#Case(f)\n",
"P = V_t*I_a #Generator power rating(W)\n",
"\n",
"#Result\n",
"print('Case(a): Average voltage generated per path , E/path = %.1f V/path' %E_per_path)\n",
"print('Case(b): Generated armature voltage , E_g = %.1f V' %E_g)\n",
"print('Case(c): Armature current delivered to an external load , I_a = %.f A' %I_a)\n",
"print('Case(d): Armature resistance , R_a = %.1f \u03a9' %R_a)\n",
"print('Case(e): Terminal voltage of the generator , V_t = %.1f V' %V_t)\n",
"print('Case(f): Generator power rating , P = %.f W' %P)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Average voltage generated per path , E/path = 129.6 V/path\n",
"Case(b): Generated armature voltage , E_g = 129.6 V\n",
"Case(c): Armature current delivered to an external load , I_a = 20 A\n",
"Case(d): Armature resistance , R_a = 0.1 \u03a9\n",
"Case(e): Terminal voltage of the generator , V_t = 127.6 V\n",
"Case(f): Generator power rating , P = 2552 W\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.6, Page number 20"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"no_of_conductors = 40.0 #Number of conductors\n",
"path = 4.0 #Number of parallel paths\n",
"flux_per_pole = 6.48*10**8 #Flux per pole(lines) \n",
"N = 30.0 #Speed of the prime mover(rpm)\n",
"R_per_path = 0.01 #Resistance per path\n",
"I = 10.0 #Current carrying capacity of each conductor(A)\n",
"P = 4.0 #Number of poles\n",
"\n",
"#Calculation\n",
"phi_T = 2*flux_per_pole #Total flux linked in one revolution(lines). From Example 1.5\n",
"t = (1/N)*(60) #Time for one revolution(s/rev)\n",
"#Case(a)\n",
"e_av_per_conductor = (phi_T/t)*10**-8 #Average voltage generated(V/conductor)\n",
"E_per_path = (e_av_per_conductor)*(no_of_conductors/path) #Average voltage generated(V/path)\n",
"#Case(b)\n",
"E_g = E_per_path #Generated armature voltage(V)\n",
"#Case(c)\n",
"I_a = (I/path)*(4*path) #Armature current delivered to an external load(A)\n",
"#Case(d)\n",
"R_a = (R_per_path)/path*(no_of_conductors/P) #Armature resistance(ohm)\n",
"#Case(e)\n",
"V_t = E_g-(I_a*R_a) #Terminal voltage of the generator(V)\n",
"#Case(f)\n",
"P = V_t*I_a #Generator power rating(W)\n",
"\n",
"#Result\n",
"print('Case(a): Average voltage generated per path , E/path = %.1f V/path' %E_per_path)\n",
"print('Case(b): Generated armature voltage , E_g = %.1f V' %E_g)\n",
"print('Case(c): Armature current delivered to an external load , I_a = %.f A' %I_a)\n",
"print('Case(d): Armature resistance , R_a = %.3f \u03a9' %R_a)\n",
"print('Case(e): Terminal voltage of the generator , V_t = %.1f V' %V_t)\n",
"print('Case(f): Generator power rating , P = %.f W' %P)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Average voltage generated per path , E/path = 64.8 V/path\n",
"Case(b): Generated armature voltage , E_g = 64.8 V\n",
"Case(c): Armature current delivered to an external load , I_a = 40 A\n",
"Case(d): Armature resistance , R_a = 0.025 \u03a9\n",
"Case(e): Terminal voltage of the generator , V_t = 63.8 V\n",
"Case(f): Generator power rating , P = 2552 W\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.7, Page number 23"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"N = 1.0 #Number of turns\n",
"phi = 6.48*10**8 #Magnetic flux(lines)\n",
"rpm = 30.0 #Number of revolution\n",
"s = rpm/60 #Number of revolution of the coil per second(rev/s)\n",
"\n",
"#Calculation\n",
"E_av_per_coil = 4*phi*N*s*10**-8 #Average voltage per coil(V/coil)\n",
"E_av_per_coil_side = E_av_per_coil*(1.0/2) #Average voltage per conductor(V/conductor)\n",
"\n",
"#Result\n",
"print('Case(a): Average voltage per coil , E_av/coil = %.2f V/coil' %E_av_per_coil)\n",
"print('Case(b): Average voltage per conductor , E_av/coil side = %.2f V/conductor' %E_av_per_coil_side)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Average voltage per coil , E_av/coil = 12.96 V/coil\n",
"Case(b): Average voltage per conductor , E_av/coil side = 6.48 V/conductor\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.8, Page number 23"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"N = 1.0 #Number of turns\n",
"phi_lines = 6.48*10**8 #Magnetic flux(lines/pole)\n",
"rpm = 30.0 #Number of revolution per second\n",
"s = rpm/60 #Number of revolution of the coil per second(rev/s)\n",
"\n",
"#Calculation\n",
"phi = phi_lines*10**-8 #Magnetic flux(Wb)\n",
"omega = rpm*2*math.pi*(1.0/60) #Angular velocity(rad/s)\n",
"E_av_per_coil = 0.63662*omega*phi*N #Average voltage per coil(V/coil)\n",
"\n",
"#Result\n",
"print('Average voltage per coil , E_av/coil = %.2f V/coil' %E_av_per_coil)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Average voltage per coil , E_av/coil = 12.96 V/coil\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.9, Page number 24"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"P = 2.0 #Number of poles\n",
"Z = 40.0 #Number of conductors\n",
"a = 2.0 #Parallel paths\n",
"phi = 6.48*10**8 #Magnetic flux(lines/pole)\n",
"S = 30.0 #Speed of the prime mover\n",
"\n",
"#Calculation\n",
"E_g = (phi*Z*S*P)/(60*a)*10**-8 #Average voltage between the brushes(V)\n",
"\n",
"#Result\n",
"print('Average voltage between the brushes , E_g = %.1f V' %E_g)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Average voltage between the brushes , E_g = 129.6 V\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.10, Page number 24"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"no_of_coils = 40.0 #Number of coils\n",
"N = 20.0 #Number of turns in each coil\n",
"omega = 200.0 #Angular velocity of armature(rad/s)\n",
"phi = 5.0*10**-3 #Flux(Wb/pole)\n",
"a = 4.0 #Number of parallel paths\n",
"P = 4.0 #Number of poles\n",
"\n",
"#Calculation\n",
"Z = no_of_coils*2.0*N #Number of conductors\n",
"E_g = (phi*Z*omega*P)/(2*math.pi*a) #Voltage generated by the armature between brushes(V)\n",
"\n",
"#Result\n",
"print('Case(a): Number of conductors , Z = %.f conductors' %Z)\n",
"print('Case(b): Voltage between brushes generated by the armature , E_g = %.1f V' %E_g)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Number of conductors , Z = 1600 conductors\n",
"Case(b): Voltage between brushes generated by the armature , E_g = 254.6 V\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.11, Page number 26"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"l = 0.5 #Length of the conductor(m)\n",
"A = 0.1*0.2 #Area of the pole face(sq.meter)\n",
"phi = 0.5*10**-3 #Magnetic flux(Wb)\n",
"I = 10.0 #Current in the conductor(A)\n",
"\n",
"#Calculation\n",
"B = phi/A #Flux density(Wb/m^2)\n",
"F = B*I*l*1000 #Magnitude of force(mN)\n",
"\n",
"#Result\n",
"print('Case(a): Magnitude of the force , F = %.f mN' %F)\n",
"print('Case(b): The direction of the force on the conductor is %.f mN in an upward direction' %F)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Magnitude of the force , F = 125 mN\n",
"Case(b): The direction of the force on the conductor is 125 mN in an upward direction\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.12, Page number 26"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"l = 0.5 #Length of the conductor(m)\n",
"A = 0.1*0.2 #Area of the pole face(sq.meter)\n",
"phi = 0.5*10**-3 #Magnetic flux(Wb)\n",
"I = 10.0 #Current in the conductor(A)\n",
"theta = 75.0 #Angle between the conductor and the flux density(degree)\n",
"\n",
"#Calculation\n",
"B = phi/A #Flux density(Wb/m^2)\n",
"F = B*I*l*math.sin(theta*math.pi/180)*1000 #Magnitude of force(mN)\n",
"\n",
"#Result\n",
"print('Magnitude of the force , F = %.2f mN in an vertically upward direction' %F)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Magnitude of the force , F = 120.74 mN in an vertically upward direction\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.13, Page number 29"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"R_a = 0.25 #Armature resistance(ohm)\n",
"V_a = 125.0 #DC bus voltage(V)\n",
"I_a = 60.0 #Armature current(A)\n",
"\n",
"#Calculation\n",
"E_c = V_a-(I_a*R_a) #Counter EMF generated in the armature conductors of motor(V)\n",
"\n",
"#Result\n",
"print('Counter EMF generated in the armature conductors of motor , E_c = %.f V' %E_c)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Counter EMF generated in the armature conductors of motor , E_c = 110 V\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.14, Page number 29"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"V_a = 110.0 #Voltage across armature(V)\n",
"I_a = 60.0 #Armature current(A)\n",
"R_a = 0.25 #Armature resistance(ohm)\n",
"P = 6.0 #Number of poles\n",
"a = 12.0 #Number of paths\n",
"Z = 720.0 #No. of armature conductors\n",
"S = 1800.0 #Speed(rpm)\n",
"\n",
"#Calculation\n",
"E_g = V_a+(I_a*R_a) #Generated EMF in the armature(V)\n",
"phi_lines = E_g*60*a/(Z*S*P*10**-8) #Flux per pole in lines(lines/pole)\n",
"phi_mWb = phi_lines*10**-8*1000 #Flux per pole milliwebers(mWb)\n",
"\n",
"#Result\n",
"print('Case(a): Generated EMF in the armature , E_g = %.f V' %E_g)\n",
"print('Case(b): Flux per pole in lines , \u03a6 = %.2e lines/pole' %phi_lines)\n",
"print('Case(c): Flux per pole milliwebers , \u03a6 = %.1f mWb' %phi_mWb)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a): Generated EMF in the armature , E_g = 125 V\n",
"Case(b): Flux per pole in lines , \u03a6 = 1.16e+06 lines/pole\n",
"Case(c): Flux per pole milliwebers , \u03a6 = 11.6 mWb\n"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|