summaryrefslogtreecommitdiff
path: root/ENGINEERING_PHYSICS_by_M.ARUMUGAM/Chapter06.ipynb
blob: 392de89dc078c9a9216a9035920d630cb1333b07 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#Chapter 6:Magnetic Properties and Crystal Structures"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 6.1, Page number 6.46"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "temperature rise is 8.43 K\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "El=10**-2*50;      #energy loss(J)\n",
    "H=El*60;           #heat produced(J)\n",
    "d=7.7*10**3;       #iron rod(kg/m**3)\n",
    "s=0.462*10**-3;    #specific heat(J/kg K)\n",
    "\n",
    "#Calculation\n",
    "theta=H/(d*s);     #temperature rise(K)\n",
    "\n",
    "#Result\n",
    "print \"temperature rise is\",round(theta,2),\"K\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 6.2, Page number 6.46"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "magnetic field at the centre is 14.0 weber/m**2\n",
      "dipole moment is 9.0 *10**-24 ampere/m**2\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "e=1.6*10**-19;    #charge(coulomb)\n",
    "new=6.8*10**15;   #frequency(revolutions per second)\n",
    "mew0=4*math.pi*10**-7;\n",
    "R=5.1*10**-11;     #radius(m)\n",
    "\n",
    "#Calculation\n",
    "i=round(e*new,4);          #current(ampere)\n",
    "B=mew0*i/(2*R);            #magnetic field at the centre(weber/m**2)\n",
    "A=math.pi*R**2;\n",
    "d=i*A;                    #dipole moment(ampere/m**2)\n",
    "\n",
    "#Result\n",
    "print \"magnetic field at the centre is\",round(B),\"weber/m**2\"\n",
    "print \"dipole moment is\",round(d*10**24),\"*10**-24 ampere/m**2\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 6.3, Page number 6.46"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "intensity of magnetisation is 5.0 ampere/m\n",
      "flux density in material is 1.257 weber/m**2\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "chi=0.5*10**-5;    #magnetic susceptibility\n",
    "H=10**6;     #field strength(ampere/m)\n",
    "mew0=4*math.pi*10**-7;\n",
    "\n",
    "#Calculation\n",
    "I=chi*H;     #intensity of magnetisation(ampere/m)\n",
    "B=mew0*(I+H);    #flux density in material(weber/m**2)\n",
    "\n",
    "#Result\n",
    "print \"intensity of magnetisation is\",I,\"ampere/m\"\n",
    "print \"flux density in material is\",round(B,3),\"weber/m**2\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 6.4, Page number 6.47"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "number of Bohr magnetons is 2.22 bohr magneon/atom\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "B=9.27*10**-24;      #bohr magneton(ampere m**2)\n",
    "a=2.86*10**-10;      #edge(m)\n",
    "Is=1.76*10**6;       #saturation value of magnetisation(ampere/m)\n",
    "\n",
    "#Calculation\n",
    "N=2/a**3;\n",
    "mew_bar=Is/N;      #number of Bohr magnetons(ampere m**2)\n",
    "mew_bar=mew_bar/B;      #number of Bohr magnetons(bohr magneon/atom)\n",
    "\n",
    "#Result\n",
    "print \"number of Bohr magnetons is\",round(mew_bar,2),\"bohr magneon/atom\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 6.5, Page number 6.47"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "average magnetic moment is 2.79 *10**-3 bohr magneton/spin\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "mew0=4*math.pi*10**-7;\n",
    "H=9.27*10**-24;      #bohr magneton(ampere m**2)\n",
    "beta=10**6;      #field(ampere/m)\n",
    "k=1.38*10**-23;    #boltzmann constant\n",
    "T=303;    #temperature(K)\n",
    "\n",
    "#Calculation\n",
    "mm=mew0*H*beta/(k*T);    #average magnetic moment(bohr magneton/spin)\n",
    "\n",
    "#Result\n",
    "print \"average magnetic moment is\",round(mm*10**3,2),\"*10**-3 bohr magneton/spin\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 6.6, Page number 6.48"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "hysteresis loss per cycle is 188.0 J/m**3\n",
      "hysteresis loss per second is 9400.0 watt/m**3\n",
      "power loss is 1.23 watt/kg\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "A=94;      #area(m**2)\n",
    "vy=0.1;    #value of length(weber/m**2)\n",
    "vx=20;     #value of unit length\n",
    "n=50;      #number of magnetization cycles\n",
    "d=7650;    #density(kg/m**3)\n",
    "\n",
    "#Calculation\n",
    "h=A*vy*vx;     #hysteresis loss per cycle(J/m**3)\n",
    "hs=h*n;       #hysteresis loss per second(watt/m**3)\n",
    "pl=hs/d;      #power loss(watt/kg)\n",
    "\n",
    "#Result\n",
    "print \"hysteresis loss per cycle is\",h,\"J/m**3\"\n",
    "print \"hysteresis loss per second is\",hs,\"watt/m**3\"\n",
    "print \"power loss is\",round(pl,2),\"watt/kg\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 6.7, Page number 6.48"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "a= 5.43 Angstorm\n",
      "density = 6.88 kg/m**3\n",
      "#Answer given in the textbook is wrong\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#variable declaration\n",
    "d=2.351                 #bond lenght\n",
    "N=6.02*10**26           #Avagadro number\n",
    "n=8                     #number of atoms in unit cell\n",
    "A=28.09                 #Atomin mass of silicon\n",
    "m=6.02*10**26           #1mole\n",
    "\n",
    "#Calculations\n",
    "a=(4*d)/math.sqrt(3)\n",
    "p=(n*A)/((a*10**-10)*m)    #density\n",
    "\n",
    "#Result\n",
    "print \"a=\",round(a,2),\"Angstorm\"\n",
    "print \"density =\",round(p*10**16,2),\"kg/m**3\"\n",
    "print\"#Answer given in the textbook is wrong\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 6.8, Page number 6.48"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " radius of largest sphere is 0.154700538379252*r\n",
      "maximum radius of sphere is 0.414213562373095*r\n"
     ]
    }
   ],
   "source": [
    " import math\n",
    "from __future__ import division\n",
    "from sympy import Symbol\n",
    "\n",
    "#Variable declaration\n",
    "r=Symbol('r')\n",
    "\n",
    "#Calculation\n",
    "a1=4*r/math.sqrt(3);\n",
    "R1=(a1/2)-r;           #radius of largest sphere\n",
    "a2=4*r/math.sqrt(2);\n",
    "R2=(a2/2)-r;       #maximum radius of sphere\n",
    "\n",
    "#Result\n",
    "print \"radius of largest sphere is\",R1\n",
    "print \"maximum radius of sphere is\",R2    "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 6.9, Page number 6.49"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "a1= 2.905 Angstrom\n",
      "Unit cell volume =a1**3 = 24.521 *10**-30 m**3\n",
      "Volume occupied by one atom = 12.26 *10**-30 m**3\n",
      "a2= 3.654 Angstorm\n",
      "Unit cell volume =a2**3 = 48.8 *10**-30 m**3\n",
      "Volume occupied by one atom = 12.2 *10**-30 m**3\n",
      "Volume Change in % = 0.493\n",
      "Density Change in % = 0.5\n",
      "Thus the increase of density or the decrease of volume is about 0.5%\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#variable declaration\n",
    "r1=1.258            #Atomic radius of BCC\n",
    "r2=1.292            #Atomic radius of FCC\n",
    "\n",
    "#calculations\n",
    "a1=(4*r1)/math.sqrt(3)       #in BCC\n",
    "b1=((a1)**3)*10**-30         #Unit cell volume\n",
    "v1=(b1)/2                    #Volume occupied by one atom\n",
    "a2=2*math.sqrt(2)*r2         #in FCC\n",
    "b2=(a2)**3*10**-30           #Unit cell volume\n",
    "v2=(b2)/4                    #Volume occupied by one atom  \n",
    "v_c=((v1)-(v2))*100/(v1)     #Volume Change in % \n",
    "d_c=((v1)-(v2))*100/(v2)     #Density Change in %\n",
    "\n",
    "#Results\n",
    "print \"a1=\",round(a1,3),\"Angstrom\" \n",
    "print \"Unit cell volume =a1**3 =\",round((b1)/10**-30,3),\"*10**-30 m**3\"\n",
    "print \"Volume occupied by one atom =\",round(v1/10**-30,2),\"*10**-30 m**3\"\n",
    "print \"a2=\",round(a2,3),\"Angstorm\"\n",
    "print \"Unit cell volume =a2**3 =\",round((b2)/10**-30,3),\"*10**-30 m**3\"\n",
    "print \"Volume occupied by one atom =\",round(v2/10**-30,2),\"*10**-30 m**3\"\n",
    "print \"Volume Change in % =\",round(v_c,3)\n",
    "print \"Density Change in % =\",round(d_c,2)\n",
    "print \"Thus the increase of density or the decrease of volume is about 0.5%\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 6.10, Page number 6.50"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "a= 0.563 *10**-9 metre\n",
      "spacing between the nearest neighbouring ions = 0.2814 nm\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#variable declaration\n",
    "n=4     \n",
    "M=58.5                  #Molecular wt. of NaCl\n",
    "N=6.02*10**26           #Avagadro number\n",
    "rho=2180                #density\n",
    "\n",
    "#Calculations\n",
    "a=((n*M)/(N*rho))**(1/3)    \n",
    "s=a/2\n",
    "\n",
    "#Result\n",
    "print \"a=\",round(a/10**-9,3),\"*10**-9 metre\"\n",
    "print \"spacing between the nearest neighbouring ions =\",round(s/10**-9,4),\"nm\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 6.11, Page number 6.51"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "lattice constant, a= 0.36 nm\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#variable declaration\n",
    "n=4     \n",
    "A=63.55                 #Atomic wt. of NaCl\n",
    "N=6.02*10**26           #Avagadro number\n",
    "rho=8930                #density\n",
    "\n",
    "#Calculations\n",
    "a=((n*A)/(N*rho))**(1/3)      #Lattice Constant\n",
    "\n",
    "#Result\n",
    "print \"lattice constant, a=\",round(a*10**9,2),\"nm\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 6.12, Page number 6.51"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Density of iron = 8805.0 kg/m**-3\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "\n",
    "#variable declaration\n",
    "r=0.123                  #Atomic radius\n",
    "n=4\n",
    "A=55.8                   #Atomic wt\n",
    "a=2*math.sqrt(2) \n",
    "N=6.02*10**26           #Avagadro number\n",
    "\n",
    "#Calculations\n",
    "rho=(n*A)/((a*r*10**-9)**3*N)\n",
    "\n",
    "#Result\n",
    "print \"Density of iron =\",round(rho),\"kg/m**-3\""
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}