1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 11: Speed and Torque Control"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 11.1, Page number: 561"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"\n",
"#Variable declaration:\n",
"Vdc=240 #DC supply (V)\n",
"D=0.75 #Duty cycle\n",
"Rf=187 #field resistance(ohm)\n",
"Lf=4.2 #field winding inductance(H)\n",
"T=1 #switching period(msec)\n",
"\n",
"\n",
"\n",
"#Calculations:\n",
"If=D*(Vdc/Rf)\n",
"tau=Lf/Rf #time constant(msec)\n",
"del_if=(2*Vdc/Rf)*(T/tau)*D*(1-D)\n",
"\n",
"\n",
"#Results:\n",
"print \"Avg field current:\",round(If,2),\"A\"\n",
"print \"Magnitude of currnet ripple:\",round(del_if,1),\"mA\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Avg field current: 0.96 A\n",
"Magnitude of currnet ripple: 21.4 mA\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 11.2, Page number: 563"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from sympy import *\n",
"from math import *\n",
"\n",
"#Variable declaration:\n",
"n1=1800 #r/min\n",
"n2=3600 #r/min\n",
"Va=240 #terminal voltage(V)\n",
"Ifo=0.34 #No-load field current(A)\n",
"Ra=0.05 #Armature resistance(ohm)\n",
"Rsh=187 #Shunt field resistance(ohm)\n",
"\n",
"#Calculations:\n",
"wm=symbols('wm')\n",
"wm1=float(2*pi*n1/60)\n",
"wm2=float(2*pi*n2/60)\n",
"def Pload(wm):\n",
" return (22.4*(120*pi)**-3)*(wm)**3\n",
"\n",
"T1=Pload(wm1)*1000/wm1\n",
"T2=Pload(wm2)*1000/wm2\n",
"\n",
"Kf=Va/(Ifo*wm2)\n",
"def If(T,wm):\n",
" return (Va/(2*Kf*wm))*(1+sqrt(1-(4*wm*T*Ra)/Va**2))\n",
"\n",
"Rf1tot=round(Va/float(If(T1,wm1)))\n",
"Rf2tot=round(Va/float(If(T2,wm2)))\n",
"Rrh1=Rf1tot-Rsh\n",
"Rrh2=Rf2tot-Rsh\n",
"\n",
"\n",
"#Results:\n",
"print \"----------------------------------------------------------------\"\n",
"print \"r/min Tload[N.m] If[A] R(f)tot[ohm] Rrheostat[ohm]\"\n",
"print \"----------------------------------------------------------------\"\n",
"print n1,\"\\t \",round(float(T1),1),\"\\t\\t \",round(float(If(T1,wm1)),3),\"\\t\",Rf1tot,\"\\t \",Rrh1\n",
"print n2,\"\\t \",round(float(T2),1),\"\\t\\t \",round(float(If(T2,wm2)),3),\"\\t\",Rf2tot,\"\\t \",Rrh2\n",
"print \"----------------------------------------------------------------\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"----------------------------------------------------------------\n",
"r/min Tload[N.m] If[A] R(f)tot[ohm] Rrheostat[ohm]\n",
"----------------------------------------------------------------\n",
"1800 \t 14.9 \t\t 0.678 \t354.0 \t 167.0\n",
"3600 \t 59.4 \t\t 0.333 \t720.0 \t 533.0\n",
"----------------------------------------------------------------\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 11.3, Page number: 567"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"%pylab inline\n",
"from math import *\n",
"\n",
"#Variable declaration:\n",
"Rf=109 #Field resistance(ohm)\n",
"Vf=300 #Rated field voltage(V)\n",
"Ra=0.084 #Armature resistance(ohm)\n",
"Kf=0.694 #Geometric constant(A.rad/sec)\n",
"\n",
"\n",
"#Calculations:\n",
"If=Vf/Rf #Resulting field current(A)\n",
"w_rated=2500*(pi/30) #Rated speed(rad/sec)\n",
"P_rated=100*746 #Watts\n",
"T_rated=P_rated/w_rated #Nm\n",
"Va=[0]*102\n",
"NoLoadRPM=[0]*102\n",
"FullLoadRPM=[0]*102 \n",
"for n in range(1,102,1):\n",
" Va[n-1]=250*(1+(n-1)/100)\n",
" T=0 #Zero torque\n",
" w=(Va[n-1]-T*Ra/(Kf*If))/(Kf*If)\n",
" NoLoadRPM[n-1]=w*30/pi\n",
" T=T_rated\n",
" w=(Va[n-1]-T*Ra/(Kf*If))/(Kf*If)\n",
" FullLoadRPM[n-1]=w*30/pi\n",
"\n",
"print\"The plot is as shown:\"\n",
"plot(Va,NoLoadRPM)\n",
"plot(Va[20] ,NoLoadRPM[20] ,'r+')\n",
"plot (Va[50] , NoLoadRPM[50] , 'r+')\n",
"plot (Va[80] ,NoLoadRPM[80] , 'r+')\n",
"plot (Va, FullLoadRPM,'.')\n",
"plot (Va[20] ,FullLoadRPM[20] ,'o')\n",
"plot (Va[50] , FullLoadRPM[50] , ' o' )\n",
"plot (Va[80] , FullLoadRPM[80] ,'o' )\n",
"title('Speed vs Armature voltage')\n",
"xlabel('Armature voltage [V] ')\n",
"ylabel('Speed [r/min] ')\n",
"annotate('+ = Zero torque',xy=(270,2300))\n",
"annotate('o = Full load torque',xy=(270,2100))\n",
"ylim(1000,2500)\n",
"xlim(250,500)\n",
"show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n",
"The plot is as shown:\n"
]
},
{
"output_type": "stream",
"stream": "stderr",
"text": [
"WARNING: pylab import has clobbered these variables: ['Polygon', 'seterr', 'poly', 'cosh', 'ldexp', 'hypot', 'flatten', 'conjugate', 'diff', 'tan', 'Circle', 'roots', 'plot', 'isnan', 'eye', 'trace', 'fabs', 'floor', 'diag', 'invert', 'nan', 'modf', 'sqrt', 'frexp', 'source', 'add', 'degrees', 'take', 'var', 'zeros', 'prod', 'log10', 'plotting', 'product', 'exp', 'power', 'multinomial', 'copysign', 'transpose', 'expm1', 'ceil', 'test', 'beta', 'ones', 'isinf', 'sinh', 'vectorize', 'sign', 'trunc', 'cos', 'pi', 'e', 'f', 'tanh', 'det', 'radians', 'mod', 'binomial', 'solve', 'log', 'fmod', 'reshape', 'sin', 'log1p', 'gamma', 'interactive']\n",
"`%pylab --no-import-all` prevents importing * from pylab and numpy\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEZCAYAAAC5AHPcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcVOX+wPHPDO7ivmACSqmp4KDjmiU6ikpi5oIk4HLT\n/Gmbad66WfdW2CJloVfretMstYuau2WkaSqmlkuIC1ouBMpg7pbiBjjP74+J47DDwLB+368Xr2bO\nnDnnmePEl+d8n+f76JRSCiGEEKKA9CXdACGEEGWTBBAhhBB2kQAihBDCLhJAhBBC2EUCiBBCCLtI\nABFCCGEXCSCizDCZTHz22Wcl3QwBJCQkoNfrsVgsJd0UUYIkgIg8bdu2jc6dO1OzZk3q1q3LQw89\nxM8//1zs7dDpdOh0OoefJzk5GWdnZ/z9/R1+rsw8PDzYtm1bsZ+3sCS4V0wSQESurly5wuDBg5k2\nbRrJyclcvHiR9957j2rVqpV00xxmzZo1NGvWjKioKM6fP5/jfmlpaUV+bp1OR2Hm9t69e7cIW5N/\nxRHYRekjAUTk6tdff6VKlSoMHz4cnU5H5cqVMZlMtGvXDoDFixfzyCOPMGnSJOrXr4+HhweRkZHa\n+y9fvkxwcDD169enYcOG/P3vf89w2+Ojjz7Cw8OD2rVr06tXL+Li4rTXvv76a5o3b079+vWZNGkS\nSqlsf7mePXuWGjVqcPXqVW1bTEwMjRo14u7du/zyyy88/PDDODs706BBAwIDA3P9zEuWLGH8+PE8\n8sgjREREZHjNw8ODmTNn0r59e2rXrk1cXBx6vZ7FixfTvHlzGjRowCeffML+/ftp3749zs7O/N//\n/Z/2/ri4OHx8fKhfvz516tQhICBAa/fo0aM5c+YMgwYNolatWnz44YdERUXh7u6epQ3pvZTQ0FCG\nDx/O6NGjqVevHkuWLMnzmuf3ulksFl599VVcXFyoW7cugYGBGfYFUErxz3/+k507d/L8889Tq1Yt\nXnjhBQCee+45XF1dcXZ2xmAwsHXrVu19N27cIDAwkFq1auHl5cXMmTMzfM6EhAT8/f2pW7cu9913\nH++//36u/2aihCghcnH16lVVp04dNXbsWLVp0yZ16dKlDK8vWrRIVapUSf33v/9VSim1fv16VatW\nLXX+/HmllFL9+vVTzz33nLpz5466cuWK6tatm5o9e7ZSSqmlS5eqVq1aqd9++00ppVRYWJjq0KGD\nUkqppKQk5ezsrL755hullFLz5s1TlSpVUp999lm27ezTp4/69NNPtecvvfSSeuaZZ5RSSg0bNkzN\nmDFDKaVUamqq2rt3b46fNyEhQTk5OanExES1YMEC5e3tneF1Dw8P1bVrV3XhwgWVkpKi4uPjlU6n\nU5MmTVJpaWlq69atqkqVKmrYsGHq6tWrKikpSTVp0kRt3rxZKaVUXFyc+uGHH7Rr6+vrqyZOnJjh\n+Fu3btWeb9++Xbm5uWVpQ/o+b775pqpWrZrauHGjUkqp27dv53rNC3LdPvroI9WmTRuVlJSkbt26\npYKCglRAQIBSSmmf++7du0oppUwmU5Z/mxUrVqjr168rpZT6+OOPVb169dStW7eUUkq98MILqn//\n/io5OVlduHBBdezYUbm7uyullEpLS1Nt2rRRYWFh6u7duyoxMVE98MADat26dTn+u4mSIQFE5OnI\nkSNq1KhRytXVVen1ejVgwAD1+++/K6WsAaRZs2YZ9u/Ro4f69NNPVUJCgqpatar2S0MppZYtW6a6\nd++ulMr6S+fu3buqRo0a6vjx42r+/PmqZ8+eGY7r4eGRYwBZuHCh6tOnj1JKKYvFotzd3dXOnTuV\nUkqNGTNGTZw4USUlJeX5Wd9++22tfZcuXVKVKlVSMTExGdoQERGhPU//RXr27FltW6NGjdTKlSu1\n54GBgeqDDz7I9nwbNmxQbdu2zXD8ggaQvn37aq/ldc0zy+26Pfzww2rhwoXavr/99puqVKmSunnz\nZrYBxHbf7DRs2FDt27dPKaVU06ZN1fbt27XXlixZon3OqKioLN+pGTNmqODg4FyPL4qf3MISeWrX\nrh3/+9//MJvNHD9+nEuXLvHcc89pr7u6umbY383NjfPnz5OUlERqair33Xcf9erVo169ejz99NP8\n+eefAJjNZiZPnqy91qBBAwAuXrzIxYsXsz1uToYNG8ZPP/3EuXPn+OGHH9Dr9fTo0QOA9957j5SU\nFLp06ULbtm1ZsGBBjsf54osvtFtcDRo0wGQysWTJkgz73HfffVne5+Lioj2uWrVqlud37tzRPvOw\nYcO020LBwcHcuHEjx/bkR5MmTbTHZrM512ueWW7X7cKFCzRr1kzb193dnbt373Lp0qVsj5U5D/L2\n22/TqlUr6tSpQ7169bhy5QrJycnasW3/fW0fm81mzp49q7W/Xr16hIWF8ccffxTwyghHq1TSDRBl\nS8uWLRk7dixz5szRtiUlJWXYJzExkb59+9KkSROcnZ25cuVKtknW++67j7CwMIYPH57ltWPHjrF5\n8+YM28xmc47tqlevHv3792fFihUcO3aM4ODgDOf5/PPPAfjpp5/o3bs3JpOJBx98MMMxfvzxR06d\nOsU777zDzJkzAbh+/TqHDx8mPDwcvd7+v7fSP/+0adOoXbs2p06dolatWnzzzTc888wzWfZLV6VK\nFW7evKk9t1gsWfIQtvK65pnldt1cXFw4ffq09jwxMRG9Xk/Dhg2zDC7IfK7vv/+eefPmsWPHDu06\nN27cWMthNW7cmKSkJFq1agVk/Ldt0qQJDz74IEePHs2z/aJkSQ9E5OrEiRP85z//4cKFC4D1l8jy\n5cvp0qWLts/Zs2eZP38+YE18Hzp0iMcee4wHHniALl268Nprr2l/ZZ8+fZrdu3cDMGHCBGbMmMGp\nU6cA6/DZ9evXA+Dv7090dDTffvstAJ988kmuAQQgJCSEJUuWsGbNGkJCQrTt69ev59y5cwDUrl0b\nvV6f7S/XJUuW0L9/f3755RcOHTrEoUOHiI2N5datW1o77KFsEv83b96kSpUq1KxZk/Pnz/Phhx9m\n2Ld+/frEx8drz9u2bUtycjLffvstFouFmTNn5tpjadGiRa7XPDs5XbcRI0Ywa9Yszp49y+3bt/nX\nv/7F4MGDqV69epZjZG73jRs30Ov11KlTh7S0NGbOnMmVK1e014cPH857772njez7+OOPtX+TXr16\nYbFY+Pjjj0lJSUEpxfHjxzlw4ECOn0GUDAkgIlfOzs5s3boVb29vatasSadOnWjRogUfffSRtk+3\nbt2IjY2lQYMGvPDCCyxbtky7hbNq1SrOnj1L8+bNqV27NoMGDeLMmTMAjBo1igkTJjBgwABq165N\n69attQDi6upKREQEzzzzDPXr1+fo0aParZWcPP7445w6dYr77rsPg8Ggbd+1axdGo5GaNWvi7+/P\nzJkztb98092+fZtVq1YxadIkGjdurP14eHgwevRovvjiixzPm9df+ravh4aGsmfPHmrVqoW/vz+P\nP/54htdffvllXn/9derWrcusWbOoV68ec+bMYfTo0TRt2pTKlStnGK2U3dyY3K55Qa7b888/z+OP\nP06HDh1wcXHhzp07LFy4MNvPNWnSJCIiIqhTpw5Tpkxh4MCB9OnThwceeAAPDw90Ol2G22Hvvvsu\nzs7O3HffffTp04eAgACth1epUiW+++47tm7dqt3qGzNmTK49L1EydErJglLCfosXL+azzz5j586d\nJd0UUYZ99tlnfPrpp+zZs6ekmyIKQHogQohid+7cOfbt2wdY53x8+OGHDB48uIRbJQpKkuiiUIqr\nvIgoX1JSUvjb3/5GYmIiVatWZcSIEbz00ksl3SxRQHILSwghhF3kFpYQQgi7lJtbWB06dODQoUMl\n3QwhhChT2rdvz8GDB+16b7npgRw6dEgrtlfRf958880Sb0Np+ZFrIddCroX1JzlZ0aKFAqw/0dHW\n7YX5w7vcBBAhhBBZKQWjR4OzM8TFwbJl1m0dOxb+2BJAhBCinProI9DrISIC/v53a+CwqVZTaOUm\nByLuMZlMJd2EUkOuxT1yLe4p79di+3bo08f6+JFHYNs2qFKl6M9TbobxFnYlNyGEKOvi4+GBB6yP\nnZzg7Flo3Dj39xTmd6fcwhJCiDLuxg1o0eJe8DhwANLS8g4ehSUBRAghyiilYNQoa4L8t99g+XLr\nNqOxeM4vAUQIIcqg9AT50qXw0kvWwBEUVLBjTNgwoVBtkCS6EEKUIUWZID9x+USh2uKwHkhiYiI9\ne/bEYDDQunVrbYW3dOkrvNkuMhMWFoanpycGgyHDanTR0dEYjUa8vLyYPHmyo5oshBClVnw86HTW\n4OHkBOfPw65dBQ8eEzZMwLTYhP9Sfyo7VS5UmxwWQKpUqcK8efM4cuQI0dHRLFy4UJvxmJiYyJYt\nW2jevLm2f3R0NGvXruXIkSNs2rSJiRMnkpqaCsDYsWP5/PPPOXr0KKdPn2bdunWOarYQQpQqmRPk\n0dGFS5CfuHyCHad3sPHURmpWrlmotjksgLi4uNCuXTvAuqqdt7c3Z8+eBWDq1KlZeiSRkZEEBQXh\n5OSEq6srXl5e7N27lzNnzmCxWDD+lRUaNWoUkZGRjmq2EEKUCpkT5PbOILftcfxx+w9qVK4BQOem\nnVk8ZHGh2lgsSfSEhAT2799Pjx49+Oqrr3Bzc8Pb2zvDPklJSbi5uWnP3dzcMJvNJCUlZVjC09XV\nNc+1sYUQoiybOzdrgtzeGeS2PY4JGyawLGAZgZ6BbBm9hbrV6haqnQ5PoicnJxMYGMicOXNwcnJi\nxowZbNmyRXu9KCf/hYaGao9NJlO5n20qhChftm0DX1/rYx8f2LoVKtuRppiwYQInLp+gRuUaWp6j\nc9POLBi0gIN7DuJ51JN/H/13odvr0ACSmppKQEAAISEhDBkyhCNHjpCQkED79u0BMJvNdOrUib17\n9+Lm5kZiYqL2XrPZjLu7e7bbbXsqtmwDiBBClBW2M8j1evj994LnOGyDxrU719iduBuAwa0HE+gZ\nyIJBC6hbrW6WP66nT59ud7sdFkCUUjz11FN4enry4osvAmAwGDh//ry2z/333090dDT169fH39+f\np59+milTpnDu3DliY2Pp2rUrlStXRq/XExMTg9FoZOnSpYwZM8ZRzRZCiGJz4wYYDNYAAtYZ5PZO\nAky/VQXQpGYT4F6eo7C3qnLisBzI7t27iYiIYPv27RiNRoxGIxs3bsywj+1a2p06dWLo0KF4e3vz\n6KOPMn/+fCr/1XdbtGgR48aNw8vLi2bNmjFs2DBHNVsIIRzONkEeH2/fDPLckuN7xu8psjxHbqSY\nohBCFKO5cyF9OttLL8EHH9h3HNNik9bjSL9FNWHDBO1WVX4V5nenBBAhhCgGRZEgt81zpFpS+f63\n7+nctHOhehoSQJAAIoQonWwT5JUqWUusN2pk37Fsex2DWw+milOVAvc4MivM706phSWEEA5w4wZ4\ne1snAYL9CfKchuQ6MjmeX1KNt5RZt26dNugg/cfJyYnvvvuuSM/z559/8t///rdIjymEsCbDR468\nN4P8yy8LV2I9c+mR4kiO55fcwiqkqKgolixZwqJFixxy/AULFrB8+XK2b9+er/3Tr4HtCLfsJCQk\nMGjQII4cOZLvtty9excnJ6d87y9ERWObIH/5ZchUsSlfbHscywKWEbImhI2nNhY615ETWZGwBOX1\ni7owTpw4wdtvv83//vc/bdtbb72Ft7c3bdu25dVXXwWswaB169Y8+eSTdOjQAbPZzKRJk/D09MTT\n05Mvvvgiy7GnTZtGXFwcRqORV155BaVUtu+JiorCx8dHG2KtlOL//u//aN26NY8++igDBw5kzZo1\nAHh4eGjVlX/++Wd69+4NWKsRBAcH0759e7y8vFi1apXDrpkQJWHbNmul3MmTrQnylBT7ggc4tvRI\nUZMcSCHlJ3IvW7aMD7IZq9eqVStWrlyZ7XtSU1MJCQlh1qxZ2sz7r7/+mqSkJA4fPozFYmHw4MF8\n//33tGzZklOnTrFs2TI6derEsmXLOHnyJMeOHePKlSsYDAZ8fX1xdXXVjv/+++9z9OhRYmJitDZm\n9x6AmJgYjh8/jqurK8uXL8dsNnP8+HEuXLhA69ateeqpp4Ccg+kbb7zBY489xvLly/njjz/o3Lkz\njz76KLVq1crz2glRmhVVgjy30iN1q9VlZWD2vydKmgQQOz300EPcuXOH5ORkrly5olULnjlzJv36\n9cuwb0hICCEhIQU6/uuvv47BYCAwMFDbtnnzZjZv3qyd68aNGyQkJNCyZUuaN29Op06dAOskzqC/\nliarX78+vr6+/PTTTwwfPlw7VubAl9N7GjVqRNeuXbXgs2vXLkaMGAFA48aN6ZO+sk0uNm/ezJYt\nW/jwww8BSEtLIzExEU9PzwJdEyFKi6KcQQ4ZZ5FnLj1SmkkAsdOePXsA2LFjB4sXL841B7J06VLt\nl6etli1bZns7JyoqinXr1nHgwIEsr73++uuMGzcuw7aEhARq1sxY1982QCil8nWrLXNQSX+P7bEz\n3y+1fazX67FYLADcvn07w7G+/vpr7r///jzbIERplj6DfNky6/Plywu+jGy60jy6Kr8kB1JI+bmF\nNXLkSGJiYrL8ZBc8rl69ytixY/niiy+yBAU/Pz8WLVqk/XI+f/48ly5dynIMHx8fVq1ahVKKK1eu\nsH37drp3755hn+rVq3Pz5s0c37Nt2za6d++e5fP16NFDa/fFixeJiorSXnNzc+Pnn38GyLDol5+f\nH/PmzdOex8bG5nq9hCiN0kusL1tmTZAXdA3yzKVHSvPoqvySHkgh6XS6Ik2kf/LJJ1y8eJGnn346\nw/bXXnuNwMBAjh07RseOHalSpQpVq1blyy+/zNKGESNGsHv3bjw9PdHpdISFhdG0adMMx3NxcaFD\nhw54enoyaNAg3nvvvWzfc/LkySzH3rp1K61bt+aBBx7IEGTefPNNnnrqKVxcXPDx8dHe9/bbb/PM\nM8/g6elJpUqVcHd3l0XBRJlRVCXWbW9TTdgwIcvCTmUpcKSTYbyiUMaOHctjjz1GQEBASTdFiCJV\nFAny3EqPpL9e0rkOGcYrSpQjhzILUdySk62BIz14HDgAqan2ja7K7TZV+uiqstjzSCe3sEShOGoC\npRDFLX0G+fLl1uf2JMgzTwIsD7epciM9ECFEhZeeIF++3L4EebqyNAmwKEgORAhR8URFgclUakus\nFyepxiuEEAVwdV0U9XubgMKXWC+rkwCLggQQIUSFkZxsLbE+5q8Z5DEx0KFDwY9THiYBFgW5hSWE\nKPeUgnf6RnF3WxQAoUyHN9+0vmgyWX8KwBELO5UUuYUlhBA5uFdi3cQ//mHi/feBUCA0NN/HqGij\nq/JLAogQolyyTZD36GF9bs8Mcsg6i3xZwLJSMQmwpDlsGG9iYiI9e/bEYDDQunVrZv5VHH/q1Kna\nmhOPPfYYly9f1t4TFhaGp6cnBoOBzZs3a9ujo6MxGo14eXkxOX21FiGEyEZ8vHVtDl9fa8C4cAF2\n7swUPPJxy8q2dlVOJdYrcvAAB+ZAzp8/z8WLF2nXrh3Jycl07NiRVatWceXKFXr16oVer2fatGnc\nuXOH2bNnEx0dzdNPP82ePXs4d+4cPXr04MSJE1SuXBlvb2+WLFmC0WhkyJAh/O1vf2Po0KEZP4jk\nQISo0JKTrSXWExKsz+1JkNveqrp25xq7E3cDZT/PkZtSWcrExcWFdu3aAeDs7Iy3tzdnz56ld+/e\n6PXW0z7yyCMkJSUBEBkZSVBQEE5OTri6uuLl5cXevXs5c+YMFotFWwNj1KhRUohPCKFRCkJCoFYt\na/BIX4PcntFVthMB467EAffyHNLjyKpYciAJCQns378/S9mLBQsWaIsYJSUlZVicyM3NDbPZjJOT\nE+7u7tp2V1dXzGZzcTRbCFHKzZkDU6ZYH7/yCrz3Xu77b4vcxvq569Hd0aGqKhK7JXL1gavZJsdX\nB67m5S0vl8teR1FxeABJTk4mMDCQOXPmZFjC9N1336VKlSqMHDmyyM4VajOqwmQyYSrg0DwhRNlg\nmyDv2RO+/z7vBPm2yG0sn7yckXH3fufMPDiTfX33cevBW9kmx0vrUrKFERUVlWEdn8JwaABJTU0l\nICCAkJAQhgwZom1fsmQJkZGRbNu2Tdvm5uZGYmKi9txsNuPu7p7t9vQ1wjMLLcCwPCFE2WNbYr1y\nZUhKyv8M8vVz12cIHgD/uPAP4vbGUdtUu1wHDVuZ/7iePn263cdyWA5EKcVTTz2Fp6cnL774orZ9\n06ZNzJw5k6+//ppq1app2/39/VmxYgVpaWmYzWZiY2Pp2rUr7u7u6PV6YmJiAOvysP7+/o5qthCi\nFEpOhvvvz1hiPSWlYOVHdHeyX3agWZVmZaZuVWnjsACye/duIiIi2L59O0ajEaPRyMaNG5k0aRLJ\nycn069cPo9HIs88+C0CnTp0YOnQo3t7ePProo8yfP5/Kf/VJFy1axLhx4/Dy8qJZs2YMGzbMUc0W\nQpQiOSXI/xpTk28TNkxg36V92b7m2cxTgoedpJSJEKJU+ve/If3mxT/+gXUGuZ1Mi03s27KPbhu7\n8ebVN7XtES0iCJkTQp+BfXJ5d/kmpUyEEOXG1q3Qt6/1ca9esGVL4Uqsp4+uuvXgLa7Uv8Kq46uo\nlFIJqkHIpIodPApLAogQolT47Tdo0cL6uKAJ8syk9EjxkFtYQogSlZwM7drB6dPW50VRYr0sLuxU\nUkrlTHRRNBISEqhevbo2EKFjx46kpqbmuH9oaCjh4eEAPPnkk6xZsybLPjltt6dtBoMhy/bTp0+z\nPH1haSFyYLFAcLA1QX76dOFmkEPGWeQ1K9cs10vJlhZyC6sMaNmypTaMOS86nQ6dTpflcU77OEJ8\nfDzLli0jODg43++5e/cuTk5ODmuTKF2KKkEuCzuVLOmB2Ondd9+lbdu2tG3blvcLMzzETs7Oztrj\n1atXM3bsWO25bXc0r67pt99+i8FgwMvLi5EjR3Lnzh3AOrmoa9eutGnThieffBKLxQLATz/9RNu2\nbenSpQvz5s3L9pjTpk1j586dGI1G5syZw+3btwkODsbLywuDwcB3330HwOLFi3n88cfx8/Ojf//+\n3Lp1i8GDB+Pl5cXw4cN56KGHOHDgQK6f99y5czz22GO0b9+eDh06sGPHjnxfQ1H8tm61Vsp98UVr\ngjwlpWDBw7ZC7h+3/5BeRwmTHogdfvzxR1asWMGhQ4ewWCx07twZk8lEt27dMuwXFBTE8ePHs7z/\n73//O6NGjcr3+eLi4rRikj169OCjjz7K0IOwtzdx8+ZNxo0bx549e/Dw8GDcuHH8+9//5pVXXuHF\nF1/kzb9WbBszZgzr1q0jICCAJ598ksWLF9O9e3dee+21bI/7/vvv8+GHH7JhwwYAZsyYQe3atTl6\n9CinTp3Cx8eH+HjrmqIxMTEcO3aMWrVqERYWRpMmTfjqq684duwY7du3z/Yz2j5+9tlnefXVV3nk\nkUc4c+YMffr04dSpU3ZdD+E4tgnyKlXAbLYvQZ45OS4LO5UsCSB22LVrF8OGDaNKlSoADBs2jJ07\nd2YJIF9++WWRnK9Fixb5voWVX0opYmNjad26NR4eHoC10vGsWbN45ZVX+OabbwgPDyctLY3Lly/T\npk0bLly4wO3bt+nevTsAwcHBWpDIfGxbu3fv5uWXXwast+NatWpFbGwsOp2Ofv36aTXSdu3ape3n\n6emJt7d3np/j+++/14IRwJ07d7h+/XqGumui5BRFgjyn21QLBi3QXpfRVSVDAogdMo9aUEpl2wsY\nMWIEJ06cyLJ96tSpjB49ulBtsD3/rVu3srQvPzLvl37MGzduMGXKFA4fPkyTJk2YPn06aWlpWhn+\n7NpQkPbanrtmzZoZtuV0zJw+r06nY//+/VSqJF/l0iR9Bnn631ArVsATT9h3LNtex+DWgwn0DMwQ\nMMp77arSTHIgdujRowfr168nJSWF27dvs379enr27JllvxUrVhATE5Plp7DBA6BBgwb8+uuvKKVY\nv369tl0pla9f7DqdDoPBwIkTJ0j4awWe5cuX06tXLy1Y1K1bl1u3brFq1SoAGjZsSI0aNdizZ4/2\n+bJTo0YNbt68qT338fHR9o2Li+PkyZO0a9cuSzt79Oih7ffLL79w+PDhHD9vegDq27cvn3zyibZf\nbGxsnp9dONacOaDXW4PHtGnWYFLQ4JHTaoCyLkfpIn+22aF79+6MGDFCu0c/duxYunTp4rDzZdej\nCAsLw8/PD3d3d4xGIzdu3ND2zW9+pFq1anz22WcMGjQIi8VChw4dmDx5MlWqVGHs2LG0adOG5s2b\nZ7g1l16XzNnZmd69e2d7/A4dOpCSkoLBYGD8+PFMmTKFsWPH4uXlhV6vZ8mSJVStWjVLWydPnkxQ\nUBBeXl54enrSqVOnPD/vJ598wvjx45k/fz5KKR5++GEWLFhQgKsrikpRzCBPl1evQ5QOMpFQlFq9\ne/cmPDycjh07lnRTRC5sE+RVq1oT5A0bFuwYmUuPhKwJYeOpjTIRsBhILSwhRLHLnCA/eBBsBs4V\niJQeKZukByKEKBCLBUaOLHyCXEqPlA5SykQIUSz+/W9wcrIGj1desS9Bnk4mAZZ9cgtLCJGnokqQ\nS+mR8kVuYQkhclRUM8jTmRabMoyuquJURfIcJUyS6EKIIlVUCfLsFnYC6XWUF9IDEUJoLBbrDPL0\nOaL2JMhtg8a1O9fYnbgbQJvLIaOrSpfC/O6UACKEAGD2bJg61fp42jQIC7PvOLa3qZrUbMK5G+dk\ndFUpJrewhBB2+/576NfP+thkgs2bC7cGuW1yfHXgal7e8rL0OMophw3jTUxMpGfPnhgMBlq3bs3M\nmTMBuHLlCv369cPb2xs/Pz/++OMP7T1hYWF4enpiMBjYvHmztj06Ohqj0YiXlxeTJ092VJOFqFDi\n4qxrc/TrZ02QX7wI27fbN7oqpyG5zes2l9pV5ZlykHPnzqkjR44opZS6fv26atWqlTp48KB6/vnn\n1ezZs5Vnie7MAAAgAElEQVRSSs2ePVu98MILSimlfv75Z9W5c2eVlpamzGaz8vDwUCkpKUoppQwG\ngzpw4IBSSqnBgwertWvXZjmfAz+KEOXK9etKNWumlHUWh1IHDxb8GP/39f+pXot6qQERA9TVW1fV\ngIgBilBU5wWd1dVbV4u+0cJhCvO702E9EBcXF9q1awdYV5Pz9vYmKSmJb7/9VqtGO2rUKCIjIwGI\njIwkKCgIJycnXF1d8fLyYu/evZw5cwaLxaItqGT7HiFE/lksEBRkXYP8zBlYudIaQuwZXWXb40gv\nPSITASueYsmBJCQksH//fj7//HMuXrxIgwYNAGt58AsXLgCQlJREnz59tPe4ublhNptxcnLC3d1d\n2+7q6orZbC6OZgtRbhRFgjy3hZ3qVqsr63JUQA4PIMnJyQwfPpw5c+ZQu3Zth54rNDRUe2wymTCZ\nTA49nxClnW2CXEqsC4CoqCiioqKK5FgODSCpqakEBAQwcuRIhgwZAkCjRo24dOkSDRs25OLFizRu\n3Biw9jgSExO195rNZtzd3bPd7ubmlu35bAOIEBVZXBy0bGl9XFQl1mUSYPmQ+Y/r6dOn230sh+VA\nlFI89dRTeHp68uKLL2rb/f39iYiIACAiIgJ/f39t+4oVK0hLS8NsNhMbG0vXrl1xd3dHr9dra4Iv\nXbpUe48QIqPkZGjW7F7wOHgQbt8uePAAyXOIvDlsIuGuXbvo2bMn3t7e2qpzYWFhdO3alREjRnD+\n/HmaNGnCypUrqVvX+mWcMWMGERER6PV6wsPD8fPzA6zDeMePH09KSgq+vr7MnTs36weRiYSiAss8\ng3zlSggMLPhxpMR6xSMz0ZEAIiou2wT5q6/CjBn2H0uKHVY8DpmJPmjQoDzfXL9+fZYsWWLXiYUQ\nhWObIO/d2zqDvJIdWU0psS7slePX7ddff2XhwoXZRqb0iPXcc885tHFCiKxsE+TVq1vndBQkx5E5\nOS6jq4S9cgwg77zzDr169cr1zW+88UaRN0gIkb3r18HLC9IHJdpbYj3z+uMyukrYS3IgQpRyRZEg\nzy05nv669DoqJocm0WNjY/nwww9JTEzEYrFoJ9y2bZtdJ3QUCSCiPHJEiXVJjgtbDg0grVu3ZsqU\nKXTs2BEnJyfthJ06dbLrhI4iAUSUJ5kT5N99V7gS6zIkV+TEoQGka9eu7Nu3z66DFycJIKI8sE2Q\nV6tmzXfYMwkQpNch8sehC0r5+/vzySefMHjwYKpWraptr1+/vl0nFEJklZwMnp6FS5BL6RFR3PLs\ngXh4eGgzyW3Fx8c7rFH2kB6IKIsyJ8hXrYLhw+07lm2PQ9YfF/klM9GRACLKnlmz4O9/tz62dwa5\n5DlEYTkkgGzduhVfX1/WrFmTbQ9k2LBhdp3QUSSAiLJiyxbo39/62N41yNNJnkMUlkNyID/88AO+\nvr5s2LChTAQQIUq1qCji3E2FmkGeTkqPiNJCbmEJ4WDXr8NCt1CmXgsF7J9Bnk56HaIoOXQU1qVL\nl1i8eHGWiYTZlVQXQtyTvgb5qlXwJvYnyGV0lSit8gwg/fv3x2Qy0aFDB/R6PUqpbG9pCSHumTUL\nvv57FCai+L4H+O6aDrFYf0wm608+Za5dtSxgmYyuEqVCnrewOnfuzM8//1xc7bGb3MISpYFtgrxP\nH+sM8kqVgNBQ608+yegqUVwcegsrKCiIzz77DH9/f5lIKEQOCltiHTIGjWt3rrE7cTcgJdZF6ZVn\nAKlWrRpTp07lrbfeQq+3LqGu0+n47bffHN44IUq7zCXWDx0Cb+9sdszHLSvbW1VNajYBJM8hSrc8\nA0h4eDhxcXE0tLcgjxDlkMUCwcHW0uqQjwR5NgEkt+T46sDVvLzlZel1iFItzwDSpk0bnJ2di6Mt\nQpQJtjPIX3sN3n3XvuPklRxfGbiyiFoshGPkGUCqVq2KwWCgd+/eWg4kv8N4x40bR2RkJI0bN+bI\nkSMA7N69m+eee460tDScnJz473//y8MPPwxAWFgY//vf/3ByciI8PJz+f2Ujo6OjGT9+PCkpKfTt\n25c5c+bY/YGFsFeOCfJcRG7bxtz167mj01FVKXT3JXL7vqtZJgFK0BBlUZ6jsBYvXnxv57+y9Tqd\njr/97W95Hnznzp04OzszZswYLYD06NGD119/HT8/PzZu3MiMGTPYuXMn0dHRPP300+zZs4dz587R\no0cPTpw4QeXKlfH29mbJkiUYjUaGDBnC3/72N4YOHZrxg8goLOEg9pZYj9y2jcnLlxM3cqS2rdp/\nZ3K7VhS435JJgKJUcMgorAkTJjBgwAACAgKoVauWXQf38fEhISEhwzZ3d3f+/PNPAP744w+aN28O\nQGRkJEFBQTg5OeHq6oqXlxd79+6lWbNmWCwWjEYjAKNGjSIyMjJLABGiqOU7QZ6DuevXZwgeALef\n+Qd8GEfnbrUlOS7KvBwDyLhx49i4cSOzZs2icuXK+Pn58eijj9K+MDUYgPfee48ePXrw0ksvYbFY\n+OmnnwBISkqiT58+2n5ubm6YzWacnJxwd3fXtru6umI2mwvVBiFyYzuDHOyfQX4nhwm3DWs3Y8vo\nVRI8RJmnz+mFhx56iOnTp7Nz505WrlyJu7s74eHhdOjQgbFjx7JypX33ap966inmzp3LmTNnmD17\nNuPGjbO78UIUtfBwcHKyBo3XXgOlCh48JmyYgGmxidiz0dm+3qmRpwQPUS7kmgK0WCysWbOGwMBA\nQkJCCAkJQSlFdHQ03333nV0n3LNnD99//z0Aw4cPZ+zYsYC1x5GYfq8AMJvNuLu7Z7vdzc0t22OH\n2sz0NZlMmApQLkJUbPYkyHOija6qU52a88O5MfHv2mstIiKYFBJSBC0Wwj5RUVFERUUVybHyTKJ3\n69aNvXv32n2ChIQEBg0apCXRvby8mDdvHr169WLr1q1MmTKFI0eOaEn0n376SUuinzx5Mtsk+pgx\nY7KUk5ckurBHUcwgh5xLj7zk/jqLNm7lNlANmDR4MANtbtUKUdIcuiLhtGnTcHFxYfjw4dSsWVPb\nnp9SJsHBwezYsYNLly7h4uLCW2+9RevWrXn22WdJTU2latWqfPLJJ3Tt2hWAGTNmEBERgV6vJzw8\nHD8/PyDjMF5fX99shxBLABEFcf26dQ3y9HRaQRPkmUmJdVFWOTSAZLcmemksZSIBRORHUSXIQQoe\nivJB1kRHAojIW3g4vPSS9bE9M8gzlx4Z8uUQ6XWIMs8h80AOHDhAx44dc31zfvYRoqTZJsh9fWHT\nJvsS5JlLj8jCTqKiy7EH4u3tnWumXilF3759iYmJcVTbCkR6ICKzU6egVSvr4xo1rAnyBg0Kdozc\nblOlvy69DlGWOeQWVna5j8waNWrEvn377DpxUZMAItJdvw5t20JSkvV5YRLkkhwX5Z1DbmFlLkEi\nRGlnscCIEbB6tfX56tUQEFDw49j2OmwLHsptKiEyynEmuhBlSfoM8tWr4Z//tM4gtyd4wL1cx8ZT\nG6lZuSaBnoEyskqIbNg511aI0mHzZvhrupDdCfLcFnaSXocQOZMAIsqkokiQp8trYSchRPZyTKJH\nR0dnWP8js9I2fFeS6BVD5gT54cNgMBT8ODIJUAgrh4zCMplM6HQ6bt26RXR0NN5/DWM5fPgwnTt3\n1sqwlxYSQMq3zAnywswgBxldJUQ6h4zCSp8DMnz4cD7//HM8PT0B+OWXX3jjjTfsOpkQ9ijsDHKQ\nPIcQjpBnDuSXX37RggdA27ZtOXbsmEMbJQRkTJD37m19XugS60ieQ4iikmctrMGDB9OkSROCg4NR\nSrFixQp+//13vvrqq+JqY77ILazyo6gS5JLnECJvDi2mePPmTebMmcOuXbvQ6XT06NGDyZMnU716\ndbtO6CgSQMq+okiQ2waNa3eusTtxNyB5DiFy4vBqvNevX+fMmTN4eXnZdZLiIAGk7CqqGeSQMTne\npGYTzt04J70OIXJRmN+dec5EX7VqFUajkYEDBwIQGxurPRaisGxnkP/rXwWfQZ6+/rj/Un/+uP1H\nhuT4nvF7ZBa5EA6UZw/Ey8uL3bt307t3b63yrre3N4cPHy6WBuaX9EDKFtsEed++sHGjfQly2x5H\noGcgCwYtkOS4EAXgkGG82g6VKlG3bsb/EdPS0uw6mRC2CfKaNeH06cKVWLctdpgeNFYGriziVgsh\nspPnLSxPT0+WLl1KWloa8fHxvPzyy3Tp0qU42ibKkevXwc3tXvA4fBiSk+0bXSXFDoUoHfK8hZWc\nnMwbb7zB5s2bAfDz8+Ptt9+mRo0axdLA/JJbWKWTxQJPPAFr1lifF0WJdRmSK0TRKZY10a9du0bt\n2rXtOklxkABS+nz4Ibz8svXxv/4Fb79t/7Gk9IgQjuHQUVg7duygZcuW2hDe2NhYJkyYkK+Djxs3\nDhcXFwyZBvN/9NFHtG/fHoPBwMvpv2GAsLAwPD09MRgMWo8HrIUdjUYjXl5eTJ48OV/nFiVn82bQ\n6azBo18/SE0tePDIbXTV4iGLWRm4UoKHECVN5aF9+/bq9OnTqkOHDto2Ly+vvN6mlFLqhx9+UAcO\nHFDt2rXTtn3zzTdq4MCBKjU1VSml1KVLl5RSSv3888+qc+fOKi0tTZnNZuXh4aFSUlKUUkoZDAZ1\n4MABpZRSgwcPVmvXrs1yrnx8FOFgJ08qZR2Iq1SNGkr99U9rl16LeilCUYSiAlcGqqu3rmr/FUIU\nncL87sxzFJZSimbNmmXYltda6el8fHyyLI27cOFCXnnlFSr9NWazwV9Z1MjISIKCgnBycsLV1RUv\nLy/27t1Ls2bNsFgsGI1GAEaNGkVkZCRDhw7NVxuE4zmixLqMrhKi9MvzFpa7uzu7d1vLQaSlpfHx\nxx/zwAMP2H3CX3/9le+++44OHTrQvXt3fvzxRwCSkpJwc3PT9nNzc8NsNpOUlIS7u7u23dXVFbPZ\nbPf5RdGxWCAwEGrXtgaPNWus/Q97ggfI6Cohypo8eyALFy7k2WefJS4ujgYNGtC3b18WLlxo9wkt\nFgvXr1/n4MGD7N+/n4CAgCy9FFH6FVWCPKdeh5RYF6L0yzOANGnShLVr1xbZCd3d3Rk2bBgAXbp0\noUqVKpw/fx43NzcSExO1/cxmM+7u7tlut+2p2AoNDdUem0wmTCZTkbVbWH33HTz6qPWxPTPIM6/L\nYVtmfXDrwdpscgkeQjhGVFSUtt5ToeWVJPn1119V//79Va1atVStWrWUn5+fOn78eL6TLPHx8RmS\n6LNmzVJvvPGGUkqp48ePq/vuu0/dvXtXS6KnpqaqxMRE1bx58xyT6GvWrMlynnx8FFEIJ07cS5DX\nrGl/gjxzcnxAxABFKKrzgs6SIBeiBBTmd2eefzs+8cQTvPLKK3zzzTcArF69mieeeIKDBw/mGZyC\ng4PZsWMHly9fxt3dnbfeeovnn3+ecePG0a5dOwAWL16MXq+nU6dODB06FG9vb/R6PfPnz6dyZest\njUWLFjFu3DhSUlLw9fXVejDC8a5fhzZt4OxZ6/PClljPnBxPf116HUKUPXlOJOzcuTM///xznttK\nmkwkLFqZZ5CvWQP2xm2ZBChE6eXQYoq+vr7MnDmTJ554ArD2QPr27cuVK1cAqF+/vl0nFqVXUSTI\nJTkuRPmXZw/Ew8Mjx3kfOp2O3377zSENKyjpgRSebYLc1xc2bbJ/DXLpdQhRNji0ByJDbMu/kyfh\nwQetj4uixPqygGVZSo9I4BCi/MlxIuHevXs5d+6c9nzhwoUMGDCACRMmcP78+WJpnHCsa9egadN7\nwaOoSqxP2DCBZQHLZCKgEOVcjrew2rdvz86dO6lduzZbt25l1KhRfPzxx8TExHDo0CE2bNhQ3G3N\nldzCyr/0GeTp03vsTZBLiXUhyj6HVeNNL9++evVqJk6cSEBAAO+88w6nTp2y62Si5H3wgXUN8rVr\n761Bbu/oKik9IkTFlmMO5Pbt26SmplK5cmWioqL4z3/+c+9N9mZWRYmxTZD36wfffmtfglxGVwkh\n0uX4K+SJJ56gV69eNGrUiEqVKtGrVy/AmlSvWbNmsTVQ2CEqCv4q42KbIK9VCxISoDAjr6X0iBAi\nXY4B5O2338bX15eLFy/i5+eHk5MTAKmpqcybN6/YGijsEBXFtY4m2rSB33+3bjpyBP6a/F8gMrpK\nCJGTfC9pW9pJEt3KYoFVXqEE/RoK2Jcgtw0a1+5cY3eitZx/em9DSo8IUX44dB6IKCOiotj9bhRb\nvodQptO4J/TuDdQ3AaYCHcr2NlWTmk0AWdhJCJGVBJBywJogNwEm+vUDy0PQ+63QAh0jp+T46sDV\nvLzlZelxCCGykABShtkmyJ2drTPI69cHQgt+rNyS49LjEEJkRwJIGXTtmnUN8vQS61kS5PlYSEuS\n40KIwspzTXRRelgsEBAAdepYg8fatdaJgFlGV+UjgEjpESFEYckorDLigw/gH/+wPn79dXjrrYIf\nQ0qPCCEyK8zvTgkgpVxRzSAHKbEuhMhKhvGWQ5kT5AkJeVfJ/SEyks1z51Lpzh3Sqlal/wsvEGH5\nSkqPCCEcQnogpcy1a9C6NaRX0s/vDPIfIiP5bvJk3o2L07b9s0ULtg2qxp66RwHpdQghspJbWJT9\nAGKxwPDhsG6d9fnatTB0aP7f/y8/P97ZvDnL9gGGhmwKuCS5DiFEthxWzl0Uj/QS6+vWWRPkShUs\neABUunMn2+2d6raW0VVCCIdwaAAZN24cLi4uGAyGLK+Fh4ej1+u5cuWKti0sLAxPT08MBgObbf6a\njo6Oxmg04uXlxeTJkx3Z5GK1aRPodNbRVf37Q2qq/aOrfrx0ONvXdDWcWRm4UoKHEKLIOTSAjB07\nlk2bNmXZnpiYyJYtW2jevLm2LTo6mrVr13LkyBE2bdrExIkTSU1N1Y7z+eefc/ToUU6fPs269Ps8\nZdSJE9bAMWCAtcT65cvW0Vb5HV01YcMETItN+C/154/bf3Di8gl+an+VEfUy7vdaixb0mzSp6D+A\nEELg4FFYPj4+JCQkZNk+depUZs6cyeDBg7VtkZGRBAUF4eTkhKurK15eXuzdu5dmzZphsVgwGo0A\njBo1isjISIYW9B5PKWBvgjwz27IjEzZMoEblGiQ/CCfrt2Ta8WZUS7nL3WrVeHTSJHoOHFiEn0AI\nIe4p9mG8X331FW5ubnh7e2fYnpSURJ8+fbTnbm5umM1mnJyccHd317a7urpiNpuLrb1FobAJcsi5\n2OGCQQu012V0lRCiOBVrALl58yYzZsxgy5Yt2raiHDkVGhqqPTaZTJjyUdLD0d5/H6ZNsz5+4w2Y\nPt2+4+S1EqAUPBRC5EdUVBRRUVFFcqxiDSBxcXEkJCTQvn17AMxmM506dWLv3r24ubmRmJio7Ws2\nm3F3d892u5ubW7bHtw0gJW3TJmuOA8DPD775puAzyGX9cSFEUcv8x/V0e/+qpZiH8RoMBs6fP098\nfDzx8fG4ublx4MABXFxc8Pf3Z8WKFaSlpWE2m4mNjaVr1664u7uj1+uJiYkBYOnSpfj7+xdnswvk\n5MmsCfJNm+wrP2Jb8LBm5ZoyHFcIUao4tAcSHBzMjh07uHz5Mu7u7rz11luMHTtWe12n02mPO3Xq\nxNChQ/H29kav1zN//nwqV7b+1b1o0SLGjRtHSkoKvr6+DCvoGq3FIHOCPDYWvLwKdgwpsS6EKEtk\nJnohZU6Qr1sHQ4bYdyzbYoey/rgQojhIKRNKJoDMnAmvvGJ9bG+CXEqsCyFKkgQQijeAFEWCPJ2U\nWBdClCQp515MbEus164N8fF/rUFeQDK6SghRHkgxxXy4dg3uu+9e8IiNhT//tC94gIyuEkKUD9ID\nyUVRJchldJUQojySHEgObBPkb74JBZ2jaBs0rt25xu7E3YCMrhJClC6SRKfoAohtgrx/f4iMtC9B\nbpscb1KzCedunJPRVUKIUkeS6EXgxAnrRECwziBPSCh4jiOn5PjqwNW8vOVl6XEIIcqVCt8DKaoS\n6yBDcoUQZY/0QOxgsUBAAKxfb31uT4JckuNCiIqsQg7jff996xrk69dbE+RK2Te6ynY47oQNE1gW\nsEyG5AohKowKdQtr40ZIL+RbFCXWpfSIEKKsk1FY5H4RbBPkderAb7/ZPwlQ8hxCiPJEciA5+PNP\na+A4f9763J4S6yClR4QQIjvlMgdisVhzGnXrWoPHunXWPIc9wQOk9IgQQmSn3PVAbNcgt2cGOcjo\nKiGEyI9yFUDSFzgsbIn19B4HoI2uktIjQgiRUblKotepo4iPh3r1Cv5+GV0lhKiIZBQWha+FJaOr\nhBAVkYzCspOMrhJCCPtVqB5I5uT4kC+HSK9DCFGhFaYH4tBhvOPGjcPFxQWDwaBtmzp1Kp6ennh6\nevLYY49x+fJl7bWwsDA8PT0xGAxs3rxZ2x4dHY3RaMTLy4vJkyfb3Z7MpUcyj65aGbhSgocQQuST\nQwPI2LFj2bRpU4ZtgwYNIjY2lmPHjtGuXTveeecdwBok1q5dy5EjR9i0aRMTJ04kNTVVO87nn3/O\n0aNHOX36NOvSlwjMhwkbJmBabMJ/qX+G21QLBi2Q2lVCCFEIDg0gPj4+1Ms0JKp3797o9dbTPvLI\nIyQlJQEQGRlJUFAQTk5OuLq64uXlxd69ezlz5gwWiwWj0QjAqFGjiIyMzHcbcpsEWLdaXel1CCGE\nnUo0ib5gwQKCgoIASEpKok+fPtprbm5umM1mnJyccHd317a7urpiNptzPa4kx4UQwvFKLIC8++67\nVKlShZEjRxbZMUP/mna++eBmTtc9Dfdbk+Pp65BL8BBCVHRRUVFERUUVybFKJIAsWbKEyMhItm3b\npm1zc3MjMTFRe242m3F3d892u5ubW7bH3ddqH8sClrFvzT5OnzotvQ4hhMjEZDJhMpm059OnT7f7\nWMVeTHHTpk3MnDmTr7/+mmrVqmnb/f39WbFiBWlpaZjNZmJjY+natSvu7u7o9XpiYmIAWLp0Kf7p\ni3pkIgs7CSFE8XHoPJDg4GB27NjBpUuXcHFxYfr06YSFhZGSkkL9vxbk6N69O/PmzQNgxowZRERE\noNfrCQ8Px8/PD7CO0Bo/fjwpKSn4+voyd+7crB9Ep6PzAik9IoQQBSGlTLBehKu3rkrwEEKIApAA\nQuFrYQkhREVUameiCyGEKL8kgAghhLCLBBAhhBB2kQAihBDCLhJAhBBC2EUCiBBCCLtIABFCCGEX\nCSBCCCHsIgFECCGEXSSACCGEsIsEECGEEHaRACKEEMIuEkCEEELYRQKIEEIIu0gAEUIIYRcJIEII\nIewiAUQIIYRdJIAIIYSwiwQQIYQQdnFoABk3bhwuLi4YDAZt25UrV+jXrx/e3t74+fnxxx9/aK+F\nhYXh6emJwWBg8+bN2vbo6GiMRiNeXl5MnjzZkU0WQgiRTw4NIGPHjmXTpk0Ztr355psMHDiQw4cP\nM2DAAN58803AGiTWrl3LkSNH2LRpExMnTiQ1NVU7zueff87Ro0c5ffo069atc2Szy7yoqKiSbkKp\nIdfiHrkW98i1KBoODSA+Pj7Uq1cvw7Zvv/2W0aNHAzBq1CgiIyMBiIyMJCgoCCcnJ1xdXfHy8mLv\n3r2cOXMGi8WC0WjM8h6RPfmf4x65FvfItbhHrkXRKPYcyMWLF2nQoAEADRs25MKFCwAkJSXh5uam\n7efm5obZbCYpKQl3d3dtu6urK2azuXgbLYQQIgtJogshhLBLpeI+YaNGjbh06RINGzbk4sWLNG7c\nGLD2OBITE7X9zGYz7u7u2W637amka9GiBTqdzvEfoIyYPn16STeh1JBrcY9ci3vkWli1aNHC7vcW\newDx9/cnIiKCKVOmEBERgb+/v7b96aefZsqUKZw7d47Y2Fi6du1K5cqV0ev1xMTEYDQaWbp0KWPG\njMly3FOnThX3RxFCiApNp5RSjjp4cHAwO3bs4NKlS7i4uPDWW28xePBgRowYwfnz52nSpAkrV66k\nbt26AMyYMYOIiAj0ej3h4eH4+fkB1hFa48ePJyUlBV9fX+bOneuoJgshhMgnhwYQIYQQ5VeZSKIn\nJibSs2dPDAYDrVu3ZubMmQCEhobi5uaG0WjEaDSyceNG7T05TUos627fvk2XLl0wGo08+OCDvPji\ni4B9EzTLupyuRUX8XqS7e/cuRqORQYMGARXze5Eu87WoqN8LDw8PvL29MRqNdO3aFSjC74UqA86d\nO6eOHDmilFLq+vXrqlWrVurgwYMqNDRUhYeHZ9n/559/Vp07d1ZpaWnKbDYrDw8PdefOneJutsPc\nvHlTKaVUamqq6tatm9q2bZt6/vnn1ezZs5VSSs2ePVu98MILSqmKeS0q6vdCKaXCw8NVSEiIGjRo\nkFJKVdjvhVJZr0VF/V54eHioy5cvZ9hWVN+LMtEDcXFxoV27dgA4Ozvj7e1NUlISACqbO3DZTUrc\nt29fsbbZkapXrw5ASkoKd+/epXHjxgWaoFmer4WLiwtQMb8XZrOZb7/9lvHjx2ufv6J+L7K7Fkqp\nCvm9gKz/PxTV96JMBBBbCQkJ7N+/Hx8fHwD+85//0LZtW0aNGsWVK1eAnCcllhcWi4UOHTrg4uJC\n79698fLyKvAEzfIi87Xw9PQEKub34sUXX+SDDz5Ar7/3v3VF/V5kdy10Ol2F/F7odDrtdtXHH38M\nFN33okwFkOTkZAIDA5kzZw61atXiueeeIy4ujmPHjtGiRQteeOGFkm5isdDr9Rw8eBCz2cwPP/zA\n9u3bS7pJJSbztYiKiqqQ34tvvvmGxo0bYzQas/0ruyLJ6VpUxO8FwJ49ezhw4ABbt25l0aJFfP/9\n90V27DITQFJTUwkICCAkJIQhQ4YA1sip0+nQ6XRMnDiR/fv3AzlPSixv6tSpw8CBA9m7d682QRPI\n1wTN8ib9WuzZs6dCfi9+/PFHvv76a+6//36Cg4PZtm0bo0ePrpDfi+yuxZgxYyrk9wLQ/s0bNWrE\n8HttapcAAAgXSURBVOHD2b9/f9F9L4o8Y+MAFotFjR49Wk2ZMiXD9vPnz2uP586dq4YOHaqUupcI\nSk1NVYmJiap58+YqJSWlWNvsKJcuXVLXrl1TSlkTyD4+Puqbb77JkBSbNWuWmjRpklKqYl6LCxcu\naPtUlO+FraioKPXYY48ppVSF/F7Ysr0WFfH3xY0bN9SNGzeUUkolJyernj17qq+++qrIvhfFPhPd\nHrt37yYiIkIbigbWSYfLli3j8OHDpKSk0Lx5cz777DMAOnXqxNChQ/H29kav1zN//nwqV65ckh+h\nyJw9e5YxY8aglOL27duEhIQwcOBAunfvzogRI/j888+1CZpQMa/F6NGjK9z3IrP0sj7Tp0+vcN8L\nW0op7VpMnTqVI0eOVKjvxfnz5xkyZAg6nY6bN28SFBTE448/To8ePYrkeyETCYUQQtilzORAhBBC\nlC4SQIQQQthFAogQQgi7SAARQghhFwkgQggh7CIBRAghhF0kgIhSa/369ej1eo4fP+6wc+zYsYOf\nfvrJYccviISEBAwGAwCHDh3KUG7cUUwmE23atGHDhg188cUXhISEZHj90qVLNG7cmJSUFEaOHEmD\nBg1Ys2aNw9slygYJIKLUWr58OY899hjLly/P9vW7d+8W+hzbt2/nxx9/LNB7iuK8eYmJieHbb791\n+Hl0Oh3Lli1j0KBBDB06lC1btnDr1i3t9dWrV/P4449TpUoVli5dyuOPP65NzBNCAogolZKTk9m7\ndy8ff/wxK1as0LZHRUXh4+PD0KFDMRgM7Nixg169ehEQEEDLli2ZNm0a//vf/+jevTutW7fm5MmT\nAHz99dd069YNg8FAz549+f3330lISGD+/PnMnj2bjh07smvXLp588skMf2E7OztnOa+3tzd3797l\n+eefp3379rRt2zbbZZZfffVV5s2bpz0PDQ0lPDwcpRSTJk3C09MTT09PvvjiiwzvS01N5Y033mDF\nihUYjUZWrlzJ/v376d69O+3bt6dTp04cO3YMgBs3bjBo0CC8vLwIDAzkoYceIjo6WvvMnTp1wmAw\nMHjwYK5fv57ttU6fS1yrVi169erFhg0btNe+/PJLgoODs91fiDJRC0tUPBEREWrixIlKKaV8fHxU\ndHS0Ukqp7du3q5o1ayqz2aw9r1u3rrp48aK6c+eOatq0qXrrrbeUUkrNmTNHPffcc0oppf7880/t\n2J9++ql6/vnnlVJZFxl68skn1erVq7Xnzs7O2Z53zpw56p133lFKKXX79m3VsWNHdeLEiQyfISYm\nRvXq1Ut77unpqcxms1q6dKny8/NTSil1+fJl1bRpU5WUlKTi4+NVu3btlFJKLV68WKtPpJR1ITWL\nxaKUUmrLli1afad33nlH+4y//PKLqlSpkoqOjlbnzp1T3bt31xbceu+999Q///nPLNfZZDJp11Yp\npVavXq3ViEpKSlJNmzbVzpvd9REVW5mohSUqnuXLl2tL1AYGBrJ8+XI6duwIQNeuXXF1ddX27dKl\nCw0bNgSgZcuW9O3bF4B27dqxdetWAE6dOsXUqVO5fPkyqampNGvWTHu/yudf1Lbn3bx5MydPnmT1\n6tUAXLt2jd9++41WrVpp+3fo0IELFy7w+++/c+HCBerVq4erqyu7du0iKCgIgPr16+Pr68uPP/5I\n586dM7TJtl0XL15kxIgRnD59Gr1ez+3btwFr5dl//OMfALRp0wZvb2+UUuzcuZOTJ0/y8MMPA9YF\nt7p165bnZ/T39+fZZ5/l+vXrrFy5kuHDh8stK5EjCSCi1Lly5Qrbt28nNjYWnU7H3bt30el0fPDB\nBwDUrFkzw/5Vq1bVHuv1eu25Xq/HYrEA8Pzzz/Ovf/0Lf39/duzYQWhoaLbntn2PxWIhJSVFey3z\neT/55BN69+6d62cJDAxk9erVnDt3TgsaOp0uQ3BQNgX/cvLPf/6TgQMH8uyzz3L69GlMJlOG92dn\nwIABWW6P5aV69eo8+uijrF27lhUrVjB79uwCvV9ULJIDEaXO6tWrGTNmDAkJCcTHx3PmzBnuv/9+\ndu7cafcxb9++TZMmTQAy/FKtXr06N2/e1J67ublpOYTIyEhSU1OzPZ6fnx/z58/Xgk18fHyG5HO6\nESNGsHz5clavXk1gYCAAPj4+rFq1CqWUFiy7d++e4X01atTI0K6c2v/www9rOZvjx49z5MgRdDod\nPj4+bN++nTNnzmjvj4uLy8+lIjg4mFmzZnHhwgUeeuihfL1HVEwSQESp8+WXXzJ06NAM2wICAli+\nfLm2IFC6zM9t2b72+uuvM3ToULp160aDBg207YMGDWLZsmV06NCB3bt38/TTT/Pdd99hNBr58ccf\ntSR6+vHSPffcc9qa0e3bt2fs2LHZBhtPT0+Sk5Nxc3PT1msfMWIELVq0wNPTkx49ehAWFkbTpk0z\nnKN3795ER0fTvn17Vq5cyUsvvcRLL71Ely5dSElJ0fabMmUK8fHxtGvXjtdffx0vLy+qV6+Oi4sL\nCxYs4PH/b+8OUSCEoigMnyRYXYgIgsEigk20GAyWtyCrO3EHrkOMbsAoMm2qzjXp/F8+4bbD5cG7\nda0oipQkyffh/UxRFFrXVW3bXsrjf/GdO/Bgx3Fo33d5nqd5npVlmZZluXzPIs9z9X2vOI4v5Z1z\nqqpKTdPcGRsvwQYCPNi2bUrTVGEYqixLDcPw0zGkIAjknNM4jqfZrus0TZN8378zMl6EDQQAYMIG\nAgAwoUAAACYUCADAhAIBAJhQIAAAEwoEAGDyAeFXTM/ETGeOAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x3b84990>"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 11.4, Page number: 571"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from sympy import *\n",
"from math import *\n",
"\n",
"#Variable declaration:\n",
"Rf=109 #Field resistance(ohm)\n",
"Vf=300 #Rated field voltage(V)\n",
"n1=2000 #rpm\n",
"T_rated=285 #Rated torque(Nm)\n",
"n2=1975 #Dropped rpm\n",
"Kf=0.694 #Geometric constant(A.rad/sec\n",
"Ra=0.084 #Armature resistance(ohm)\n",
"\n",
"#Calculations:\n",
"If=Vf/Rf #Resulting field current(A)\n",
"wm1=2*pi*n1/60\n",
"w_ref=wm1\n",
"Vao=Kf*If*wm1\n",
"Ia=T_rated/(Kf*If)\n",
"wm2=2*pi*n2/60\n",
"Ea=Kf*If*wm2\n",
"Va=Ea+Ia*Ra\n",
"G=symbols('G')\n",
"x=solve(Vao-round(Va)+G*(w_ref-wm2),G)\n",
"\n",
"\n",
"#Results:\n",
"print \"Armature voltage,Vao:\",round(Va,0),\"V\"\n",
"print \"Multiplicative constant,G:\",float(round(x[0],2)),\"A.sec/rad\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Armature voltage,Vao: 408.0 V\n",
"Multiplicative constant,G: 3.04 A.sec/rad\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 11.5, Page number: 573"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from math import *\n",
"from sympy import *\n",
"\n",
"#Variable Declaration:\n",
"Km=0.22 #torque constant(V/(rad/sec))\n",
"Ra=1.03 #ohm\n",
"Pl=100 #Power load(W)\n",
"Va1=40 #Armature voltage(V)\n",
"Va2=50 # \" \" \"\n",
"\n",
"\n",
"#Calculations:\n",
"wm1=(Va1/(2*Km))*(1+sqrt(1-(4*Pl*Ra/Va1**2)))\n",
"wm2=(Va2/(2*Km))*(1+sqrt(1-(4*Pl*Ra/Va2**2)))\n",
"\n",
"#Results:\n",
"print \"for Va=40 V, wm=\",round(wm1,1),\"rad/sec\"\n",
"print \"for Va=50 V, wm=\",round(wm2,1),\"rad/sec\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"for Va=40 V, wm= 169.2 rad/sec\n",
"for Va=50 V, wm= 217.5 rad/sec\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 11.6, Page number: 575"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from math import *\n",
"\n",
"#Variable declaration:\n",
"\n",
"Rf=109 #Field resistance(ohm)\n",
"Vf=300 #Rated field voltage(V)\n",
"Ra=0.084 #Armature resistance(ohm)\n",
"Kf=0.694 #Geometric constant(A.rad/sec)\n",
"Tfl=285 #Full load torque(Nm)\n",
"nf=2500 #Speed at full load(r/min)\n",
"#wm=2500 #rated r/min\n",
"\n",
"#for part (1):\n",
"n1=2000 #r/min\n",
"n2=2500 #r/min\n",
"\n",
"\n",
"#Calculations:\n",
"#part (a):\n",
"If=Vf/Rf\n",
"w1=n1*2*pi/60\n",
"w2=n2*2*pi/60\n",
"Ea1=Kf*If*w1 #Avg Amature voltage(V)\n",
"Ea2=Kf*If*w2\n",
"Ia1=n1*Tfl/(nf*Kf*If)\n",
"Ia2=n2*Tfl/(nf*Kf*If)\n",
"Va1 = Ea1 + Ia1*Ra\n",
"Va2 = Ea2 + Ia2*Ra\n",
"Tl1=(n1/nf)*Tfl\n",
"Tl2=(n2/nf)*Tfl\n",
"\n",
"#part (b):\n",
"\n",
"# The dynamic equation governing the speed of the motor is\n",
"\n",
"# J*(dwm/dt)=Tmech-Tload\n",
"# wm=(pi/30)*n & wr=(pi/30)*nf\n",
"# Tload= (Tfl/wf)*wm\n",
"# Tmech = Kf*If*Ia=Kf*If*(Va-Ea)/Ra #Under armature-voltage control\n",
"\n",
"# Thus the governing differential equation is\n",
"# d(wm)/dt + 48.4*wm - 24.7*Va = 0\n",
" \n",
"# wm = wf + (wi-wf)*exp(-t/tau) #tau=1/48.4=20.7 msec\n",
"# n = 2500- 50*exp( -t/tau )\n",
"\n",
"# The armature current will decrease exponentially with the \n",
"# same 20.7 msec time constant from an initial value of \n",
"# (Vf - Vi)/Ra = 1190 A to its final value of 149 A.\n",
"\n",
"# Ia = 149 + 1041*exp(-t/tau)\n",
"\n",
"#part (c):\n",
"# J*d(wm)/dt = Tmech-Tload = Tf-(Tf/wm)*wm\n",
"# or d(wm)/dt + 1.18*wm - 310 = 0\n",
"\n",
"#In this case, the speed will rise exponentially to wm=wf=262 rad/sec as\n",
"# wm = 262-53*exp(-t/tau) #tau=1/1.18=845 msec\n",
"\n",
"#Results:\n",
"print \"part(a):\\n\"\n",
"print \"-------------------------------------------------\"\n",
"print \"r/min\\tw[rad/s]\\tVa(V)\\tIa(A)\\tTload[Nm]\"\n",
"print \"-------------------------------------------------\"\n",
"print n1,\"\\t\",round(w1),\"\\t\\t\",round(Va1),\"\\t\",round(Ia1),\"\\t\",Tl1,\"Nm\"\n",
"print n2,\"\\t\",round(w2),\"\\t\\t\",round(Va2),\"\\t\",round(Ia2),\"\\t\",Tl2,\"Nm\"\n",
"print \"-------------------------------------------------\"\n",
"print \"\\npart (b):\"\n",
"print \" The resultant motor speed, n = 2500 - 50*exp(-t/tau) where tau=20.7 msec\"\n",
"\n",
"print \"\\npart (c):\"\n",
"print \" The resultant motor speed, wm = 262 - 53*exp(-t/tau) where tau=845 msec\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"part(a):\n",
"\n",
"-------------------------------------------------\n",
"r/min\tw[rad/s]\tVa(V)\tIa(A)\tTload[Nm]\n",
"-------------------------------------------------\n",
"2000 \t209.0 \t\t410.0 \t119.0 \t228.0 Nm\n",
"2500 \t262.0 \t\t513.0 \t149.0 \t285.0 Nm\n",
"-------------------------------------------------\n",
"\n",
"part (b):\n",
" The resultant motor speed, n = 2500 - 50*exp(-t/tau) where tau=20.7 msec\n",
"\n",
"part (c):\n",
" The resultant motor speed, wm = 262 - 53*exp(-t/tau) where tau=845 msec\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 11.7, Page number: 581"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"\n",
"#Variable Calculations:\n",
"f1=60 #Initial frequency(Hz)\n",
"f2=50 #Changed frequency(Hz)\n",
"Xs=0.836 #Saturated synch reactance(ohm)\n",
"Va=1+0j #Armature voltage(V p.u)\n",
"Ia=1+0j #Armature current(A p.u)\n",
"If_rated=2.84 #Rated field current(A)\n",
"p=6 #No. of poles\n",
"\n",
"\n",
"#Calculations:\n",
"#for part (a):\n",
"ns1=120*f1/p\n",
"ns2=120*f2/p\n",
"Eaf=Va-1j*Xs*Ia*exp(1j*0) #field voltage(V)\n",
"Ifo=abs(Eaf)*If_rated #motor field current(A)\n",
"\n",
"#for part(b):\n",
"#Eaf= (wm/wmo)*(If/Ifo)*Eafo\n",
"If=Ifo\n",
"\n",
"#Results:\n",
"print \"part(a):\"\n",
"print \"(i) The motor speed:\",ns1,\"r/min\"\n",
"print \"(ii) The motor field current:\",round(Ifo,2),\"A\"\n",
"print \"part(b):\"\n",
"print \"(i) The changed speed:\",ns2,\"A\"\n",
"print \"(ii) The mototr field current:\",round(If,2),\"A\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"part(a):\n",
"(i) The motor speed: 1200.0 r/min\n",
"(ii) The motor field current: 3.7 A\n",
"part(b):\n",
"(i) The changed speed: 1000.0 A\n",
"(ii) The mototr field current: 3.7 A\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 11.8, Page number: 588"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from math import *\n",
"from sympy import *\n",
"\n",
"#Variable declaration:\n",
"iF=2.84 #rated field current(A)\n",
"Vbase=220 #base voltage(V)\n",
"Eaf=220/sqrt(3) #Rms voltage line-to-neutral(V)\n",
"f=60 #Hz\n",
"p=6 #poles\n",
"P_rated=45*10**3 #rated power(W)\n",
"Xs_pu=0.836 #per unit synchronous reactance(ohm)\n",
"\n",
"#Calculations:\n",
"we=2*pi*f\n",
"Laf=sqrt(2)*Eaf/(we*iF) #Armature field reactance(H)\n",
"T_rated=P_rated/(we*2/p)\n",
"#setting rated values to reference values.\n",
"Tref=T_rated\n",
"iFref=iF\n",
"iQ=round((2/3)*(2/p)*Tref/(Laf*iFref),2)\n",
"iD=0\n",
"\n",
"#since theta_me=wc*t, iD=0,we have,\n",
"t=symbols('t')\n",
"wc=120*pi\n",
"def ia(t):\n",
" return iD*cos(wc*t)-iQ*sin(wc*t)\n",
"def ib(t):\n",
" return iD*cos(wc*t-2*pi/3)-iQ*sin(wc*t-2*pi/3)\n",
"def ic(t):\n",
" return iD*cos(wc*t+2*pi/3)-iQ*sin(wc*t+2*pi/3)\n",
"Ibase=P_rated/(sqrt(3)*Eaf)\n",
"Imax=round(ia((pi/(2*wc))))\n",
"Ia=1j*abs(round(Imax/sqrt(2)))\n",
"Eaf=1j*we*Laf*iF/sqrt(2)\n",
"Zbase=Vbase**2/P_rated\n",
"Xs=Xs_pu*Zbase\n",
"Va=1j*Xs*Ia+Eaf #line-to-neutral voltage\n",
"Vt=abs(sqrt(3)*Va)/Vbase #p.u terminal voltage(line-to-line)(V)\n",
"\n",
"#Results:\n",
"print \"part(a):\"\n",
"print \"\\tia(t)=\",ia(t),\"A\"\n",
"print \"\\tib(t)=\",ib(t),\"A\"\n",
"print \"\\tic(t)=\",ic(t),\"A\"\n",
"print \"part(b):\"\n",
"print \"\\tTerminal voltage:\",round(float(Vt),2),\"per unit\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"part(a):\n",
"\tia(t)= -167.01*sin(120*pi*t) A\n",
"\tib(t)= 167.01*sin(120*pi*t + pi/3) A\n",
"\tic(t)= -167.01*cos(120*pi*t + pi/6) A\n",
"part(b):\n",
"\tTerminal voltage: 1.3 per unit\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 11.9, Page number: 591"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from math import *\n",
"\n",
"#Variable declaration:\n",
"iF=2.84 #rated field current(A)\n",
"Vrated=220 #rated terminal voltage,l-l(V)\n",
"Ibase=118 #base current(A)\n",
"Eaf=220/sqrt(3) #Rms voltage, line-to-neutral(V)\n",
"f=60 #Hz\n",
"p=6 #poles\n",
"P_rated=45*10**3 #rated power(W)\n",
"Xs=0.899 #Synchronous reactance(ohm)\n",
"Xs_pu=0.836 #per unit synchronous reactance(ohm)\n",
"Tref=358 #Reference torque(Nm) (from Ex11.8)\n",
"\n",
"#Calculations:\n",
"Va=Vrated/sqrt(3) #base voltage, line to neutral(V)\n",
"we=2*pi*f\n",
"wm=(2/p)*we\n",
"Laf=sqrt(2)*Eaf/(we*iF) #Armature field reactance(H)\n",
"Ia=Tref*wm/(3*Va)\n",
"Ls=Xs/we #Synchronous inductance(mH)\n",
"delta=-atan(we*Ls*Ia/Va)\n",
"iQ_ref=sqrt(2)*Ia*cos(delta)\n",
"iD_ref=sqrt(2)*Ia*sin(delta)\n",
"iF_ref=(2./3)*(2/p)*Tref/(Laf*iQ_ref)\n",
"\n",
"#since motor is running at rated voltage, base voltage and rated voltage \n",
"# are assumed to be same.\n",
"Va_pu=Va/Va \n",
"Ia_pu=Ia/Ibase\n",
"\n",
"\n",
"#Results:\n",
"print \"The reqd motor field current:\",round(iF_ref,2),\"A\"\n",
"print \"Per unit voltage:\",Va_pu,\"p.u\"\n",
"print \"Per unit current:\",round(Ia_pu),\"p.u\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The reqd motor field current: 3.7 A\n",
"Per unit voltage: 1.0 p.u\n",
"Per unit current: 1.0 p.u\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 11.10, Page number: 593"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from math import *\n",
"\n",
"#Variable declaration:\n",
"ns=4000 #rated speed(rpm)\n",
"Va=220 #rated voltage(V)\n",
"Ls=1.75*10**-3 #synchronous inductance(H)\n",
"Prated=25000 #Watts\n",
"n=3200 #rated OC speed(rpm)\n",
"p=2 #No. of poles\n",
"\n",
"#Calculations:\n",
"#for part(a):\n",
"Eaf=Va/sqrt(3)\n",
"wm=ns*pi/30 #rad/sec\n",
"Trated=Prated/wm\n",
"we=(p/2)*n*pi/30\n",
"lambdaPM=sqrt(2)*Eaf/we #flux linked wth permanent magnet(Wb) \n",
"Tref=Trated*0.65 #since motor is operated at 65% of Trated\n",
"iQref=(2./3)*(2/p)*(Tref/lambdaPM)\n",
"\n",
"#for part(b:)\n",
"lambdaD=lambdaPM #since iD=0\n",
"lambdaQ=Ls*iQref\n",
"lambdaa=sqrt((lambdaD**2+lambdaQ**2)/2) #rms line-to-neutral armature flux(Wb)\n",
"lambdaa_base=Eaf/wm\n",
"lambda_pu=lambdaa/lambdaa_base\n",
"\n",
"#for part(c)\n",
"lambdaD=sqrt(2*(lambdaa_base)**2-lambdaQ**2)\n",
"iDref=(lambdaD-lambdaPM)/Ls\n",
"Ia=sqrt((iDref**2+iQref**2)/2) #rms armature current(A)\n",
"Ibase=Prated/(sqrt(3)*Va)\n",
"I_pu=Ia/Ibase\n",
"\n",
"#Results:\n",
"print \"(a) Required quadrature-axis current:\",round(iQref,1),\"A\"\n",
"print \"(b) Resultant armature flux linkage\",round(lambda_pu,2),\"p.u\"\n",
"print \"(c) iD:\",round(iDref,1),\"A\"\n",
"print \" Rms value of armature current:\",round(Ia),\"A\"\n",
"print \" Per unit value of armature current:\",round(I_pu,2),\"A\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a) Required quadrature-axis current: 48.2 A\n",
"(b) Resultant armature flux linkage 1.27 p.u\n",
"(c) iD: -66.1 A\n",
" Rms value of armature current: 58.0 A\n",
" Per unit value of armature current: 0.88 A\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 11.11, Page number: 600"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from math import *\n",
"\n",
"#Variable declaration:\n",
"V10=230/sqrt(3)\n",
"Nph=3\n",
"p=4\n",
"fe0=60\n",
"R1=0.095 #Armature resistance(ohm)\n",
"R2=0.2 #Rotor resistance(ohm)\n",
"X10=0.680 #Armature leakage reactance(ohm)\n",
"X20=0.672 #Rotor leakage reactance(ohm)\n",
"Xm0=18.7 #Inductice reactance(ohm)\n",
"\n",
"\n",
"#Calculations:\n",
"#taking two frequency values:\n",
"fe1=40\n",
"fe2=60\n",
"\n",
"for m in range(1,3,1):\n",
" if m==1:\n",
" fe=fe1\n",
" else:\n",
" fe=fe2\n",
" X1=X10*(fe/fe0)\n",
" X2=X20*(fe/fe0)\n",
" Xm=Xm0*(fe/fe0)\n",
" V1=V10*(fe/fe0)\n",
" \n",
" ws=4*pi*fe/p\n",
" ns=120*fe/p\n",
" V1eq=abs(V1*1j*Xm/(R1+1j*(X1+Xm)))\n",
" Z1eq=1j*Xm*(R1+1j*X1)/(R1+1j*(X1+Xm))\n",
" R1eq=Z1eq.real\n",
" X1eq=Z1eq.imag\n",
" \n",
"#Search over the slip until the Pload = Pmech \n",
" s=0 #slip initialised to 0\n",
" error=1\n",
" \n",
" while error >=0:\n",
" s=s+0.00001\n",
" rpm=ns*(1-s)\n",
" wm=ws*(1-s)\n",
" Tmech=(1/ws)*Nph*V1eq**2*(R2/s)\n",
" Tmech = Tmech/((R1+R2/s)**2 + (X1+X2)**2)\n",
" Pmech=Tmech*wm\n",
" Pload=10.5*10**3*(rpm/1800)**3\n",
" error=Pload-Pmech\n",
" \n",
" print \"\\nFor fe =\",fe,\"Hz :\"\n",
" print \"\\tTerminal voltage=\",round(V1*sqrt(3)),\"V l-l\"\n",
" print \"\\trpm =\",round(rpm)\n",
" print \"\\tslip =\",round(100*s,1),\"%\"\n",
" print \"\\tPload =\",round(Pload/1000,2),\"kW\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"For fe = 40 Hz :\n",
"\tTerminal voltage= 153.0 V l-l\n",
"\trpm = 1166.0\n",
"\tslip = 2.8 %\n",
"\tPload = 2.86 kW\n",
"\n",
"For fe = 60 Hz :\n",
"\tTerminal voltage= 230.0 V l-l\n",
"\trpm = 1721.0\n",
"\tslip = 4.4 %\n",
"\tPload = 9.17 kW\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 11.12, Page number: 608"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from math import *\n",
"\n",
"#Variable declaration:\n",
"V10=230/sqrt(3)\n",
"Nph=3\n",
"p=4\n",
"fe0=60\n",
"R1=0.095 #Armature resistance(ohm)\n",
"R2=0.2 #Rotor resistance(ohm)\n",
"X10=0.680 #Armature leakage reactance(ohm)\n",
"X20=0.672 #Rotor leakage reactance(ohm)\n",
"Xm0=18.7 #Inductice reactance(ohm)\n",
"n=1680 #rpm\n",
"Pmech=9.7*10**3 #Electromagnetic power(W)\n",
"\n",
"\n",
"#Calculations:\n",
"we0=2*pi*fe0\n",
"Lm=Xm0/we0\n",
"LS=Lm+X10/we0\n",
"LR=Lm+X20/we0\n",
"Ra=R1\n",
"RaR=R2\n",
"lambda_rated=sqrt(2)*V10/we0\n",
"lambdaDR=lambda_rated\n",
"#for specified operating condition\n",
"wm=n*(pi/30)\n",
"Tmech=Pmech/wm\n",
"iQ=(2/3)*(2/p)*(LR/Lm)*(Tmech/lambdaDR)\n",
"iD=lambdaDR/Lm\n",
"Ia=sqrt((iD**2+iQ**2)/2)\n",
"wme=(p/2)*wm\n",
"we=wme+(RaR/LR)*(iQ/iD)\n",
"fe=we/(2*pi)\n",
"Va=sqrt(((Ra*iD-we*(LS-Lm**2/LR)*iQ)**2 + (Ra*iQ+we*LS*iD)**2)/2)\n",
"\n",
"\n",
"\n",
"#Results:\n",
"print \"Rms amplitude of the armature current:\",round(Ia,1),\"A\"\n",
"print \"The electrical frequency:\",round(fe,1),\"Hz\"\n",
"print \"Rms terminal voltage:\",round(sqrt(3)*Va,1),\"V line-line\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Rms amplitude of the armature current: 27.9 A\n",
"The electrical frequency: 58.4 Hz\n",
"Rms terminal voltage: 243.6 V line-line\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 11.13, Page number: 610"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"%pylab inline\n",
"from math import *\n",
"\n",
"#Variable declaration:\n",
"P_rated = 12*10**3 #Watts\n",
"V_rated = 230 #Rated line-line voltage(v)\n",
"Va_rated = 230/sqrt(3) #Rated line to neutral(V)\n",
"fe_rated = 60 #Hz\n",
"we_rated = 2*pi*fe_rated #rad/sec\n",
"lambda_rated = sqrt(2)*Va_rated/we_rated #Wb\n",
"I_rated = P_rated/(sqrt(3)*V_rated) #A\n",
"Ipeak_base = sqrt(2)*I_rated #A\n",
"p = 4 #poles\n",
"\n",
"V10=V_rated/sqrt(3)\n",
"R1=0.095 #Armature resistance(ohm)\n",
"R2=0.2 #Rotor resistance(ohm)\n",
"X10=0.680 #Armature leakage reactance(ohm)\n",
"X20=0.672 #Rotor leakage reactance(ohm)\n",
"Xm0=18.7 #Inductice reactance(ohm)\n",
"\n",
"#Calculations:\n",
"Lm = Xm0/we_rated;\n",
"LS = Lm + X10/we_rated;\n",
"LR = Lm + X20/we_rated;\n",
"Ra = R1\n",
"RaR = R2\n",
"#operating point:\n",
"n = 1680 #rpm\n",
"lambdaDR=lambda_rated\n",
"wm = n*pi/30\n",
"wme = (p/2)*wm\n",
"Pmech = 9.7*10**3\n",
"Tmech = Pmech/wm\n",
"lambda_DRpu=[0]*42\n",
"iDpu=[0]*42\n",
"Iapu=[0]*42\n",
"fe=[0]*42\n",
"Vapu=[0]*42\n",
"\n",
"for n in range(1,43,1):\n",
" lambdaDR = (0.8+(n-1)*0.4/40)*lambda_rated\n",
" lambda_DRpu[n-1]=lambdaDR/lambda_rated\n",
" iQ=(2/3)*(2/p)*(LR/Lm)*(Tmech/lambdaDR)\n",
" iD=(lambdaDR/Lm)\n",
" iDpu[n-1]=iD/Ipeak_base\n",
" iQR=-(Lm/LR)**iQ\n",
" Ia=sqrt((iD**2+iQ**2)/2)\n",
" Iapu[n-1]=Ia/I_rated\n",
" we=wme-(RaR/LR)*(iQ/iD)\n",
" fe[n-1]=we/(2*pi)\n",
" Va_rms=sqrt(((Ra*iD-we*(LS-Lm**2/LR)*iQ)**2 +(Ra*iQ+ we*LS*iD)**2)/2)\n",
" Vapu[n-1]=Va_rms/Va_rated\n",
"\n",
"#Results:\n",
"print \"The required plot is as shown:\"\n",
"plot(iDpu,Iapu)\n",
"plot(iDpu,Vapu,':')\n",
"xlabel('i_D [per unit] ')\n",
"ylabel('per unit')\n",
"annotate('Ia',xy=(0.21,1.05))\n",
"annotate('Va',xy=(0.21,0.85))\n",
"show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n",
"The required plot is as shown:\n"
]
},
{
"output_type": "stream",
"stream": "stderr",
"text": [
"WARNING: pylab import has clobbered these variables: ['vectorize', 'prod', 'plotting', 'Circle', 'diag', 'sinh', 'trunc', 'plot', 'eye', 'f', 'det', 'tan', 'product', 'gamma', 'roots', 'radians', 'sin', 'fmod', 'expm1', 'ldexp', 'zeros', 'cosh', 'info', 'interactive', 'conjugate', 'linalg', 'take', 'trace', 'beta', 'exp', 'random', 'frexp', 'fft', 'ceil', 'ones', 'copysign', 'isnan', 'multinomial', 'cos', 'transpose', 'solve', 'diff', 'invert', 'degrees', 'pi', 'tanh', 'Polygon', 'fabs', 'reshape', 'sqrt', 'floor', 'source', 'add', 'poly', 'mod', 'sign', 'hypot', 'power', 'binomial', 'log', 'var', 'log10', 'e', 'seterr', 'log1p', 'flatten', 'nan', 'modf', 'isinf', 'test']\n",
"`%pylab --no-import-all` prevents importing * from pylab and numpy\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEQCAYAAABIqvhxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtclGX6+PHPAAoqmlpACiSGB2Q4h24eMExJ8ZzaEqa2\nHsq0vq19Xfut25ZYra6pleV+zTI72vmgmUq7HcZTHlBQUdM8IkOiiAcEBIG5f388ORspwsgMzzBc\n79eL187Mc5jr3vC5uJ77ue/boJRSCCGEEDZw0zsAIYQQ9Y8kDyGEEDaT5CGEEMJmkjyEEELYTJKH\nEEIIm0nyEEIIYTOHJo8JEybg5+dHeHj4Nbe/9957REREEB4eTmxsLDt37rRuS01NJTw8nNDQUObN\nm+fIMIUQQtjIoclj/PjxpKamVrm9c+fObN68mczMTJ5//nkmTZoEQGlpKVOmTCE1NZU9e/bw2Wef\nkZGR4chQhRBC2MChySMuLo5WrVpVub1bt240b94cgJ49e5KTkwPAtm3bMBqN+Pv74+HhQVJSEmvW\nrHFkqEIIIWzgNH0eS5cuZdiwYQCYzWYCAwOt2wICAjCbzXqFJoQQ4nc89A4AwGQysXz5cjZv3gyA\nwWDQOSIhhBDXo3vy2LNnD5MmTSI1NdV6iysgIIDs7GzrPtnZ2ZUqkSs6dOjAkSNH6ixWIYRwBcHB\nwRw+fLh2J1EOduzYMRUWFnbNbVlZWSo4OFht2bKl0ueXLl1S7dq1U2azWV2+fFnFxsaqnTt3XnV8\nHYSvq1mzZukdgkNJ++ovV26bUq7fPntcOx1aeSQnJ7N+/XrOnDlDYGAgs2fPpqysDIDJkyfz7LPP\ncu7cOaZMmQJAo0aN2L59O15eXixZsoT+/ftjsVgYO3YsMTExjgxVCCGEDRyaPD788MPrbl+2bBnL\nli275rbExEQSExMdEZYQQohacpqnrcTV4uPj9Q7BoaR99Zcrtw1cv332YPj1/le9ZDAYqMfhCyGE\nLuxx7ZTKQwghhM0keQghhLCZJA8hhBA2k+QhhBDCZpI8hBBC2EyShxBCCJtJ8hBCCGEzSR5CCCFs\nJslDCCHsoMJSQVlFmd5h1BlJHkIIYQfP/PAMb+16S+8w6oxMTyKEEHZwsfQizRo3w83g/H+Ty/Qk\nQgihE6UUj619DHOBtkR2c8/m9SJx2EvDaakQQtiRwWBgcKfBtG7SWu9QdCG3rYQQoobKKsr4z9H/\nMLDjQL1DqRWnv201YcIE/Pz8CA8Pv+b2AwcO0L17d7y8vFi4cGGlbUFBQURERBAdHU23bt0cGaYQ\nQtTIxcsX+Wz/Z5RbyvUORXcOrTw2btyIt7c348aNIzMz86rteXl5ZGVlsXLlSlq1asX06dOt29q3\nb8/OnTtp3brqklAqDyGEoymluHj5Ii08W+gdit04feURFxdHq1atqtzu4+NDbGwsjRo1uuZ2SQxC\nCL2tPLCS6d9Mr37HBsZpO8wNBgMJCQlERESwePFivcMRQjRQw0KGsXigXIN+z0PvAKqydetWfH19\nycvLY8CAAYSEhNCvX7+r9ktJSbG+jo+Pl7WHhRC1NnfjXCJvjWRgx4G4Gdzw9PDUO6RaMZlMmEwm\nu57TaZOHr68voN3aGjVqFGlpadUmDyGEsIdBnQYR0CJA7zDs5vd/WM+ePbvW53SK21a/79soLi6m\nuLgYgKKiIlJTUzEajXqEJoRoACzKwnu737POTRXhF9Fgx2/UlEMrj+TkZNavX8+ZM2cIDAxk9uzZ\nlJVp/3EmT55Mbm4uXbt2paCgADc3NxYtWsT+/fs5ffo09957LwaDgeLiYu6//36GDh3qyFCFEA2Y\nAQP78vZxruQcvs189Q6nXpBBgkKIBiu3MJdbvW/VO4w65/SP6gohhLM6eu4oIz8ZKX+A3iCpPKqw\nZQt89RXMmQMGg0O+QgihswpLBe5u7nqHUeek8nCgkBD4z39g+nSov+lVCPFbn+77lNmm/z5p1BAT\nh71I5XEd585BQgL07g0LF0oFIkR9l1+cT2lFKW2bt9U7FF1J5eFgrVpp1ceGDVKBCFFfvb/nfbLO\nZwFwc9ObG3zisBdJHtWQBCJE/WZRFi6VX9I7DJcjt61qSG5hCVF//Jz/M51u7qR3GE5LblvVIalA\nhKgfSstLmbBqAudLzusdikuTysNG587BPfdA9+6waJFUIEI4C4uyWNcQV0phkH+cVZLKQwdXKpC0\nNJgyBSwWvSMSQuzK3cWwj4ZZ30vicDypPG7QxYswaBAEB8OyZeAuj4sLoRulFDkXc1xqJlxHsse1\nU5JHLRQVwdChcOut8M474OG0E9wL4XrWHlqLRVkY3Gmw3qHUO3LbSmfNmsHXX0N+PoweDb9OGCyE\nqAO3NL1FZsDVkVQedlBSAvfdp926+vhj8Kzfi44J4bTSctKIvDWSxu6N9Q6lXpPKw0l4ecHnn2vJ\n49574ZKMRxLCId5If4ODZw7qHYZAKg+7KiuD8ePBbIbVq6F5c70jEqL+Ky0vrfdriDsbp688JkyY\ngJ+fH+Hh4dfcfuDAAbp3746XlxcLFy6stC01NZXw8HBCQ0OZN2+eI8O0m0aN4N13tRl5+/WDs2f1\njkiI+u1CyQViXo+htLxU71DE7zi08ti4cSPe3t6MGzeOzMzMq7bn5eWRlZXFypUradWqFdOnTweg\ntLSUkJAQNm3ahJ+fH927d+f1118nOjq6cvBOVnlcoRTMmAH//rc2JsTPT++IhKi/LpRc4Cavm/QO\nw6U4feURFxdHq1atqtzu4+NDbGwsjRo1qvT5tm3bMBqN+Pv74+HhQVJSEmvWrHFkqHZlMMD8+TBq\nFMTFwYkTekckRP2RlpPGs+uftb6XxOGcnLLD3Gw2ExgYaH0fEBCA2WzWMSLbGQzwzDPaKPTeveHw\nYb0jEqJ+6NC6A32C+ugdhqiGUw5rs2VqgZSUFOvr+Ph44uPj7R9QLTzxhNZxftddkJoKVXT/CNGg\n7fhlB62btOb2VrfTqkkr4trF6R2SSzGZTJhMJrue0ymTR0BAANnZ2db32dnZlSqR3/pt8nBWkyZp\nCaRfP1i5UptUUQjxX+kn02nfsj23t7pd71Bc0u//sJ49e3bVO9eQU9y2+n3HTdeuXdm7dy85OTmU\nlZXxySefkJiYqFN09pGUpE1hMmyYVoEI0dDlF+dbXz98x8MkBCfoGI2wlUOftkpOTmb9+vWcOXMG\nPz8/Zs+eTdmvc3hMnjyZ3NxcunbtSkFBAW5ubjRv3pz9+/fj7e3NunXrmDFjBhaLhbFjxzJz5syr\ng3fSp62u58cftYGEL78Mycl6RyOEPpRS3PnmnXw86mOCWgbpHU6DIxMj1sPkAZCZCYmJ8Le/wdSp\nekcjhD7KKspo5N6o+h2F3Tn9o7ri2sLDYeNGePFFePZZWZVQNAzZF7IZ9tEwLEpbBEcSR/0mlYeO\ncnNhwADtUd6XXwY3SeXChSml2JW7i+g20dXvLBxKblvV8+QBcP681onepo3WoS4z8gpXsjt3N79c\n/IXEjvX7gRdXI7etXEDLlvDNN9qkigMHQkGB3hEJYT+XKy5TeLlQ7zCEA0jl4SQqKuDxx2HzZli3\nTqtEhKiPss5n4efth5eHl96hiCpI5eFC3N1h8WJtUakePeCgLFkg6qk5G+ew1bxV7zCEg0nl4YSW\nL4enntJGo//hD3pHI0T1LMqCm0H7W1QpZdMUQ6LuSeXhoiZMgGXLYMgQWLtW72iEuL7S8lJiX4/l\nQskFwLa56UT9JZWHE9u6VRuNPns2PPyw3tEIUbWcghz8W/jrHYaoIak8XNydd2qDCefP10ajWyx6\nRySE5uf8n5m7ca71vSSOhkeSh5Pr0AG2bAGTCcaOhVJZjVM4Ab9mfnS8uaPeYQgdyW2reuLSJXjg\nAW1d9C+/hOss0CiEQxw9dxSlFMGtg/UORdSS3LZqQJo0gU8/heho6NkTsrL0jkg0NN8d/Y4dv+zQ\nOwzhJKTyqIdeflnrB1m1CmJj7Xdeb29vCgtlNLD4r4ulF2nu2VzvMISdSeXRQE2bpg0oTEzUxoLY\nizxiKX5v8IeD2Xd6n95hCCcklUc9tmMHDB+uJZPp06G21/7mzZtz8eJFCgsLGTJkCAUFBRQVFfHc\nc89x33332SdoUa9cKrtEk0ZN9A5D2JnTz6o7YcIE1qxZg6+vL5mZmdfc5/HHH+e7777D09OTN998\nk+hobbrmoKAgWrRogbu7O40aNWL79u1XB9/AkwdAdjYMHqw91rt4MTSqxRIJV5JHRUUFpaWlNG3a\nlDNnztC1a1eOHj0qlUkDkFeUx5Q1U/ho1Ed4uHnoHY5wEKe/bTV+/HhSr7Ng9+eff86JEyfYt28f\nb775JuPHj7duMxgMmEwmMjIyrpk4hCYwEDZtArNZm5X3/Pnan7OsrIxp06YRFhZGQkICp0+f5uTJ\nk7U/sXB6tzS9hWl3TpPEIarl0OQRFxdHq+s8U7p27VrGjh0LQHR0NOXl5eTk5Fi3N/SqoqaaN9c6\nz7t00Z7EOnasdud79913KSgoIDMzk4yMDHx9fSkvL7dPsMLp/Jz/M+sOrQO0P9p63dZL54hEfaBr\nh7nZbCYwMND6PiAgALPZDGi/xAkJCURERLB48WK9Qqw3PDzglVdgyhRtVt5Nm278XCUlJfj6+mIw\nGNiwYQNZ8lywSyu6XMTJQqkshW10r02rqi62bNmCn58feXl5DBgwgJCQEPr163fVfikpKdbX8fHx\nxMfHOyjS+uGxx6BjRxgxAl54Af70p5ofe6VP44EHHqB///5ERkYSGxtLly5dHBOs0M3Jiye5yesm\nmjZqSnSbaFka1sWZTCZMJpNdz+nwp62OHz/OkCFDrtlhPnHiRBITExk1ahQAYWFhfPPNN/j7V54n\nZ+5cbQ6dmTNnVvpcOsyrduCANivvsGEwb562XogQVzy65lEGdRrEwI4D9Q5F6MDpO8yrM3DgQFas\nWAFAeno67u7u+Pv7U1xcTHFxMQBFRUWkpqZiNBr1DLXeCQmBbdsgI0NLILK8rbCo/86suXjgYkkc\nolYcmjySk5Pp0aMHBw8eJDAwkOXLl7N06VKWLl0KwMiRI/H398doNDJp0iTeeustAHJzc+nevTtR\nUVFER0dz1113MXToUEeG6pJat4bUVO2JrB494OhRvSMSeimrKKPbG904U3wGkAGhovZkkGAD8a9/\nwXPPwUcfQQPvFmqwsi9kE3hTYPU7CpdX729bibrz6KPw/vtw//1aIpGc6/qOnD3C8xuet76XxCHs\nSZJHA9KvH2zeDK+9Bg89JGuDuDrfZr50bC1rbgjHkNtWDVBhITz4IJw8CZ9/Dm3a6B2RsJej545S\nbimn082d9A5FODG5bSVuiLe3tjZIYiJ06wYy+4vr2JC1QdbcEHVCKo8GbtUq7RbWggUwbpze0Ygb\ncaHkAjd53aR3GKIekcpD1NqwYdr66M8/D48/DmVlekckbHXvx/eSeeras1YL4ShSeQhAm4133Dg4\nd067pXXrrXpHJGqqtLwUTw9PvcMQ9YhUHsJuWrbUViW85x5tadstW/SOSFTldNFpBn0wiHKLNtOx\nJA6hB6k8xFXWroXx4yElBR55pPYrFAr7Ukqx8+ROYtvacQF70aA4/UqCjibJw3EOH9Zm5r3jDvi/\n/4MmshKprvae3svhs4cZHjJc71CEC5DbVsJhOnTQbl2VlmoLTMm8WPpSSnGp7JLeYQhhJZWHuC6l\ntLXRn38eli3TpnkXdePI2SP4efvh3dhb71CEi5HKQzicwQD/8z/aeJBHH4WZM0FWpK0br25/le05\nMoJTOCepPESN5eXBAw9oyePDD8HPT++IXM/liss0dm+sdxjCxdVJ5dG3b98afSZcn48PrFsHcXFa\nR3pt1kkXVystLyVmaQznS87rHYoQ1aoyeVy6dIn8/Hzy8vI4e/as9Sc7O5usrKwanXzChAn4+fkR\nHh5e5T6PP/44RqORmJgYMjIyrJ+npqYSHh5OaGgo8+bNs6FJwpHc3WH2bHjjDRg1Slsn3WKp/jhR\nPU8PTzaM30BLr5Z6hyJE9VQVXnrpJRUUFKQaN26sgoKCrD9dunRRCxYsqOqwSjZs2KDS09NVWFjY\nNbd/9tlnatiwYUoppdLT01VkZKRSSqmSkhIVFBSkzGazKisrU7GxsSo9Pf2q468TvqgDWVlKde+u\n1KBBSp05o3c09dOe3D1qxr9n6B2GaGDsce2ssvKYNm0ax44dY8GCBRw7dsz6s3//fqZPn16jxBQX\nF0erVq2q3L527VrGjh0LQHR0NOXl5ZjNZrZt24bRaMTf3x8PDw+SkpJYs2aNTUlRON5tt8H69RAa\nCjExMir9Rtze6nYSOyTqHYYQNvOoasP333/P3XffTdu2bfniiy+u2j5ixIhaf7nZbCYw8L+rmwUE\nBGA2m8nJybnqc5PJVOvvE/bXqJF26youDoYPhxkz4H//F9zkOb4qbTVvxbuxN2G+YTRr3Iw+7fvo\nHZIQNqsyeaxfv567776b1atXY7jG/BT2SB6APC3lIoYM0dYFSUrSqpG334abb9Y7Kud0/PxxWjdp\nTZhvmN6hCHHDqkwes2fPBuDtt9922JcHBASQnZ3NH/7wB+C/lUhZWRnZ2dnW/bKzsytVIr+VkpJi\nfR0fH098fLzD4hXX164dbNigjQWJidHWTI+L0zsq53D8/HHa3dQOg8HA/WH36x2OaGBMJpPd795U\nO86jqKiITz/9lOzsbCy/PlZjMBh45plnavQFx48fZ8iQIWRmXr3ewOeff87777/Pl19+SXp6OuPH\nj2f37t2UlJQQEhLC5s2b8fX1pUePHixdupSYmJjKwcs4D6e1Zg1MnKgNLPzb37SntBoqpRR93+3L\nsqHLuL3V7XqHI4Rdrp1VVh5XDBo0CD8/P+644w7cbbwCJCcns379es6cOUNgYCCzZ8+m7NfVhiZP\nnszIkSP54YcfMBqNeHp68tZbbwHg5eXFkiVL6N+/PxaLhbFjx16VOIRzGzQIdu6EMWPg+++1KsTf\nX++o6pZFWXAzuGEwGPhu3HfXvP0rRH1VbeURFhbG3r176yoem0jl4fwqKmDuXG1+rGXLYPBgvSOq\nG8fPH2fMF2PYOH6jJA3hdOpkhHmvXr2cNnkI5+fuDn//O3z2mXYLa9o0baZeVxfUMoiPRn0kiUO4\nrGorjy5dunD48GHat2+Pp6e2YpnBYGDPnj11EuD1SOVRv5w9C5MmwbFj8MEH0KWL3hHZ1zeHv+FU\n0SnGRY7TOxQhrqtO+jzWrVtXqy8Q4orWreHzz7WpTeLi4LnnXGulwnYt29G6SWu9wxCiTlRbeZw4\nceKan992220OCcgWUnnUXwcOaDP0BgTAm2/CLbfoHdGN+ebwN3QP7E4LzxZ6hyJEjdVJ5TFw4EDr\nfduSkhKOHTtG586d2bdvX62+WDRsISHadCZ//ztERmqDChMS9I7Kdj9m/4h/C38Z8CcaHJvX89i1\naxeLFy9m2bJljoqpxqTycA3ffQcPPqiNTv/HP8DLS++Iru/kxZO0ad5G7zCEuGG6rCQYFRXF1q1b\na/WlQvxW376wezdkZUG3buAEz2JU6XzJeQZ+MJDS8gbwyJgQ11Ft5bFw4ULra4vFQnp6OidPnnSK\niQql8nAtSsG778Jf/gJPPqlNsOgsI9OVUtbbtxWWCtzdnCQwIW5AnVQeFy9epLCwkMLCQkpKSrjn\nnntkenThEAaDdvsqLQ1Wr4a779aqEb2tO7SOqWumWt9L4hBC1jAXTqqiAhYuhPnztf8dO1a/R3ov\nlV3ifMl56ecQLsMe105JHsKp7dqlzY/VuTO89pq2jnpdWLx9MT0CexDTRuZUE65Hlw5zIepSVBTs\n2AEdOkBEBHz5Zd18b+ebO3NzE1mQRIiqXDd5WCwWXn755bqKRYhr8vKCefO0+bGefFK7hXXunH2/\nw6IsrDqwyvrXWEJwAu1atrPvlwjhQq6bPNzc3Pj444/rKhYhrqtnT+02VsuWWhXyzTf2O3e5pZzV\nP6+moLTAficVwoVV2+fxxBNPYLFYGDVqFM2aNbN+7gzra0ifR8P13XcwYQIMGAALFkDz5rafQynF\nqaJT3Op9q/0DFMKJ1UmHeXx8/DWnlf7hhx9q9cX2IMmjYbtwAaZPh2+/1SZbtHV6k00nNrFo2yI+\nve9TxwQohJNy+qetUlNTmTFjBhUVFTz44IP8v//3/yptz8/PZ8yYMZw4cQJvb2+WL1+O0WgEICgo\niBYtWuDu7k6jRo3Yvn371cFL8hBot68efhj699ce7b3ppqr3vfL7IgP+RENWJ09b5eTkMGbMGBJ+\n/bPu4MGDvP7669WeuLS0lClTppCamsqePXv47LPPyMjIqLRPSkoKPXr0YN++fbz77rs89NBD1m0G\ngwGTyURGRsY1E4cQV/TvD5mZ2jiQ8HBITa163xRTCu/uftf6XhKHEDem2uQxZswYhgwZwqlTpwAI\nDg7mlVdeqfbE27Ztw2g04u/vj4eHB0lJSVeNTD948CB9+vQBoHPnzpw+fZqTJ09at0tVIWqqRQtY\nulSb3v2RR2DiRDh//ur9Hol9hPvD7q/7AIVwMdUmj/z8fJKSknD/dZIhDw8PPDyqnckds9lMYGCg\n9X1AQABms7nSPuHh4XzxxRcAbN++naysLOv6IQaDgYSEBCIiIli8eHHNWyQatIQErQpp3BjCwuDL\nVRU8vu5xzpdomaRN8zZ4enjqHKUQ9V+1WaBZs2bk5+db32dkZFiXo72emqzdPGvWLKZMmYLRaKRL\nly7ExsZaj9uyZQt+fn7k5eUxYMAAQkJC6NevX7XnFKJ5c1iyBO6/HyZNcsc3vjfnIxrT0l/vyIRw\nHdUmjxdffJF77rmHo0eP0rt3b06cOMGnn1b/dEpAQADZ2dnW99nZ2ZUqEYAWLVqwYsUK6/vg4GA6\ndeoEgJ+fHwA+Pj6MGjWKtLS0ayaPlJQU6+v4+Hji4+OrjU24tgslF9icvZmBdw1kzx5ISRnFH2K0\nR3rHjHGdZW+FqCmTyWT/mdBVDVy+fFnt2LFDpaWlqdLS0pocoi5duqTatWunzGazunz5soqNjVU7\nd+6stM+FCxdUWVmZUkqp9957T40aNUoppVRRUZEqKipSSilVWFioevfurVatWnXVd9QwfNHAHD93\nXM3494xKn+3YoVRkpFIDBiiVlaVTYEI4CXtcO6utPIqLi1m0aBGbNm3CYDDQq1cv/vznP9OkSZPr\nHufl5cWSJUvo378/FouFsWPHEhMTw9KlSwGYPHkye/fuZfz48Xh5edGxY0fefPNNAE6dOsXw4cMx\nGAwUFxdz//33M3To0FonSuG6LpZepMxSRusmrWnXsh0vJLxQafsdd2hTvc+fr71++ml49FHnWS9E\niPqm2nEegwcPpm3btiQnJ6OU4uOPPyYnJ4evv/66rmKskozzEFf8Y8M/uKXpLUyOnVztvgcPauNC\nLl3SBhdGRtZBgEI4kToZJBgWFsbevXur/UwPkjwatt8O8FO/WemvJiwWeOstmDlTm+bkmWegaVNH\nRSqEc6mTQYIxMTGVBumlpaU5xbxWomFTSnHX23dx9NxRoGZP9/2Wm5s2FiQzE06c0AYX/vvfjohU\nCNdUbeUREhLCzz//TGBgIAaDgRMnTtC5c2c8PDwwGAzs2bOnrmK9ilQeDVtuYa7dJjVctw6mTNFm\n7n3xRfj1YT8hXFKd3LY6fvz4dU8QFBRUqwBqQ5JHw5J1PosXNr/A4oGLba40aqKoCJ59FpYvh+ee\n0/pF3GS5NOGCnH5iREeT5NGwlFWU8e3Rb0nsmOjQ78nM1KqQ8nJt6duoKId+nRB1TpKHJA+Xt+OX\nHVyuuEyPwB51+r1XOtT/9jcYPVqrSG5kzRAhnJGsYS5c3pniM5y9dLbOv/dKh/revdoEi6Gh8Omn\nIH+rCKGRykM4nb2n99Llli5ONV36xo0wdSrceiu8+iqEhOgdkRA3TioP4ZJmr5/NobOH9A6jkrg4\nSE+HQYOgVy9tfEhRkd5RCaEfqTyEUyguK6Zpo/oxSu/kSZgxAzZsgJdeghEjZLJFUb9I5SFcwokL\nJ4h7Kw6LsugdSo20aQPvvw/vvQezZsGAAXDggN5RCVG3pPIQTqHwciHejb31DsNmZWWweDH84x/w\npz9p05y0aKF3VEJcn1Qeot5asWcF8zfPt76vj4kDoFEjeOIJ2LcPzp7VOtLfeUd71FcIVyaVh9DF\nyYvaWvVtmrfRORL72r4dHntMm+r91VchNlbviIS4mlQeol6Zs3EOuYW5gJY0XC1xAHTrBlu3alOb\nDBmijRXJzdU7KiHsT5KHqDNBLYNwM7j+r5ybG4wfr3Wit24NYWEwbx6UluodmRD249B/yampqYSH\nhxMaGsq8efOu2p6fn09iYiJGo5E//OEP7Nu3r8bHCudXUl7CukPrrO9Hh4/Gt5mvjhHVrZtu0lYu\n3LJF+wkNhS+/lFHqwkXUeiHbKpSUlKigoCBlNptVWVmZio2NVenp6ZX2eeyxx9Szzz6rlFLqwIED\nqnv37jU+9te+GkeFL+zgdOFpNWnVJFVhqdA7FKfw7bdKhYUp1aePUrt26R2NaMjsce10WOWxbds2\njEYj/v7+eHh4kJSUxJo1ayrtc/DgQfr06QNA586dOX36NL/88kuNjhXOqaS8hNNFpwHwaebDG0Pf\naBC3qmqib1/IyIA//hH694dJk7QBh0LURw77V202mwkMDLS+DwgIwGw2V9onPDycL774AoDt27eT\nlZXFiRMnyMnJqfZY4ZyWZyznzfQ39Q7DaXl4wCOPVO4Pee45KC7WOzIhbOPhqBPXZLGeWbNmMWXK\nFIxGI126dCE2NtbmRX5SUlKsr+Pj44mPj7cxUlFb5ZZyPNy0X6VHYh+RSqMGWraEF17Q1g2ZORM6\nd9YGGo4ZIwtQCfszmUyYTCa7ntNhySMgIIDs7Gzr++zs7ErVBECLFi1YsWKF9X1wcDCdO3fm8uXL\n1R57xW+Th9DHgPcH8FL/lwj3C5fEYaP27eGjj7QO9f/9X1i0CBYsgF/v5gphF7//w3r27Nm1PqfD\n/qV37dphAOXxAAAX8UlEQVSVvXv3kpOTQ1lZGZ988gmJiZVXgCsoKKC8vByA999/n5iYGFq2bFmj\nY4Xz+HDkh4T7hesdRr3WvTv8+CM8+aQ2NmTQIG0tESGclcOSh5eXF0uWLKF///5ERkYyYsQIYmJi\nWLp0KUuXLgVg7969GI1GIiMjWblyJcuWLbvuscI5mAvMjP58tHUiQ59mPjpH5BoMBkhKgp9+gnvu\n0TrYJ06EnBy9IxPiajI9ibCZRVnYfGIzce3i9A7FpV24oA0uXLpU62R/8klt7IgQtSXTk4g6Yzpu\nIvVwKgBuBjdJHHXgpptgzhzYvVt7pLdTJ3j5ZRmpLpyDJA9RI57unni6e+odRoMUEADLl8O338L3\n32tPZr3zDlRU6B2ZaMjktpWo0jeHv6FP+z40dm+sdyjiNzZtgr/+Fc6f1yqTIUNkJUNhG7ltJRxG\nKcXXP39N9oXs6ncWdapXL9i4Ef75T3jqKW199Y0b9Y5KNDRSeQgrpRQnLpygXct2eociaqiiAlas\n0JbDDQmB55+HO+7QOyrh7KTyEHZ15NwRxq8aLwm5HnF3h3Hj4OBB7fbV0KEwahTs3693ZMLVSeXR\nwCmlKLOUWfs1lFI2TxEjnEdxMfzrX9pU8ImJWkVy++16RyWcjVQeotZe2PwCi7Yusr6XxFG/NW0K\nM2bA4cPa1CfdumljRLKl60rYmVQeDdzF0os0adTEOrGhcC35+dpcWa+/DsnJ2iSM/v56RyX0JpWH\nsJlSimEfDbM+RdXcs7kkDhd2880wd6425YmXF4SHw7Rpsq66qD1JHg2MwWBg1l2z8G8hf342JL6+\nWgVyZaXn0FD4y1/g1Cl94xL1lySPBuDouaPM3TjX+j6mTYxMnd5AtWmjTXGSmalNc9KlC0yfLpWI\nsJ1cQRqAW5reQlDLIL3DEE7E3x9efVVLImVlWiXyxBOyLK6oOUkeLmrTiU38lPcTAC08W5Acnlzt\nMXfffTf//ve/K3328ssvM3XqVIfEKPTn7w+vvKKtHaIUGI3w5z/DL7/oHZlwdpI8XFTW+SxyC227\nF5GcnMxHH31U6bOPP/6Y0aNH2zM04YTattVuZ+3bpw08DAuDqVPh+HG9IxPOSh7VdSE7ftlBbNvY\nGz7+7NmzdOnShZycHDw8PDh+/Dh33XUXiYmJ7Ny5kwsXLjBixAj++c9/2jFq4YxOn4aXXtIe8R02\nTHvEt2NHvaMS9uL0j+qmpqYSHh5OaGgo8+bNu2p7bm4uffv2xWg00rlzZ+sKgwBBQUFEREQQHR1N\nt27dHBmmSyirKGOWaRb5xfk3fI7WrVvTrVs31q5dC8BHH31EUlIS8+fPJy0tjZ9++olt27axc+dO\ne4UtnJSvr/aI7+HDEBQEPXrA6NGyNK74DeUgJSUlKigoSJnNZlVWVqZiY2NVenp6pX2eeuop9de/\n/lUppVReXp5q2bKlKikpUUopFRQUpPLz86/7HQ4Mv16wWCwqryjPrudcsWKFSk5OVkopFRUVpdLT\n09WLL76oIiIiVGRkpPLx8VErVqyw63cK51dQoNS8eUr5+Sk1bJhSW7fqHZGoDXtcOx1WeWzbtg2j\n0Yi/vz8eHh4kJSWxZs2aSvsEBgZSUFAAQEFBAT4+Pnh6/nfBISW3pK7r+2Pf8/i6x+16zqFDh/Ld\nd9+RkZFBcXExzZo141//+hebN29m165dDBo0iLKyMrt+p3B+zZtry+AeOwYJCdpa63ffDf/5j9bR\nLhoehyUPs9lMYGCg9X1AQABms7nSPg899BD79u2jbdu2REZGsmhR5TmWEhISiIiIYPHixY4Ks96p\nsFRYk+rd7e/m3Xvftev5vb296dOnD+PHj2f06NGUlJTg7e1Ns2bNOHPmDOvWrZP5rxqwJk3g0Ufh\n0CH405+0J7O6dYMvvgCLRe/oRF1y2LwUNbnAzJkzh6ioKEwmE0eOHCEhIYHdu3fTvHlztm7diq+v\nL3l5eQwYMICQkBD69et31TlSUlKsr+Pj44mPj7djK5zPlDVTGNxpMEM7D8VgMOBhsP9/wuTkZEaM\nGMEnn3xCp06dCA8Pp2PHjgQHB9OrVy+7f5+ofxo10qaCHzMGvvpK6x/529+0SRnHjAFPWbHYqZhM\nJkwmk13P6bCnrTZu3Mi8efP4+uuvAZg/fz6XL1/mqaeesu4zYMAAnn76aXr27AlA3759mTt37lUd\n5HPnaqOjZ86cWTn4Bvi0VV5RHjc3vVlGiAunohSYTPDCC7Bnj1aRTJ4MN92kd2TiWpz6aauuXbuy\nd+9ecnJyKCsr45NPPiExMbHSPsHBwXz77bcAnDp1iv379xMUFERxcTHFxcUAFBUVkZqaitFodFSo\nTq2gtICBKwZSUl4CgE8zH0kcwukYDNCnD6xbB2vXagnk9tu1fpKcHL2jE47gsKuQl5cXS5YsoX//\n/kRGRjJixAhiYmJYunSp9ZHcZ555hk2bNhEaGkrv3r15/vnn8fX1JTc3l+7duxMVFUV0dDR33XUX\nQ4cOdVSoTq2FZwtS4lPw8vDSOxQhaiQyEt5/H9LT4fJlbSbf8ePlMV9XI4MEndCGrA0cPnuYCdET\n9A5FiFo7exZee02bSysyUpuIsV8/rVoR+rDHtVOShxM6lH+I3MJc4trF6R2KEHZTWgoffKBNDe/h\noSWR+++Hxo31jqzhkeThQsljecZy7g25l1ZNWukdihAOpRR8842WRH76SXv0d/JkbeEqUTecusNc\n2KbwciEXSi/oHYYQDmcwwIAB8O23Wuf6oUPQoYO21vpPP+kdnagpqTx0UlJewpbsLfRp30fvUITQ\nXW6u1i/y2msQHa2tLZKQIP0ijiKVRz2WX5zP+3ver7fJTwh7uvVWSEnRpoC/7z5tiVyjUUsmRUV6\nRyeuRSqPOnT20lkqLBX4NPPROxQhnJpSsH69tlDVhg3aVCiPPgrt2+sdmWuQyqOeeW3Ha6w5tKb6\nHYVo4AwGiI/X5szasQPc3KBrVxg+HL7/XiZjdAZSeTjYuUvnrE9QKaVkUkEhblBREaxYoVUjFotW\niYwbp834K2wjlYeTK7eU0/vt3uQV5QE1myxSCHFtzZrBww9DZiYsWaLNpdWuHTz2mDylpQepPByg\n3FKOh5s22+3liss0dpdRUEI4gtmsLZX7+usQGqpVI0OHarP+iqrJIEEnTB7fHv2Wt3a9xYoRK/QO\nRYgG4/Jl+Pxz+L//g6NHYdIkeOghCAjQOzLnJMnDCZNHuaWci6UXZaS4EDrJzNQe8f3wQ7jrLpgy\nRZtLy01u0ltJ8nCS5DF59WRGh4/mrqC79A5FCPGrwkKtg33JEu31ww9rj/z6+uodmf4keThJ8jiU\nf4iglkE0cpcbrUI4G6Vg2zatX+TLL+Gee7RE0qdPw61G5GkrnZwqPMWDKx+kwlIBQMebO0riEMJJ\nGQxw552wfDkcOwa9e2vTn3TurK18ePq03hHWT5I8boBvM18eCH9AVvQTop5p2VJ7Imv3bnjvPe0R\n306dYNQoSE2Figq9I6w/HHr1S01NJTw8nNDQUObNm3fV9tzcXPr27YvRaKRz587WFQZrcmxdW31w\nNasPrga0ku+e4Htk3IYQ9dSVauSttyArS5uE8emntelPUlK0z8T1OazPo7S0lJCQEDZt2oSfnx/d\nu3fn9ddfJzo62rrP3//+dyoqKpg7dy5nzpyhY8eO5ObmAlR7LNRtn0daThpuBjfuaHtHnXyfEKLu\n7doFb76pLVoVGwsTJ8KwYeDpqXdk9uXUfR7btm3DaDTi7++Ph4cHSUlJrFlTeV6nwMBACgoKACgo\nKMDHxwdPT88aHetoFZYKFv64kNLyUgC6+neVxCGEi4uK0pbLNZu1qU9ef10bK/I//wMZGXpH51wc\nljzMZjOBgYHW9wEBAZjN5kr7PPTQQ+zbt4+2bdsSGRnJokWLanyso7kZ3LAoC8VlxXX6vUII/TVp\nAg88oC1YlZYGt9wC996rrTXyyiuQn693hPrzcNSJa9IfMGfOHKKiojCZTBw5coSEhAR2795tU19C\nSkqK9XV8fDzx8fE3EO3VDAYDM3rOsMu5hBD1V1AQzJql9Yn88IPWT/LMM9C3Lzz4ICQmOv90KCaT\nCZPJZNdzOix5BAQEkJ2dbX2fnZ1dqZoA2LRpE08//TQAwcHBtG/fnv3799fo2Ct+mzyEEMJR3Ny0\nhNG3L1y4AJ9+CvPna9OgJCdriSQqyjlXP/z9H9azZ8+u9Tkddtuqa9eu7N27l5ycHMrKyvjkk09I\nTEystE9wcDDffvstAKdOnWL//v20b9++RscKIYRebrpJmz9r40bYvBlatNBua0VGwpYtekdXNxw6\nwnzdunXMmDEDi8XC2LFjmTlzpvVx3MmTJ3Pq1CnGjBlDTk4OFRUVPPnkk0ycOLHKY68K3klGmAsh\nhMWirXrYsSP4++sdzfXJ9CSSPIQQwmZO/aiuEEII1yXJQwghhM0keQghhLCZJA8hhBA2k+QhhBDC\nZpI8hBBC2EyShxBCCJtJ8hBCCGEzSR5CCCFsJslDCCGEzSR5CCGEsJkkDyGEEDaT5CGEEMJmkjyE\nEELYTJKHEEIImzk0eaSmphIeHk5oaCjz5s27avuCBQuIjo4mOjqa8PBwPDw8OH/+PABBQUFEREQQ\nHR1Nt27dHBmmEEIIWykHKSkpUUFBQcpsNquysjIVGxur0tPTq9x/9erVqm/fvtb3QUFBKj8//7rf\n4cDwncIPP/ygdwgOJe2rv1y5bUq5fvvsce10WOWxbds2jEYj/v7+eHh4kJSUxJo1a6rc/4MPPiA5\nOfn3ic1R4dULJpNJ7xAcStpXf7ly28D122cPDkseZrOZwMBA6/uAgADMZvM19y0uLuabb75h5MiR\n1s8MBgMJCQlERESwePFiR4UphBDiBng46sQGg6HG+65evZpevXrRsmVL62dbt27F19eXvLw8BgwY\nQEhICP369XNEqEIIIWxV+7tn17ZhwwY1aNAg6/sXXnhBPf/889fcd/jw4erDDz+s8lxz5sxRc+bM\nuerz4OBgBciP/MiP/MiPDT/BwcG1vsYblHJMx0JJSQkhISFs3rwZX19fevTowdKlS4mJiam034UL\nF7j99tsxm800adIE0G5jATRt2pSioiIGDhzI9OnTGTp0qCNCFUIIYSOH3bby8vJiyZIl9O/fH4vF\nwtixY4mJiWHp0qUATJ48GYCVK1fSv39/a+IAOHXqFMOHD8dgMFBcXMz9998viUMIIZyIwyoPIYQQ\nrstpR5hXN8DwwIEDdO/eHS8vLxYuXFhp26xZs+jUqRMhISGMGjXKehvMWVTXtvfee4+IiAjCw8OJ\njY1l586dNT7WGdxo+7Kzs+nduzfh4eF07tyZF154oa5Dr5Ha/PcDqKioIDo6miFDhtRVyDapTfvO\nnz/PfffdR2RkJF26dGHLli11GXqN1KZ9zn5tgerbt2rVKiIiIoiMjCQ8PJzU1NQaH1tJrXtNHKAm\nAwxPnz6t0tLS1FNPPaUWLFhg/fzQoUOqffv2qrS0VCml1B//+Ee1bNmyOo3/emrStm3btqmCggKl\nlFLr1q1TUVFRNT5Wb7VpX25ursrMzFRKKXXx4kXVsWNHtWvXrrptQDVq074rFi5cqEaPHq2GDBlS\nZ3HXVG3bN2rUKPXBBx8opZSqqKhQFy5cqLvga6A27XP2a4tSNWtfYWGh9fWePXvUbbfdVuNjf8sp\nK4+aDDD08fEhNjaWRo0aVfq8devWNGrUiKKiIsrLyykuLqZdu3Z1Gf511aRt3bp1o3nz5gD07NmT\nnJycGh+rt9q0z8/Pj7CwMAC8vb2JiIjgl19+qdsGVKM27QNt/NPatWuZNGmSUw6CrU378vPz2bVr\nl3Wwr5ubGy1atKjbBlSjNu1z9msL1Kx9zZo1s74uLCykTZs2NT72t5wyedgywPD3WrduzfTp07nt\nttto27YtLVu2dKrxIba2benSpQwbNuyGjtVDbdr3W8ePHyctLY1evXo5JM4bVdv2PfHEE8yfPx83\nN6f8p1er9h06dAgfHx/++Mc/EhYWxrhx4ygsLHR4zLaoTfuc/doCNW/fypUr6dKlC4mJibzyyis2\nHXuFU/4G2zLA8PeOHDnCyy+/zPHjx/nll18oLCxkxYoVdoyudmxpm8lkYvny5dZ7/7X5/6Wu1KZ9\nVxQWFnLfffexaNEi61+AzqI27fv666/x9fUlOjraKasOqF37LBYLaWlpzJgxg71799K6dWuee+45\nR4V6Q2rTPme/tkDN2zd8+HB++uknVq9ezdixY2/o99Epk0dAQADZ2dnW99nZ2ZUy4vVs376dHj16\ncPPNN+Ph4cGIESPYtGmTo0K1WU3btmfPHiZNmsRXX31Fq1atbDpWT7VpH0BZWRkjR45k9OjRDB8+\nvE5itkVt2vfjjz/y1Vdf0b59e5KTk/n+++8ZN25cncVeE7VpX2BgIP7+/nTt2hWAUaNGsWvXrroJ\nvIZq0z5nv7aA7deIuLg4ysvLOX36NIGBgbZdXxzQZ1Nrly5dUu3atVNms1ldvnxZxcbGqp07d15z\n31mzZlXqMN++fbsyGo2quLhYWSwWNW7cuErb9VaTtmVlZang4GC1ZcsWm4/VW23aZ7FY1NixY9W0\nadPqMmSb1KZ9v2UymdTgwYMdHa7Natu+O+64Qx08eFAppf3b/POf/1wncddUbdrn7NcWpWrWvmPH\njllf79y5UwUEBCiLxWLz9cUpk4dSSq1du1YZjUbVpUsX69Qkr732mnrttdeUUkqdPHlSBQQEqBYt\nWqiWLVuqwMBAdfHiRaWU9kvboUMH1alTJ5WUlKQuXbqkWzuupbq2TZw4UbVu3VpFRUWpqKgo1bVr\n1+se62xutH0bN25UBoNBRUZGWretW7dOt3ZUpTb//a4wmUxO+bSVUrVr365du1RsbKwKDQ1ViYmJ\n6uzZs7q04Xpq0z5nv7YoVX375s6dq8LCwlRYWJjq2rWr2rRp03WPrYoMEhRCCGEzp+zzEEII4dwk\neQghhLCZJA8hhBA2k+QhhBDCZpI8hBBC2EyShxBCCJtJ8hBCCGEzSR7CZfXs2bPKbcePH6dJkybE\nxMQQExPDnXfeyTvvvHPNfd9++218fHx4+OGHHRWqzQYNGkRBQQEXLlxgyZIl1s+PHj1KVFSU080J\nJlyPDBIUDdLx48cZMmQImZmZAJw8eZJhw4YxdepU/vSnP1Xa95133mHnzp3W2Udry2Kx2G1W3d+3\n44rmzZtz8eJFu3yHENcilYdwWd7e3jXet02bNixatKjKBPHbv7Hefvtthg0bRr9+/ejQoQNPPfWU\nddsbb7xBZGQkRqORCRMmUF5ebo3lL3/5C7GxsWzbtq3SuePj462r1Z05c4b27dtbv2fEiBEMHjyY\n22+/nWnTplmPCQoKIj8/n7/+9a8cOXKE6OhonnzyyRq3V4ja8tA7ACEcxdYp7KOjozlw4ECN9k1L\nS+PAgQN4eXkRGxvL4MGDadq0KatWrSI9PR13d3emTp3K22+/zaRJkyguLqZnz54sWLDgmnFWFevu\n3bvJzMzE3d2dTp06MW3aNIKCgqzHzJs3j3379pGRkWFTW4WoLUkeQvzKlju499xzj3WVvHvvvZdN\nmzbh5uZGRkYGsbGxAFy6dAkfHx8A3N3db2iK+b59+9K0aVMAjEYjZrOZoKCgG4pZCHuS5CHErzIy\nMujSpUu1+/2+SlBKYTAYUEoxceJEnn322auO8fLyqrK6cHNzw2KxAFBSUlJpm6enp/W1u7u7dT8h\n9CZ9HkKgdZhPnz6dxx9/vNp9lVL85z//oaCggMuXL7Nq1Sp69epFQkICn3zyCefOnQOgoKCgRssE\nBwQEsGPHDgC+/PJLm+Ju0qQJxcXFNh0jhD1I5SFcVnV9HkeOHCEmJgalFJ6enkydOrVGK/sZDAa6\ndevGyJEjOXbsGElJSdx5550AzJw5k7i4ODw8PHBzc+O1114jICDgurHMmDGDkSNH8uabbzJgwADr\nvtfrC7nCz8+PqKgoQkNDGTJkCPPmzas2fiHsQR7VFaIa77zzDjt27ODVV18FtKegdu7caX3vjORR\nXeFocttKiGo0adKEdevWWQcJ1qQi0MuVQYK33nqr3qEIFyeVh3BpmZmZV92K8vLyYsuWLTpFJIRr\nkOQhhBDCZnLbSgghhM0keQghhLCZJA8hhBA2k+QhhBDCZpI8hBBC2Oz/A7Fpp7L/E1W7AAAAAElF\nTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x31d4f90>"
]
}
],
"prompt_number": 14
}
],
"metadata": {}
}
]
}
|