1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h1>Chapter 1:Introduction to Magnetic Circuits<h1>"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 1.1, Page number: 9"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from math import *\n",
"#Variable declaration:\n",
"Ac=9 #Cross-sectional area of the core(cm**2)\n",
"Ag=9 #Cross-sectional area of the air-gap(cm**2)\n",
"g=0.050 #Air-gap length(cm) \n",
"lc=30 #Mean Length of the core(cm)\n",
"N=500 #No. of windings\n",
"ur=70000 #Relative permeability of the core material\n",
"Bc=1.0 # Magnetic Flux Density of the core(T)\n",
"uo=4*pi*10**-7 #Permeability of free space\n",
"\n",
"#Calculation\n",
"Rc=lc*10**-2/((ur*uo*Ac)*10**-4)\n",
"Rg=g*10**-2/((uo*Ag)*10**-4)\n",
"Q=Bc*Ac*10**-4\n",
"i=Q*(Rc+Rg)/N\n",
"\n",
"#Results\n",
"print \"a.Reluctance of the core,Rc:\",round(Rc,2), \"A.turns/Wb\" \n",
"print \" Reluctance of the air-gap,Rg:\", round(Rg,2), \"A.turns/Wb\"\n",
"print \"b.The flux, Q:\", round(Q,4), \"Wb\"\n",
"print \"c.The current,i:\", round(i,2), \"A\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"a.Reluctance of the core,Rc: 3789.4 A.turns/Wb\n",
" Reluctance of the air-gap,Rg: 442097.06 A.turns/Wb\n",
"b.The flux, Q: 0.0009 Wb\n",
"c.The current,i: 0.8 A\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 1.2, Page number: 10"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from math import *\n",
"#Variable declaration:\n",
"I=10 #Current in the coil(A)\n",
"N=1000 #No of turns in the rotor\n",
"g=1 #Air gap length(cm)\n",
"Ag=2000 #Cross-section of the air-gap(cm**2)\n",
"uo=4*pi*10**-7 #Permeability of free space\n",
"\n",
"#Calculation:\n",
"Q=(N*I*uo*Ag*10**-4)/(2*g*10**-2)\n",
"Bg=round(Q,2)/(Ag*10**-4)\n",
"\n",
"#Results\n",
"print \"The air-gap flux, Q:\", round(Q,2), \"Wb\"\n",
"print \"The flux density, Bg:\", round(Bg,4), \"T\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The air-gap flux, Q: 0.13 Wb\n",
"The flux density, Bg: 0.65 T\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 1.4, Page number: 13"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from math import *\n",
"#Variable declaration\n",
"lc=0.3 #length of the core(cm)\n",
"ur1=72300 #Relative permeablity for case(a)\n",
"ur2=2900 #Relative permeablity for case(b)\n",
"Ac=9 #Cross-section of the core(cm**2)\n",
"Rg=4.42*10**5 #Reluctance of the air-gap(A.turns/Wb)\n",
"N=500 #No of coil turns\n",
"uo=4*pi*10**-7 #Permeability of free space(H/m)\n",
"\n",
"#Calculations:\n",
"Rt1=(lc/(ur1*uo*Ac*10**-4))+Rg\n",
"L1=N**2/Rt1\n",
"Rt2=(lc/(ur2*uo*Ac*10**-4))+Rg\n",
"L2=N**2/Rt2\n",
"\n",
"\n",
"\n",
"#Results:\n",
"print \"(a)Inductance,L:\",round(L1,2),\"H\"\n",
"print \"(b)Inductance,L:\",round(L2,2),\"H\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Inductance,L: 0.56 H\n",
"(b)Inductance,L: 0.47 H\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 1.5, Page number: 15"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from pylab import *\n",
"from matplotlib import *\n",
"from math import *\n",
"%pylab inline\n",
"#Variable declaration:\n",
"Ac=9e-4 #Cross-section of the core(m)\n",
"Ag=9e-4 #Cross-section of the air-gap(m)\n",
"g=5e-4 #Air-gap length(m)\n",
"lc=0.3 #Mean length of the core(m)\n",
"N=500 #No. of turns of the core(m)\n",
"uo=4*pi*10**-7 #Permeability of free space(H/m)\n",
"\n",
"#Calculations:\n",
"Rg=g/(uo*Ag) #Reluctance of the air-gap(A.turns/Wb)\n",
"ur=[0]*200 #Initialising array\n",
"L=[0]*200\n",
"\n",
"for n in range(1,101,1):\n",
" ur[n-1]=100+(10000-100)*(n-1)/100\n",
" Rc=lc/(ur[n-1]*uo*Ac) #Reluctance of the core(A.turns/Wb)\n",
" Rtot=Rg+Rc\n",
" L[n-1]=(N**2)/Rtot #Inductance(H)\n",
" \n",
"\n",
"#Results:\n",
"print \"The reqired plot is shown below:\"\n",
"plot(ur, L,'g.')\n",
"xlabel('Core relative permeability, ur')\n",
"ylabel('Inductance,L (H) ')\n",
"title('plot of inductance vs. relative permeability for Example 1.5.')\n",
"show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n",
"The reqired plot is shown below:\n"
]
},
{
"output_type": "stream",
"stream": "stderr",
"text": [
"WARNING: pylab import has clobbered these variables: ['streamplot', 'rc', 'tri', 'axes', 'sinh', 'legend', 'trunc', 'rc_context', 'figure', 'f', 'quiver', 'tan', 'axis', 'cosh', 'degrees', 'radians', 'fmod', 'expm1', 'ldexp', 'linalg', 'exp', 'draw_if_interactive', 'text', 'random', 'colors', 'stackplot', 'frexp', 'ceil', 'contour', 'isnan', 'copysign', 'cos', 'fft', 'tanh', 'colorbar', 'fabs', 'sqrt', 'rcdefaults', 'hypot', 'table', 'power', 'gamma', 'log', 'log10', 'info', 'log1p', 'floor', 'modf', 'test', 'pi', 'isinf', 'e', 'sin']\n",
"`%pylab --no-import-all` prevents importing * from pylab and numpy\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEZCAYAAABrUHmEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPX+P/DXgCKoAwiyg+JSsiogLrhdWpTc0BREM0TL\nMO+17Rqpefuq6dVMs+5tUbiV3lJc09ySXJBMM83t5lLuC6OiKSIiq8z79wc/TgwwMKMM6+v5ePB4\nzJmzvc+HOed9zufzOeeoRERARERkALOaDoCIiOoOJg0iIjIYkwYRERmMSYOIiAzGpEFERAZj0iAi\nIoPVuqSRkpICDw+PalnXtWvX0LVrVzRr1gxxcXFlxk+cOBFz5sx5qGUvW7YMvXv3ftQQqQJmZma4\ncOHCQ827YsUKhIWFVXFEdVdl+13JfaH0tH5+ftizZ0+VxFHZPllfeXp6YteuXTUdhkFqXdIwxtix\nY/HOO+889PxLlixBq1atcP/+fSxYsKDM+MWLF+Mf//jHo4T4yDw9PZGcnFyjMdR1ly5dgpmZGbRa\nrfLd6NGj8f3339dgVHVLRfvCiRMn0KdPHwDAzJkzER0d/dDrqWyfNNayZctgbm4OtVqt/FlbWyMt\nLe2Rl12VVCoVVCqV0fMVFBQgIiICbdq0gZmZGX744YcKpw8NDYWVlZVSFt7e3kavs04njUel0Wge\nqtCqk0qlQkO8//LBgwdVvsy6Vo4lk1xD8Sj7pL7fTM+ePXHv3j3lLzMzE87Ozo8SZq3Sp08fLF++\nHM7OzpUmHpVKhU8//VQpi99++83o9dVI0vD09MR7770Hf39/qNVqjBw5Ejk5OeVOe/ToUXTr1g1q\ntRrt27fH6tWrAQAJCQlITEzE+++/D7VajSFDhpQ7/65du+Dn5we1Wg1/f3/lrH3s2LFYvny5Mn95\nZ/Mlr2RSUlLg7u6ORYsWwcXFBS1btsSSJUuUaW/cuIGnn34aarUa3bt3x/nz55Vx5Z3phoaG4osv\nvlCGP/zwQ7Rp0wZqtRpeXl44cuQIoqOjceXKFQwePBhqtRoLFy4EADz77LNwcnJC8+bN0b17dxw7\ndkwn5r/97W/KPAEBAThz5owy/vDhw+jduzfUajUcHR2VKgetVot33nkHbm5usLGxQXh4OG7dulVu\nmXp7e2Pr1q3K8IMHD+Dg4IBjx44hKysLUVFRsLGxgY2NDTp37oybN2+Wu5ySisvoyy+/RJs2bdC3\nb18AwMcffwxPT09YW1vjL3/5i065lrR582Z07NgR1tbWcHJywtSpU5VxxWfBtra2sLa2xs8//6xT\nfThx4sQyVSFDhgzBhx9+qMQ2YMAA2NrawsXFBfPnz9e7HWPHjsXLL7+MsLAwWFtbo1u3bjh37pwy\n/tixY+jduzesra3RunVrfPXVVzrzTpw4EQMGDIC1tTV2794NT09PLFy4EAEBAVCr1XjxxRdx48YN\n9O/fH2q1Gr169UJ6erqyjOTkZAQGBsLa2hpeXl5ISkpSxn3++efo0KEDmjdvDnd3d3z00Udl4p83\nbx6cnJzg7Oys8/us6Kq+uGolKSkJ8+bNw+rVq6FWqxEYGIh169YhODhYZ/pFixZh6NCh5ZZd6X0y\nNzcXL730Euzs7GBvb48JEyYgLy8PwJ/75Pvvvw83Nze8+OKL5can72Th/PnzsLe3x9GjRwEUVY05\nODgoVW0VlVfxuhcsWABnZ2e4urri22+/xXfffQcvLy+o1WrMnDlTmX7mzJmIiIjAyJEjYWNjAx8f\nHxw8eLDcuIzZFxs3boxXX30VPXv2hLm5ebnTGFoeBpMa0Lp1awkMDJSbN29KZmamPPHEE/L3v/9d\nRER2794t7u7uIiKSm5srrq6usmjRIhER+emnn0StVsuxY8dERGTs2LHyzjvv6F3P9evXRa1Wy9q1\na0VEZP369WJtbS1paWkGzV9y/O7du6VRo0Yye/Zs0Wq18t1334mFhYWkp6eLiEh4eLhER0dLfn6+\nnD17Vjw8PKR3794iInLx4kVRqVRSWFioLDs0NFS++OILERFZunSptG7dWk6cOCEiIpcuXZIrV66I\niIinp6fs2rVLJ64VK1ZIbm6uPHjwQKZMmSIdOnRQxsXExIi9vb3873//kwcPHsjo0aNl2LBhIiJy\n69YtsbOzk88++0wKCwslOztbDh8+LCIi//znP6VHjx5y8+ZNefDggfz1r3+VIUOGlFsu7777rowe\nPVoZ3rJli/j4+IiIyL///W8ZPHiw5OTkiIjI8ePHJTMzU28ZFysuo9jYWMnLy5Pc3FxZsWKFPPbY\nY3LhwgUREZk3b54EBAQo86hUKjl//ryIiOzZs0dOnz4tIiK//fabuLq6ysqVK5XyLF3+S5culV69\neinzenh4KOPS09PFyspKrl+/Lg8ePBAvLy+ZN2+eFBYWSmpqqrRt21Y2bNhQ7nbExMSIjY2N/PLL\nL1JYWChvvfWWdO7cWURE7ty5I46OjrJ8+XIRETl58qTY29sr/4OYmBixs7NThvPy8sTT01N69uwp\n6enpcvXqVXF2dpbAwEA5deqU5OXlSd++feXtt98WEZFz586Jra2t7Ny5U0REUlJSxMbGRq5evSoi\nIt9//71oNBoRKdqXmjdvLvv37xeRP3/fb7/9tmi1Wjlw4IA0b9683H2t5D4qovsbnTlzpkRHRyvj\n8vLyxM7OTn777Tflu4CAAFm/fn255Vd6n5w8ebL06dNHMjIyJCMjQ0JDQ2Xy5Mk6Mc+YMUMKCwsl\nNze3zPJK/p/L85///Ed8fHwkOztb+vXrJ3Fxcco4Q8pr7ty5IiLyxRdfiL29vYwZM0ZycnLk5MmT\nYmVlJWfPnhURkRkzZoiFhYVs2bJFREQ+/vhjcXV1lfz8/DJlaMy+WJK7u7v88MMPFU4TGhoqLVu2\nFFtbWwkODpakpKRKl1tajSQNT09P+fLLL5XhnTt3ipubm4jo/iC3b9+u8+MUERkzZoxMnTpVRIp2\nsn/84x9615OQkFDmB9OnTx9ZsmSJiBT9QCuav+T43bt3i5WVlc6Bx9HRUfbu3SvZ2dnSqFEj5eAm\nUrTzFK+7sqTRu3dvJabSyksaJd27d09UKpXcvHlTifmll15Sxn/33XfSrl07ESn6YXfv3r3c5bRp\n00ZnPdeuXRNzc3Pl4F/SuXPnRK1WK+Oee+45mT17toiIfPnll9KjRw85fvy43pjLU1xGxTupiG4Z\niYgUFhZK06ZN5cyZMyKimzRKmzx5skycOFFn2fqShlarlVatWsmePXtEpOh389RTT4lI0YG3VatW\nOsueO3eujBo1qtz1jh07VsaMGaMMZ2dni4WFhZw9e1aWLVumnEgUi42NlWnTpolI0e95/PjxOuM9\nPT0lMTFRGY6MjJS//vWvyvCnn34qAwcOFJGyB2wRkbCwMImPjy831oiICJk/f76IFP2+mzRponPg\nff7552X69OnKdpXcF/QljRkzZsjzzz+vs56XX35ZWc6JEyekRYsWysGytNL7pJubm5IERUSSk5PF\n2dlZicPKykoKCgrKXZZI0f+5UaNGYmtrq/y1b99eZ5rw8HDx8/OTTp066Y1LpGx5WVlZiVarFRGR\nrKwsUalUcvDgQWX6Ll26yLp165Ry6dOnj87y3N3dlW0rWYbG7Iull1dZ0jh06JDk5ORIYWGhrFy5\nUpo1aya///57hfOUVmNtGu7u7spnNzc33Lhxo8w0N27cKNOjo1WrVkp1R2X1d5XNbyx7e3uYmf1Z\nZE2bNkVeXh5u376NwsLCMttkqLS0NLRt29agafPz8/H666+jdevWsLW1VbYvKytLmcbJyUn5bGVl\npVzOX79+HW3atCl3uampqXj22WfRokULtGjRAj4+PrCwsMDt27fLTNuuXTt4e3tj06ZNyM7OxubN\nm/Hcc88BAKKjo/HUU09hxIgRcHFxwd///nfk5+cbVhAAXFxclM8ajQavvfaaEpO9vT0A4I8//igz\n348//oiePXvCzs4OLVq0wKeffor79+8btE6VSoWRI0di5cqVAIDExESMHj1aieHatWtKDC1atMC8\nefOQkZGhd3kl//dWVlaws7PDjRs3oNFocODAAZ1lJSYm4s6dO0oc5dW1l/x/NmnSRGfYwsJC+f9q\nNBqsXbtWZ/n79u1Tqq82bNiAzp07w9bWFi1atMCmTZt0ysjOzg5NmjRRht3d3R96XykpJiYGiYmJ\nAICvv/4aUVFRaNy4sUHz3rhxA61atVKGPTw8dGKyt7dHo0aNKlxG9+7dcefOHeXv7NmzOuPHjx+P\nkydP4pVXXtGJq7Lysre3V45BxeVW+n9V/L8Byh4T3N3dyz3uGbMvGqtz586wtLSEmZkZRo4ciSef\nfBKbN282ahk1ljQ0Go3O55KFXczJyQmpqak63125ckWZtrKk4ezsjCtXruid3xCG9Giwt7eHubl5\nmW0qZmFhAQDIzs5Wviv5A3B1ddXbdbT0+r/66iskJydj3759yMjIUNYjBtRTurm54eLFi+WOc3Fx\nwa5du3R2ruzsbL3Jb9SoUVi5ciU2btwIX19fJek1atQI7777Lk6dOoWDBw/i+++/x9KlSyuNTV9M\nS5cu1Ynp/v376NGjR7nxPP/887h58ybu3LmDSZMmKW1IhvwPR40ahXXr1uHy5cs4ePAghg8frsTw\n+OOP68SQmZmJ7777Tu+yrl69qnzOyclBeno6nJ2d4eLigqefflpnWffu3cPixYuNKhd9/2sXFxe8\n8MILZZY/depUZGVlYdSoUXj33XeRnp6OO3fuIDw8XGdZ6enpyM3NVYZTU1N19hVDyrG8abp37w4L\nCwvs2bMHK1euNKp3lZOTEy5fvqwTk6Ojo8HzVyYrKwuvv/46xo8fjxkzZigJ3JDyMlbJ30XxcHnH\nImP3xUchRbVNRs1TI0lDRPDpp5/ijz/+wL179zBv3jxERUWVma53797QarX417/+BRHBzz//jG+/\n/RYjRowAUHRmVPIHVdqgQYPw66+/Yv369QCAb7/9FkePHkV4eLgSR2VxGlKgVlZWGDBgAGbNmoX8\n/HycP39e50Dp4uICBwcHfP311xARrFixAr///rsyfty4cZg/fz5OnToFoKjhtThZ2tnZ6Rzos7Oz\nYW5uDhsbG+Tm5pbpBllRvOHh4Th37hzi4+NRWFiI7OxsHDlyBAAQGxuL6dOn4/r16wCAO3fuYNu2\nbXqXNXLkSHz//fdYsmSJcpUBAHv27FF6ZDRr1gyNGzfWuTozRmxsLObOnas0JGdlZeHbb78td9rs\n7Gw0a9YMjRo1wtGjR7FixQrlAGZrawuVSqU3YQJAQEAAWrZsifHjx+OZZ56BtbU1AOAvf/kLtFot\nPvnkE+Tn50NEcPr0aaXcShMRbNq0CYcPH0ZhYSFmzZoFPz8/tGvXDkOHDsWxY8ewbt06FBYWQqvV\n4ujRozh9+rQy76OIjo7Ghg0bsHv3bogICgoKsG/fPly7dg0FBQUoKCiAWq2GmZkZdu3aVabLcWFh\nIebMmQOtVosDBw5g06ZNiIiIUGIzJD57e3ukpqaWmTY6OhqTJk2ChYVFuUm/WOn5oqKiMGfOHGRk\nZODu3buYPXu2zu/tUb322mvo2rUrEhISMHDgQLz88ssAYFB5Gevnn39WTjY+++wzFBYWlnsvl7H7\nYl5enpLsS34u7e7du0hOTkZBQQG0Wi3WrVuHXbt2YeDAgUZtR40kDZVKhcjISDz55JNwdXVFy5Yt\ndW6iK97ZLS0tsXnzZiQmJsLa2hqjR4/GkiVLEBAQAAB48cUXcejQIVhbW2PYsGFl1uPs7IxvvvkG\n//d//4fmzZvjnXfewYYNG5QqgMr6RpceX9G08fHxSE1Nhb29PUaPHo2YmBhlepVKhYSEBMyZM0fp\nrdGzZ09l3piYGEyaNEnpETNgwADlSiQuLg7vvPMObG1tsWjRIowdOxaurq5wcnKCr68vgoKCysRY\nOs7iYTs7OyQlJeGrr76Cra0t2rRpo+wI06dPR69evdCtWzdYW1sjKCiowhu2nJ2d0aNHD+zfv18n\n4Ws0GoSHh6N58+Z47LHHEBISgrFjxwIo6qU0ceLECsu7pOeffx6xsbHo378/rK2t0aFDB52kUXL6\nTz75BNOmTYONjQ3+7//+TznYAYCNjQ3+/ve/Izg4GHZ2djhw4EC55fTcc88hOTlZ56Bkbm6O77//\nHrt27YKTkxNsbW0xZswY5Yy0vG0YOXIkpk2bhhYtWiA5ORmrVq0C8Gf5L1myROkN9MYbbyg7uaF9\n9fX9vx977DGsXLkSb7/9NmxsbODs7KwkgRYtWmDBggUYNmwY7Ozs8N///heDBg3SWa6LiwuaNm0K\nV1dXhIeHY9GiRejUqVO5semLMzIyEjk5ObCxsdHpNRUdHY2TJ0/i+eefr3TbSi77n//8J9q3b4+2\nbduiTZs2aNeuHebOnVtpHCXH79+/v8x9GocPH8bGjRuxfft25Upv0aJFOHLkCFauXGlQeenbz/TF\nER4erux7n3zyCdavX6/UQpRk7L7YoUMHNG3aFNeuXUNYWBiaNWum1LDMnTsXAwYMAFBUtf3WW2/B\n3t4eNjY2eO+997B27Vr4+PgAKKqFUavVOrUk5W6LPOrpTQWSkpIQFxeHwsJCxMTEYMqUKQCANm3a\n4IsvvsCTTz6JlJQUvPXWW8jPz4eNjU2lN6cQ1Wbjxo2Du7s7Zs+eXdOh1Co5OTlwcnLC0aNH0a5d\nu5oOp9rNmjUL586dw9dff13ToTyyiluQHkFeXh4mTpyIvXv3wsnJCSEhIejXrx8CAwOVadLS0jBp\n0iQkJyfD0dFRp785UV1kwnOwOu2LL75A586dG2TCAOrX78JkSePAgQPw9fVVGm+ioqKwdetWnaSx\natUqREVFKQ1bdnZ2pgqHqFo87OMg6rPiThLr1q2r4UhqTn36XZgsaWg0Gp3uru7u7khJSQEApUFy\n7dq1AICQkBDcv38fr776KsaPH2+qkIhM7mF7itVnD/tQyfpkxowZNR1ClTFZ0jAkqxYWFuLEiRNI\nTk5GdnY2unfvjpCQEPj6+poqLCIiegQmSxru7u4691ikpqaWe6Odq6srrKysYGVlhb/85S/49ddf\nyySN9u3b633mEBERla9du3Y6zz6rEkbdP26EnJwcad26tWg0GsnPz5fg4GDlmTrFjhw5Ik899ZQ8\nePBA7t+/Lz4+PnL06NEyyzJhmHXOjBkzajqEWoNl8SeWxZ9YFn8yxbHTZFcalpaWWLx4McLCwqDV\nahEdHY2goCDEx8cDACZMmIDAwEA888wz6NixIwoKCjB+/HjlHgwiIqp9TJY0AKB///7o37+/zncT\nJkzQGX7zzTfx5ptvmjIMIiKqIg36JUx1UWhoaE2HUGuwLP7EsvgTy8K0THpHeFVpqG+vIyJ6FKY4\ndvJKg4iIDMakQUREBmPSICIigzFpEBGRwZg0iIjIYEwaRERkMCYNIiIyGJMGEREZjEmDiIgMxqRB\nREQGY9IgIiKDMWkQEZHBmDSIiMhgTBpERGQwJg0iIjIYkwYRERmMSYOIiAxm0neEExFR9YjdHIsz\nt8+gaeOmSByeCFtLW5Osh697JSIyoZIHc4dmDriccVk5sL+1461yx+n7XNE8mXmZ2Je6DwAQ6ROJ\nNZFrTHLsZNIgogZP34H9YQ7ypacreTBvadUSt3JuASg6sN+8fxM/XP6hzDh9nyuax7mZM9LupyHY\nNRg7onfA1tLWJMdOVk8RUZ1T1Qf5M7fPVHrwjt0ca9BBvvR0zs2cAQDBrsGwtbTFzgs7EewajITB\nCXjum+fKHafvc0XzrItch7gdcUgYnGCyqimAVxpEVM1K171X5dn7w5zJR/pEIis/C9vObavwgL0j\negee++Y5o6creTAv3v7iA3tGboYyXHKcvs8VzVNeomD1FBHVuEc9yy9d927ogb302XtxVUxVHOSL\nt+thD9gVTWfKs/7KMGkQUZV52DP+oauGGn2Qr6juvSrP3kt+NuYgX18xaRBRuR6mh87DnvE/alVO\n6br3unb2XpcwaRA1MIZeDTxMD52HPeMvjqsq697JNOpc0khKSkJcXBwKCwsRExODKVOm6IxPSUnB\nkCFD0LZtWwDA8OHD8Y9//KNskEwaVM88TDIwNAGY+oyf6o46lTTy8vLg5eWFvXv3wsnJCSEhIUhI\nSEBgYKAyTUpKChYtWoRNmzZVHCSTBtURpkwGhiaA4jh4xk916j6NAwcOwNfXF25ubgCAqKgobN26\nVSdpAGAyoDpJXxtCyWRQUb/+kn33jel7nzg8UW8CWBO5Romv5OeKxhEZy2RJQ6PRwMPDQxl2d3dH\nSkqKzjQqlQr79++Hv78/HB0dsWjRInTq1MlUIRFVytDupPpuBjN1MmACoJpmsqShUqkqnaZz587Q\naDSwtLTE9u3bMXToUFy8eNFUIREBqLinkaF3Bjdt3BQAkwE1PCZLGu7u7khNTVWGU1NTda48AKB5\n8+bK5379+sHCwgJpaWlwdnYus7yZM2cqn0NDQxEaGlrlMVP9YkgVkqHJoPSjHIqnZzKg2iQlJaVM\njU5VM1lDeG5uLry8vLBv3z44OjqiR48eiI+PR1BQkDLNrVu30LJlSwDA4cOHMWTIEFy5cgVmZrqv\n+WBDOBmidCO0vpvQKuppVLwc9iCi+qBO9Z4CgG3btiEuLg5arRbR0dGYNm0a4uPjAQATJkzAxx9/\njISEoh3SwsICH374Ifr06VM2SCYNKsGQK4iKbkKrqKcRUX1S55JGVWHSaHgqancw5AqioqsGJgdq\nKJg0qF4rmSgqusPZkCsIJgYiJo2aDoOqgKFXEA/T7sBEQaSLSYPqpIe5gmC7A9GjY9KgOqGiXkyG\nXkEwORA9OiYNqrX0XU3wCoKo5jBpUK2iL1FU1IuJyYGo+jBpUI0ytNqJvZiIagcmDap2D1PtxERB\nVDswaVC1YLUTUf3ApEEmwWonovqJSYOqDKudiOo/Jg16JKx2ImpYmDTokYQuC2W1E1EDwqRBRit5\ndVGgLeDD/YgaECYNqlRFjdpDOgyBhbkFEwVRA2GKY6fJXvdKNaPkO65Lv7502dBlTBZE9EiYNOqB\nklcXjc0bA0C577JmwiCiR8XqqXqgZAM3q6CIqBirp0ih7+qCVVBEZEq80qgj2MBNRMbilUYDxgZu\nIqoNmDRqMTZwE1Ftw+qpWowN3ET0KFg91QCwgZuIajNeadQyvLogoqrCK40GgA3cRFSb8UqjhpXu\nSlv8Ha8uiOhR8YGF9VDJ6qhIn0isiVxTwxERUX3B6ql6orKutEREtZWZKReelJQEf39/+Pj4YP78\n+Xqn++WXX9CoUSOsX7/elOHUGsU36m07tw3NGjdDpE8kdkTvYHUUEdV6JrvSyMvLw8SJE7F37144\nOTkhJCQE/fr1Q2BgoM50hYWFmDJlCp555pl6WwVVGhu7iaiuqjBpFBQUYPv27dizZw8uXboElUqF\n1q1bo0+fPggLC0OjRvpnP3DgAHx9feHm5gYAiIqKwtatW8skjY8//hgRERH45ZdfqmBzaq+SVVKL\nBy7mW/OIqE7SWz01e/ZsdOnSBVu2bIGXlxdeeOEFxMTEoEOHDti8eTOCg4MxZ84cvQvWaDTw8PBQ\nht3d3aHRaHSmuXr1KjZu3IiJEycCKGq0qa9KVknF7YjDmsg1TBhEVOfovVTo1KkTpk+fDjOzsnnl\nhRdegFarxZYtW/Qu2JAE8Prrr+O9995TWvgrqp6aOXOm8jk0NBShoaGVLr82KVklxQZvIjKFlJQU\npKSkmHQdJuty++OPP2L+/PlKYlmwYAHy8/Mxffp0ZZq2bdsqieLWrVto2rQp/vOf/yA8PFw3yDrY\n5Zb3XxBRTavW+zQGDx6sd8UqlQqbNm2qcMG5ubnw8vLCvn374OjoiB49eiA+Ph5BQUHlTj9u3DgM\nHjwYw4YNKxtkHUwavP+CiGpatd6nMXnyZGWFL730Ej7//HNl5YZUPVlaWmLx4sUICwuDVqtFdHQ0\ngoKCEB8fDwCYMGFCFW1C7cTqKCKqjwyqngoMDMTRo0erI55y1ZUrDfaQIqLahHeE13Il365X3EOK\niKg+0Zs00tPTAQAigsLCQmW4mJ2dnWkjq4NYJUVE9Z3e6ilPT0+l7UJEdNoxVCoVLly4UD0Rou5U\nT2XkZrCHFBHVGnzKbS1UumstkwUR1RamOHbqvSPckCuJ8+fPV2kwdVHJO71jN8fWdDhERCalt01j\n2rRpuH//PsLDwxEcHAwXFxeICK5fv45Dhw5h06ZNUKvVWLVqVXXGW+uwHYOIGpIKq6fOnTuHVatW\nYd++fbh8+TIAoHXr1ujVqxdGjRqFtm3bVk+Qtbh6iu0YRFRbsU2jFmAbBhHVFdXapkHlYxsGETVk\nTBpGYhsGETVkD1U9de3aNbi6upoinnLVpuoptmEQUV1Ra9o0WrVqhStXrlRpIBWpTUmDiKiuqDXP\nnmpoB3A2fhMRFWGbhgHY+E1EVETvlcYrr7yid6aMjAyTBFNbsfGbiKiI3qTRuXPncl+2JCIIDg42\naVC1TeLwRDZ+ExGBN/cREdVbtaIh/O2334aNjQ3Gjx8Pe3v7Kg2mNmHjNxFRWUY3hHfp0gXm5uZ4\n/fXXTRFPrcHGbyKisoy+0nj22WdNEUetw8ZvIqKyKr3SOHnyJHr16gUvLy8AwKlTpzBr1iyTB1bT\nEocnItInEjuid7Bqiojo/6u0Ibxbt27497//jZdffhlHjx6FiMDPzw8nT56srhjZEE5E9BBq5Cm3\nubm56Natm04Q5ubmVRoEERHVDZW2adjZ2eHcuXPK8JYtW+plryn2liIiqlylSWPJkiWIiYnB77//\njlatWsHBwQGrV6+ujtiqVXFvKaAogayJXFPDERER1T6VJo0OHTpg3759uHXrFkQEDg4O1RFXtWNv\nKSKiylXapjFlyhRkZmaiZcuWcHBwwN27d/H2229XR2zVir2liIgqV2nvqYCAABw7dkznu8DAQBw9\netSkgZXE3lNERMarkd5TeXl5KCgoUIbz8/ORk5Nj0MKTkpLg7+8PHx8fzJ8/v8z4jRs3omPHjujU\nqRP8/f37hietAAAZbElEQVSRlJRkROhERFTdKr3SmDVrFnbs2IFx48ZBRLBs2TL07dsXM2bMqHDB\neXl58PLywt69e+Hk5ISQkBAkJCQgMDBQmeb+/fto1qwZAOD48eMYNGgQLl++XDZIXmkQERmtRh5Y\nOGPGDHTs2BE7d+6ESqVCXFwchgwZUumCDxw4AF9fX7i5uQEAoqKisHXrVp2kUZwwACArKwsuLi4P\nsw0Pjd1siYiMY9Czp5599lmjnzml0Wjg4eGhDLu7uyMlJaXMdN9++y2mTZuG69evY/v27Uat41Gx\nmy0RkXEqTRqJiYl4++23cevWLeWlTCqVCpmZmRXOV94LnMozdOhQDB06FD/++COio6Nx+vTpcqeb\nOXOm8jk0NBShoaEGLb8i7GZLRPVJSkpKuSfnVanSNo1WrVrh+++/h7e3t1EL/vHHHzF//nxs2bIF\nALBgwQLk5+dj+vTpeudp164dfvrpJzg5OekGaaI2jYzcDL6Rj4jqrRrpPeXp6Wl0wgCK3rtx4sQJ\nXL16FQUFBVizZg369++vM82lS5eUz0eOHEF+fj4cHR2NXtfDsrW0xZrINUwYREQGqrR6KjAwEKNG\njUJ4eDgsLCwAFGWvYcOGVTifpaUlFi9ejLCwMGi1WkRHRyMoKAjx8fEAgAkTJmDVqlVYsWIFAMDK\nygqrVq0yuFqLiIiqX6XVU2PHji33QL506VKTBVUau9wSERnPFMfOSpNGbcCkQURkvBq5TyMrKwvx\n8fE4ffo0CgoKlKuOL7/8skoDqS68N4OI6OFV2hA+atQoZGRkYOfOnQgNDYVGo0Hz5s2rIzaTKL43\nY9u5bYjdHFvT4RAR1SmVJo0LFy5g9uzZUKvViImJwbZt23Do0KHqiM0keG8GEdHDqzRpFD/qw8rK\nCidPnkR6ejo0Go3JAzMVPgKdiOjhVdqmMX78eGRmZmL27Nno27cv8vPzMWvWrOqIzSSK780gIiLj\nVdp76sKFC2jbtm2l35kSe08RERmvRu4Ij4iIMOg7IiKq//RWT/322284deoUMjIysH79eogIVCoV\n7t+/j3v37lVnjEREVEvoTRpnzpzB5s2bcffuXWzevFn53srKCp9//nm1BEdERLVLpW0a+/fvR0hI\nSHXFUy62aRARGa9G2jQ+/fRTnXdn3L17FzExMVUahKnFbo5F6LJQDFgxABm5GTUdDhFRnVVp0jh5\n8iSsra2VYRsbG/z6668mDaqq8S5wIqKqUWnSyMvLK3OlkZuba9KgqhrvAiciqhqV3tz32muvITg4\nGFFRURARrFmzBpMnT66O2KpM4vBEvqGPiKgKGPRo9CNHjmDXrl1QqVR46qmnEBgYWB2xKdgQTkRk\nvBp5n8aVK1cAQFlx8aPRW7VqVaWBVIRJg4jIeDWSNPz8/JREkZubi4sXL6JDhw44efJklQZSESYN\nIiLj1chLmE6cOKEzfOzYMXzyySdVGgQREdUND/W6Vz8/vzLJxJR4pUFEZLwaudL44IMPlM9arRZH\njhxBy5YtqzQIIiKqGypNGvfu3VPaNMzMzNCvXz+MGDHC5IEREVHt81DVU9XN2Eus2M2xOHP7DJo2\nborE4Ym8N4OIGqRqrZ4aPHiw3hWrVCps2rSpSgOpSsWPDQGKEgjf1EdEVDX0Jo3iu743bNiAP/74\nA6NGjYKIYPXq1XBwcKi2AB8GHxtCRGQalVZPdevWDQcOHKj0O1My9hIrIzeDjw0hogavRh6Nnp6e\njkuXLinDly9fRnp6epUGUdVsLW2xJnINEwYRURWrtPfUwoULERISgscffxxA0Rv94uPjTR4YERHV\nPgb1nsrJycHx48dhZmYGPz8/WFpaGryCpKQkxMXFobCwEDExMZgyZYrO+K+//hoLFiyAiKBJkyaI\nj49H586ddYPkzX1EREarkWdPiQj27NmDK1euQKvVKvdsjBkzptKF5+XlwcvLC3v37oWTkxNCQkKQ\nkJCg85TcgwcPwtvbG2q1GklJSZg2bRqOHj2qGySTBhGR0WrkjvARI0bg6tWrCAgIgLm5ufK9IUnj\nwIED8PX1hZubGwAgKioKW7du1UkaXbt2VT737NkTV69eNWoDiIio+lSaNP73v//h9OnTyhWGMTQa\nDTw8PJRhd3d3pKSk6J0+Pj4eQ4YMMXo9RERUPSpNGkFBQbh58yacnJyMXrgxiSYlJQVffvkl9u3b\nV+74mTNnKp9DQ0MRGhpqdDxERPVZSkpKhSfmVaHSpJGWloYOHTqga9euaNKkCQDD7wh3d3dHamqq\nMpyamqpz5VHs119/xfjx45GUlIQWLVqUu6ySSYOIiMoqfUI9a9asKl9HpUnjUQ7WXbp0wYkTJ3D1\n6lU4OjpizZo1ZbrrXrlyBcOGDcPy5cvRvn37h14XERGZnskfWLht2zbExcVBq9UiOjoa06ZNUxLH\nhAkTMH78eGzYsEF5fWzjxo1x8OBB3SDZe4qIyGjV2uW2efPmetskVCoVMjMzqzSQihiy4XyyLRGR\nrmrtcpuVlVWlKzI1PtmWiMj0Kn32VF3BJ9sSEZlevXkJE59sS0Skq0YeI1IbsCGciMh4NfJodCIi\nomJMGkREZDAmDSIiMhiTBhERGYxJg4iIDMakQUREBmPSICIigzFpEBGRwZg0iIjIYEwaRERkMCYN\nIiIyGJMGEREZrNLXvdZmfPESEVH1qtNXGsUvXtp2bhtiN8fWdDhERPVenU4afPESEVH1qtPv0+CL\nl4iI9ONLmIiIyGB8CRMREdUoJg0iIjIYkwYRERmMSYOIiAzGpEFERAZj0iAiIoMxaRARkcFMnjSS\nkpLg7+8PHx8fzJ8/v8z433//HSEhIbC0tMQHH3xg6nCIiOgRmPSBhXl5eZg4cSL27t0LJycnhISE\noF+/fggMDFSmsbe3x8cff4xvv/3WlKEQEVEVMOmVxoEDB+Dr6ws3Nzc0atQIUVFR2Lp1q840Dg4O\nCA4ORuPGjU0ZChERVQGTJg2NRgMPDw9l2N3dHRqNxpSrJCIiEzJp0lCpVKZcPBERVTOTtmm4u7sj\nNTVVGU5NTdW58jDGzJkzlc+hoaEIDQ19xOiIiOqXlJQUpKSkmHQdJn3KbW5uLry8vLBv3z44Ojqi\nR48eiI+PR1BQUJlpZ86cCbVajcmTJ5cNkk+5JSIyWp18NPq2bdsQFxcHrVaL6OhoTJs2DfHx8QCA\nCRMmIC0tDV26dEFmZibMzMygVqtx6tQpNG/e/M8gmTSIiIxWJ5NGVWDSICIyHt+nQURENYpJg4iI\nDGbS3lNVLXZzLM7cPoOmjZsicXgi3wtORFTN6tSVxpnbZ/DD5R+w7dw2xG6OrelwiIganDqVNJo2\nbgoACHYNRsLghBqOhoio4alTvacycjMQuzkWCYMTWDVFRFQJdrklIiKDscstERHVKCYNIiIyGJMG\nEREZjEmDiIgMxqRBREQGY9IgIiKDMWkQEZHBmDSIiMhgTBpERGQwJg0iIjIYkwYRERmMSYOIiAzG\npEFERAZj0iAiIoMxaRARkcGYNIiIyGBMGkREZDAmDSIiMhiTBhERGYxJg4iIDMakQUREBjNp0khK\nSoK/vz98fHwwf/78cqd59dVX4evri6CgIBw9etSU4RAR0SMyWdLIy8vDxIkTkZSUhF9//RXr1q0r\nkxS++eYbXLlyBSdPnsQXX3yBcePGmSqceiMlJaWmQ6g1WBZ/Yln8iWVhWiZLGgcOHICvry/c3NzQ\nqFEjREVFYevWrTrTfPfdd4iOjgYABAYG4sGDB9BoNKYKqV7gDvEnlsWfWBZ/YlmYlsmShkajgYeH\nhzLs7u5eJiEYMg0REdUeJksaKpXKoOlExKD5VLNUUM0ybJlERGQiYiJ79uyRgQMHKsPvv/++zJkz\nR2eaF154QdauXasM+/r6ikajKbMstIAA/OMf//jHP2P+2rVrV+XH9kYwkS5duuDEiRO4evUqHB0d\nsWbNGsTHx+tMM2DAACxfvhwRERE4cuQIzM3N4ebmVmZZki6mCpOIiIxgsqRhaWmJxYsXIywsDFqt\nFtHR0QgKClISx4QJEzB8+HDs3r0bvr6+aNKkCZYuXWqqcIiIqAqoRISn8UREZJBafUe4ITcH1nWp\nqano06cP/P390aFDB7z//vsAgPT0dPTt2xcdO3ZEWFgYMjIylHnmzZsHHx8f+Pv7Y/v27cr3hw8f\nRmBgIHx9ffHaa69V+7ZUlcLCQgQGBmLw4MEAGm5ZZGRkIDIyEp06dYK3tzd+/vnnBlsWM2bMwOOP\nPw4vLy9EREQgOzu7wZTFCy+8ACcnJ/j7+yvfVeW25+XlISoqCv7+/ujZsycuX75ccUBV3kpSRXJz\nc8XT01M0Go0UFBRIcHCwHDlypKbDqnJpaWly/PhxERG5d++ePPbYY3Ls2DGZNGmSfPjhhyIi8uGH\nH8qrr74qIiKHDh2S4OBgefDggWg0GvH09JT8/HwREfH391fKaMiQIbJ+/foa2KJH98EHH8hzzz0n\ngwcPFhFpsGUREREhiYmJIiJSWFgod+/ebZBlcfbsWWnTpo3k5eWJiMiIESPk888/bzBlsWfPHjly\n5Ij4+fkp31Xlti9cuFBee+01ERHZsGGDhIeHVxhPrU0aP/zwg07vqwULFsjs2bNrMKLqMXz4cNm6\ndau0bdtWbt26JSIif/zxh9ILYtasWbJw4UJl+oEDB8qPP/4oly9fFl9fX+X7tWvXyosvvli9wVeB\n1NRUeeqppyQ5OVkGDRokItIgy+LWrVvSvn37Mt83xLK4ffu2PP7445Keni4FBQUyaNAg2b59e4Mq\ni4sXL+okjarc9ieffFIOHTokIkUnJy1bthStVqs3llpbPdUQb/y7dOkSfvnlF/Tq1Qt//PEH7O3t\nAQAtW7bEzZs3AQBXr16Fu7u7Mk9xuVy9elWnvNzc3Opkeb3xxhtYsGABzMz+/Gk2xLI4e/YsHBwc\nMGLECPj5+WHMmDG4d+9egywLOzs7TJ48Ga1atYKrqytsbW3Rt2/fBlkWxapy20sea83MzGBvb68s\nrzy1NmkYenNgfZGVlYWIiAj861//grW1dU2HUyO2bNkCR0dHBAYGlrnps6HRarX45ZdfEBcXhxMn\nTsDOzg6zZ8+u6bBqxPnz5/HRRx/h0qVLuHbtGrKysrB8+fKaDqvBqrVJw93dHampqcpwamqqTqas\nTwoKCjB8+HCMHj0aQ4cOBQA4ODjg1q1bAIrOKhwdHQGULZfis4Tyvi95xlEX/PTTT9i0aRPatGmD\nUaNGITk5GdHR0Q2yLDw8PODm5oYuXboAACIiInDs2DE4Ojo2uLI4ePAgevToAXt7ezRq1AjDhg3D\nvn37GuTvolhVbHvx8dTd3R1XrlwBUHSycvv2bTg4OOhdd61NGiVvDiwoKMCaNWvQv3//mg6ryokI\nXnzxRfj4+OCNN95Qvi++8REAli9fjgEDBijfr169Wnm444kTJ9C1a1d4eHjAzMxMeZLwihUrlHnq\nirlz5yI1NRUXL17EqlWr8OSTT+Lrr79ukGXh4eGBli1b4syZMwCAnTt3wtvbG/37929wZdG+fXv8\n/PPPyMnJgYhg586daNeuXYP8XRSrim0vPp6WXNbGjRsREhKiUz1cRhW105jEd999J76+vuLt7S1z\n586t6XBM4scffxSVSiWdOnWSgIAACQgIkG3btsnt27fl6aefFn9/f+nbt6/cuXNHmeef//yneHt7\ni6+vryQlJSnfHzp0SAICAsTHx0deeeWVmticKpOSkqL0nmqoZXHs2DEJDg4WHx8f6d+/v6SnpzfY\nspgxY4a0b99eHn/8cYmKipKcnJwGUxYjR44UFxcXady4sbi7u8uXX35Zpduem5srkZGR4ufnJyEh\nIXLx4sUK4+HNfUREZLBaWz1FRES1D5MGEREZjEmDiIgMxqRBREQGY9IgIiKDMWkQEZHBmDSoQmlp\naRg5ciT8/PzQsWNHPP300zh9+nSNxdO8efMKx9+9exeLFy9Whq9du4bIyEhTh1Wj9JXJjBkzkJyc\nDAAIDQ3FkSNHAAADBw5EZmZmmbIiMgTv0yC9CgsL0blzZ7z55pt4/vnnAQC//vorMjMz0atXL4Pm\nNzc3N2qdxT9Hfc8eU6vVuHfvnt75L126hMGDB+P48eNGrdfUtFptxXfZPoLKygQAnnjiCXzwwQcI\nCgpSvquusjLltlP143+S9Nq+fTscHR2VhAEAHTt2RK9evaDVavHKK6/Ax8cHPj4++OqrrwAAKSkp\n6N27N5599ll07NgRhYWFmDRpkvIioX//+99l1nPp0iV06NABY8eORUBAADQaDd5991107NgR3t7e\nmDZtWpl5srKy8MQTT6Bz587w8vLC2rVrAQBTp07F+fPnERgYiClTpuDy5cvKy2u6d++OU6dOKcso\nPvvOysrCqFGj0KlTJ/j6+irLKiklJQV9+vRBeHg4OnTogHHjxikJbtOmTejcuTP8/f0xZMgQ5QDu\n6emJqVOnolu3bli3bh08PT0xffp0BAcHIzg4GEeOHEH//v3h6emJjz/+WFmXvm0PDw9HcHAwHn/8\n8TLlOHnyZAQEBKBnz57KE0rHjh2Lb775psy2eHp64vbt2zpl9dZbbyEmJgYbN25Uphs9ejQ2bdpU\nZv6S/7eSLwZauHAhZs2apZTtG2+8gZCQkHL/51SHVeHd7lTPvPfeezJ16tRyx61YsULCwsJEpOgx\nH66urqLRaGT37t3SrFkz0Wg0IiLyr3/9S+bMmSMiRY8rCAoKkjNnzugs6+LFi2JmZqY803/jxo0S\nGxsrIkXP9x84cKDs2LFDRESaN28uIiIPHjyQ+/fvi0jR+wQ8PT1Fq9XKpUuXdN47UPI9BB9++KHM\nmDFDRESuXbsmHTp0EBGRN954Q5YvXy4iInfu3JF27dpJZmamToy7d+8WS0tLuXLlimi1WgkLC5PE\nxERJS0uTkJAQyc7OVsps+vTpIiLi6ekpixYtUpbh6ekpCQkJyjr9/f0lJydH/vjjD+UdBqW3fdCg\nQcq23717V0REsrOzxdvbW27evCkiIiqVSlavXi0iRY+QKJ5/7Nix8s0334iISGhoqBw+fFiJ4/bt\n22XK6ocffpChQ4eKiEhGRoa0adNGCgsLRZ/S73hYuHChzJo1S1lf8YuBqH5pVNNJi2qvih5Pv2/f\nPowcORJA0fsOnnrqKezfvx8ODg7o2rUr3NzcABRdrZw9exbr1q0DAGRmZuLChQt47LHHdJbXunVr\ndO7cWZln+/btCAwMBADcv38fly5d0pm+oKAAr7/+On766Sc0btwYN2/exPXr1yt8pHpkZCTCwsIw\nc+ZMrFmzRmnr2L59O3bs2IGFCxcCAB48eIDU1FT4+PjozF/84DcAiIqKwt69e2FhYYGzZ8+iR48e\nAID8/Hx069ZNmSciIkJnGYMGDQIA+Pv74/79+7C0tISlpSWaNm2KjIyMCrd93rx52LJlC8zNzXHt\n2jXlnRtmZmbKekaNGqWsozKly6pPnz7461//ilu3bmHdunWIiIgwulqp5DJLbzvVD0wapJe/vz8+\n+ugjveNLH3SKk0yzZs10vl+yZAmeeOKJCtdVep533nkHL7zwgt7pv/rqK2RmZuL48eNQqVRo06YN\nHjx4UOE63NzcYG9vj+PHj2PNmjWIj49XxhU/kr0iJZOoiEClUkFE0L9/f6V6rrLtatKkCYCil91Y\nWFgo35uZmUGr1QIof9u3b9+OvXv34vDhw7CwsMATTzxR7vYWx/WwxowZg6+//hqrV6/GsmXLKpy2\nZMwAkJOTo7Pu0ttO9QPbNEivfv36IS0tDStWrFC+O378OPbu3YvevXtj7dq1EBGkp6cjOTkZISEh\nZRJJWFgY4uPjlYPLxYsXkZOTU+F6w8LCsHTpUuTm5gIAbty4obw7oFhubi4cHR2hUqmwZ88eXL58\nGQBgZWWF7OxsvcuOiorC/PnzkZmZCT8/P2V9n332mTLNiRMnyp334MGDSE1NhYhg7dq16NWrF3r3\n7o3du3cr7yPIzc3F+fPnK9w+oGzCBYqSkr5tz83NRYsWLZQrm59//lmZT6vVYv369QCA1atXG9RJ\nASi/rMaOHYuPPvoIKpUKXl5eAIreBvf000+Xmd/R0RFpaWlIT09HQUEBtm7datB6qW5j0iC9zM3N\nkZSUhE2bNsHPzw+dOnXCm2++CScnJ0RFRaFdu3bw8fFBr169MG/ePLi6ukKlUumcbf7tb3+Dm5sb\nfH190alTJ4wbNw4FBQVl1lVynsGDB2PQoEEICgpCQEAAwsPDlcbl4ulGjx6Nn376CZ06dcJ///tf\neHt7AwCcnJwQEBAAHx8fTJkypUw8ERERWL16NUaMGKF8N3v2bNy8eRM+Pj7o2LEjpkyZUm58Xbp0\nwaRJk+Dl5QUXFxeMHDkSTk5OSEhIQHh4OAICAtC1a1edxnZ921g6ruLP+rb9mWeeQW5uLry9vTFl\nyhSEhIQo8zZr1gz79+9HYGAgtmzZgnfffbfc9ZdWuqyAokTg4+ODcePGKdNdv34djRqVrZSwtLTE\n1KlTERgYiLCwMOV/QPUbu9wSGSAlJQUffPABNm/eXNOhmFROTg58fX3xv//9D2q1GgDw6aefonXr\n1ga3lVD9xjYNIgOUvjKoj3bu3ImXX34Zr7zyipIwgKKrRaJivNIgIiKDsU2DiIgMxqRBREQGY9Ig\nIiKDMWkQEZHBmDSIiMhgTBpERGSw/wfGiiSfSPgEbwAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x31b54d0>"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 1.6, Page number: 19"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from sympy import *\n",
"\n",
"#Variable declaration:\n",
"Bc=1.0 #Magnetic field induction in the core\n",
"w=377 #Angular frequency of magnetic field(rad/s)\n",
"Rc=3791.33 #Reluctance of the core(A.turns/Wb)\n",
"Rg=442321.3 #Reluctance of the air-gap(A.turns/Wb)\n",
"N=500 #No. of windings\n",
"i=0.80 #Current in the coil\n",
"Ac=9*10**-4 #Cross-section of the core\n",
"\n",
"\n",
"#Calculations:\n",
"L=N**2/(Rc+Rg)\n",
"W=(1./2)*L*i**2\n",
"t = symbols('t')\n",
"Bc = 1.0*sin(w*t)\n",
"e=N*Ac*diff(Bc,t)\n",
"\n",
"#Results:\n",
"print \"The Inductance, L:\", round(L,2), \"H\"\n",
"print \"The magntic stored energy, W:\", round(W,2), \"J\"\n",
"print \"Induced voltage, e:\",e,\"V\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Inductance, L: 0.56 H\n",
"The magntic stored energy, W: 0.18 J\n",
"Induced voltage, e: 169.65*cos(377*t) V\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 1.7, Page number: 22"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from math import *\n",
"#Variable declaration:\n",
"Bc=1 #Magnetic field in the core\n",
"Hc=11 #Magnetising force(A.turns/m)\n",
"lc=0.3 #length of the core(m)\n",
"N=500 #No of windings\n",
"g=0.050 #Air-gap length(cm)\n",
"uo=4*pi*10**-7 #Permeability of free space(H/m)\n",
"\n",
"\n",
"#Calculation:\n",
"Fc=Hc*lc #mmf drop for the core path(A.turns)\n",
"Fg=Bc*g*10**-2/uo #mmf drop across the air gap(A.turns)\n",
"i=(Fc+Fg)/N\n",
"\n",
"\n",
"#Results:\n",
"print \"The required current,i:\" ,round(i,2) ,\"A\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The required current,i: 0.8 A\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 1.8, Page number: 28"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from sympy import *\n",
"\n",
"#Variable declaration:\n",
"N=200 #No. of turns\n",
"Ac=4 #Cross-section of the core(in**2)\n",
"w=377 #Angular frequency of the magnetic field(rad/s)\n",
"Hm=36 #Max value magnetising force(A.turns/m)\n",
"Pc=1.2 #Core loss density(W/kg)\n",
"\n",
"\n",
"#Calculations:\n",
"t=symbols('t')\n",
"Bc=1.5*sin(w*t)\n",
"e=(round(N*Ac*0.94/(39.4**2),2)*diff(Bc,t))\n",
"Erms=275*0.707\n",
"lc=(6+6+8+8)/39.4 #Mean length of the core(m)\n",
"I=Hm*lc/N\n",
"Vc=4*0.94*28 #Core volume(m**3)\n",
"Wc=105.5*(2.54**3)*7.65*10**-3 #Core weight(kg)\n",
"Pa=1.5*13.2 #Watts per Kg\n",
"Irms=Pa/Erms #Current (A)\n",
"Pct=Pc*Wc #Total core loss(W)\n",
"\n",
"\n",
"#Results:\n",
"print \"The applied voltage,e:\", e, \"V\"\n",
"print \"The peak current,I:\", round(I,2), \"A\"\n",
"print \"The total rms current. Irms:\", round(Irms,2), \"A\"\n",
"print \"Total Core loss, Pct:\",round(Pct,2),\"W\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The applied voltage,e: 271.44*cos(377*t) V\n",
"The peak current,I: 0.13 A\n",
"The total rms current. Irms: 0.1 A\n",
"Total Core loss, Pct: 15.87 W\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 1.9, Page number: 32"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from sympy import *\n",
"from math import *\n",
"\n",
"#Variable Declaration:\n",
"g=0.2 #air-gap length(cm)\n",
"lm=1.0 #length of magnetic section(cm)\n",
"Am=4 #Cross-section of the core(cm**2)\n",
"Ag=4 #Cross-section of the air-gap(cm**2)\n",
"\n",
"#Constants used:\n",
"uo=4*pi*10**-7 #Permeability of free space(H/m)\n",
"\n",
"#Calculations:\n",
"Hm=symbols('Hm')\n",
"def Bg(Hm):\n",
" return -uo*Ag*lm*Hm/(Am*g) \n",
"\n",
"Hm1=-49*10**3 #Coercivity of ALNICO 5 (A/m)\n",
"Hm2=-6 #Coercivity of M-5 electrical steel (A/m) \n",
"\n",
"\n",
"#Results:\n",
"print \"Flux Density of air gap:\", round(Bg(Hm1),2),\"T\"\n",
"print \"\\nFlux Density of air gap:\", round(Bg(Hm2*10**4),2),\"gauss\"\n",
"print \"\\nwhere value of Hm for different material.\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Flux Density of air gap: 0.31 T\n",
"\n",
"Flux Density of air gap: 0.38 gauss\n",
"\n",
"where value of Hm for different material.\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 1.10, Page number: 34"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from sympy import *\n",
"from math import *\n",
"\n",
"#Variable declaration:\n",
"Ag=2 #Cross-section of air-gap(cm**2) \n",
"Bg=0.8 #Air-gap flux density(t)\n",
"Bm=1.0 #Core-flux density(T)\n",
"Hm=-40 #Magnetising force in the core(kA/m)\n",
"uo=4*pi*10**-7 #permeability of free space(H/m)\n",
"g=0.2 #Air-gap length(cm)\n",
"\n",
"#Calculations:\n",
"Am=Ag*Bg/Bm\n",
"lm=-g*Bg/(Hm*uo*10**3)\n",
"Vm=Am*lm\n",
"\n",
"\n",
"#Results:\n",
"print \"The minimum magnet volume,Vm:\",round(Vm,2),\"cm**3\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The minimum magnet volume,Vm: 5.09 cm**3\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 1.11, Page number: 39"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from sympy import *\n",
"from math import *\n",
"\n",
"#Variable Declaration:\n",
"Am = 2 #magnetic material cros-section(cm^2)\n",
"g=0.2 #air gap length(cm)\n",
"uo=4*pi*10**-7 #permeability of free space(H/m)\n",
"N=100 #No. of windings\n",
"\n",
"#Calculations and results:\n",
"#for part (a)\n",
"Bma = 1.0 #Tesla\n",
"Hma = - 4 #kA/m\n",
"Ag1 = 2 #cm**2\n",
"Ag2 = 4 #cm**2\n",
"\n",
"lm=g*(Am/Ag1)*(Bma/(-uo*Hma*10**4))\n",
"print \"(a) The Requied magnet length = \",round(lm,2),\"cm\"\n",
"\n",
"\n",
"#for part (b):\n",
"i,Hm=symbols('i Hm')\n",
"Bm=-uo*(Ag1/Am)*(lm/g)*Hm+(uo*N/g)*(Ag1/Am)*i\n",
"H_max=200 #kA/m\n",
"B_max=2.1 #Tesla\n",
"i_max=(B_max+2.50*10**-5*H_max)/(6.28*10**-2)\n",
"\n",
"print \"(b) Thus with the air-gap area set to 2 cm^2,\"\n",
"print \" increasing the current to i_max = 45.2 A and then reducing\"\n",
"print \" it to zero will achieve the desired magnetization.\"\n",
"\n",
"#for part (c):\n",
"Bm1=1.00 #Tesla\n",
"Bm2=1.08 #Tesla\n",
"Bg1=(Am/Ag1)*Bm1\n",
"Bg2=(Am/Ag2)*Bm2\n",
"print \"(c) The flux densities when plunger moves at two extremes are:\"\n",
"print \" Bg1 =\",Bg1,\"T and Bg2 =\",Bg2,\"T\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a) The Requied magnet length = 3.98 cm\n",
"(b) Thus with the air-gap area set to 2 cm^2,\n",
" increasing the current to i_max = 45.2 A and then reducing\n",
" it to zero will achieve the desired magnetization.\n",
"(c) The flux densities when plunger moves at two extremes are:\n",
" Bg1 = 1.0 T and Bg2 = 0.54 T\n"
]
}
],
"prompt_number": 12
}
],
"metadata": {}
}
]
}
|