1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 6:Electrical Conducting and Insulating Materials"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6.1,Page No:6.8"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"temperature coefficient =0.00082 K**-1\n"
]
}
],
"source": [
"import math\n",
"\n",
"#variable declaration\n",
"R75 = 57.2; #resistance at 75 C in Ω\n",
"R25 = 55; #resistance at 25 C in Ω\n",
"t1 = 25; #temperature in C\n",
"t2 = 75 # temperature in C\n",
"\n",
"#formula\n",
"#Rt = R0*(1+(alpha*t))\n",
"#calculation\n",
"alpha = (R25-R75)/float((25*R75)-(75*R25)); #temperature cofficient\n",
"\n",
"\n",
"#result\n",
"print'temperature coefficient =%3.5f'%alpha,'K**-1';\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6.2,Page No:6.9"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"temperature coefficient of resistance =65.06 °C\n"
]
}
],
"source": [
"import math\n",
"\n",
"#variable declaration\n",
"R1 = 50; #resistance in ohm at temperature 15°C\n",
"R2 = 60; # resistance in ohm temperature 15°C\n",
"t1 = 15; #temperature in °C\n",
"alpha = 0.00425; #temperature coefficient of resistance\n",
"\n",
"\n",
"#formula\n",
"#Rt = R0*(1+(alpha*t))\n",
"#Rt1/Rt2 = R0*(1+(alpha*t1))/R0*(1+(alpha*t2))\n",
"#calculation\n",
"R = R2/float(R1); #resistance in Ω\n",
"X = 1+(alpha*t1);\n",
"t2 = ((R*X)-1)/float(alpha); #temperature coefficient of resistance in °C\n",
" \n",
" \n",
"\n",
"#result\n",
"print'temperature coefficient of resistance =%3.2f'%t2,'°C';"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6.3,Page No:6.9"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Hence temperature under normal condition is 3320.00 °C\n"
]
}
],
"source": [
"import math\n",
"\n",
"#variable declaration\n",
"t1 = 20; #temperature in °C\n",
"alpha = 5*10**-3; #average temperature coefficient at 20°C \n",
"R1 = 8; #resistance in Ω\n",
"R2 = 140; #resistaance in Ω\n",
" \n",
" \n",
"#calculation\n",
"t2 = t1+((R2-R1)/float(R1*alpha)); #temperature in °C\n",
" \n",
"#result\n",
"print'Hence temperature under normal condition is %3.2f'%t2,'°C';\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6.4,Page No:6.10"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"resistivity=4.80e-05 Ω-m\n"
]
}
],
"source": [
"import math\n",
"\n",
"#variable declaration\n",
"l = 100; #length in cm\n",
"d = 0.008; #diameter of wire in cm\n",
"R = 95.5; #resistance in Ω\n",
"d = 0.008; #diameter in cm\n",
"\n",
"\n",
"#formula\n",
"#R=p*l/A\n",
"#calculation\n",
"A = (math.pi*d*d)/float(4); #cross-sectional area\n",
"p = (R*A)/float(l); #resistivity of wire in Ω-cm\n",
"\n",
"\n",
"#result\n",
"print'resistivity=%3.2e'%p,'Ω-m';"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6.5,Page No:6.10"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"percentage conductivity=93.59 %\n"
]
}
],
"source": [
"import math\n",
"\n",
"#variable declaration\n",
"R0 =17.5; #resistance at 0 degree c in Ω\n",
"alpha =0.00428; #temperature coefficient of copper in per °C\n",
"t =16; #temperature in °C\n",
"\n",
"\n",
"#calculations\n",
"Rt = R0*(1+(alpha*t)); #resistance at 16 °C\n",
"P = (R0/float(Rt))*100; #percentage conductivity at 16 °C\n",
"\n",
"\n",
"#result\n",
"print'percentage conductivity=%3.2f'%P,'%';"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6.10,Page No:6.30"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"insulation resistance= 16 Ω\n"
]
}
],
"source": [
"import math\n",
"\n",
"#variable declaration\n",
"l = 60; #length in m\n",
"r2 = 38/float(2); #radius of outer cylinder in m\n",
"r1 = 18/float(2); #radius of inner cylinder in m\n",
"p = 8000; #specific resistance in Ω-m\n",
"\n",
"#calculation\n",
"R = (p/float(2*math.pi*l))*math.log(r2/float(r1)); #insulation resistance of liquid resistor in Ω\n",
"\n",
"#result\n",
"print'insulation resistance=%3.0f '%R,'Ω';"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6.11,Page No:6.30"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"resistivity=3.358e+13 Ω-m\n"
]
}
],
"source": [
"import math\n",
"\n",
"#variable declaration\n",
"d1 = 0.0018; #inner diameter in m\n",
"d2 = 0.005; # outer diameter in m\n",
"R = 1820*10**6; #insulation resistance in Ω\n",
"l = 3000; #length in m\n",
"\n",
"#calculations\n",
"r1 = d1/float(2); #inner radius in m\n",
"r2 = d2/float(2); #outer radius in m\n",
"p = (2*math.pi*l*R)/float(math.log(r2/float(r1))); #resistivity of dielectric in Ω-m\n",
" \n",
"#result\n",
"print'resistivity=%3.3e'%p,'Ω-m';"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6.12,Page No:6.31"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"insulation resistance =1.606537e+08 Ω\n",
" Note: calculation mistake in textbook in calculating insulating resistance\n"
]
}
],
"source": [
"import math\n",
"\n",
"#variable declaration\n",
"d1 = 0.05; #inner diametr in m\n",
"d2 = 0.07; #outer diameter in m \n",
"l = 2000; #length in m\n",
"p = 6*10**12; #specific resistance in Ω-m\n",
" \n",
"#calculations\n",
"r1 = d1/float(2); #inner radius in m\n",
"r2 = d2/float(2); #outer radius in m\n",
"R = (p/float(2*math.pi*l))*(math.log(r2/float(r1))); #insulation resistance\n",
" \n",
" \n",
"\n",
"\n",
"#result\n",
"print'insulation resistance =%1e'%R,'Ω';\n",
"print' Note: calculation mistake in textbook in calculating insulating resistance';"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6.13,Page No:6.31"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"capacitance =2.68e-10 F\n",
" charge=6.696e-06 C\n"
]
}
],
"source": [
"import math\n",
"\n",
"#variable declaration\n",
"a = 110*10**-3; #area in m**2\n",
"d = 2; #thickness in mm\n",
"er = 5; #relative permitivity\n",
"E = 12.5*10**3; #electric field strength in V/mm\n",
"e0 = 8.854*10**-12; #charge of electron in coulombs\n",
" \n",
" \n",
"#calculations\n",
"A = a*a; #area in m**2\n",
"C = e0*((er*A)/float(d*10**-3)) #capacitance in F\n",
"V = E*(d);\n",
"Q = (C)*(V) #charge on capacitor in C\n",
" \n",
"#result\n",
"print'capacitance =%3.2e'%C,'F';\n",
"print' charge=%3.3e'%Q,'C';"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6.14,Page No:6.31"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"charge=7.50e-02 C\n",
" electric flux=75.000 mc\n",
" electric flux density=5.21 c/m**2\n",
" electric field strength=1.000e+06 V/m\n"
]
}
],
"source": [
"import math\n",
"\n",
"#variable declaration\n",
"I = 15*10**-3; #current in A\n",
"t = 5; #time in s\n",
"V = 1000; #voltage in volts\n",
"d = 10**-3; #thickness in m\n",
"a = 120*10**-3;\n",
"\n",
"#calculation\n",
"A = a**2 #area in m**2\n",
"Q = I*t; #charge on capacitor in C\n",
"#since charge and electric field are equal\n",
"phi = Q; #electric flux in mc\n",
"D = Q/float(A); #electric flux density in c/m**2\n",
"E = V/float(d); #electric field strength in dielectric\n",
"\n",
"#result\n",
"print'charge=%3.2e'%Q,'C';\n",
"print' electric flux=%4.3f'%(phi*10**3),'mc';\n",
"print' electric flux density=%3.2f'%D,'c/m**2';\n",
"print' electric field strength=%2.3e'%E,'V/m';\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6.15,Page No:6.32"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"capacitance=7.0124e-09 F\n"
]
}
],
"source": [
"import math\n",
"\n",
"#variable declaration\n",
"n = 12; #number of plates\n",
"er = 4; #relative permitivty \n",
"d = 1.0*10**-3; #distance between plates in m\n",
"A = 120*150*10**-6; #area in m**2\n",
"e0 = 8.854*10**-12; # in F/m\n",
"\n",
"#calculation\n",
"c = (n-1)*e0*er*A/float(d); #capacitance in F\n",
" \n",
"#result\n",
"print'capacitance=%3.4e'%c,'F';"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6.16,Page No:6.32"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"thickness=0.82 mm\n"
]
}
],
"source": [
"import math\n",
"\n",
"#variable declaration\n",
"e0 = 40000; #dielectric strength in volts/m\n",
"d = 33000; #thickness in kV\n",
"\n",
"#calculations\n",
"t = d/float(e0); #required thickness of insulation in mm\n",
" \n",
"#result\n",
"print'thickness=%3.2f'%t,'mm';\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##Example 6.17,Page No:6.32"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"area = 1.30 m**2\n",
" breakdown voltage=1.8e+04 V\n"
]
}
],
"source": [
"import math \n",
"\n",
"#variable declaration\n",
"C = 0.03*10**-6; #capacitance in F\n",
"d = 0.001; #thickness in m\n",
"er = 2.6; #dielectric constant\n",
"e0 = 8.85*10**-12; #dielectric strength \n",
"E0 = 1.8*10**7 \n",
" \n",
"#formula\n",
"#C=e0*er*A/d\n",
"#e0=v/d\n",
"#calculation\n",
"A = (C*d)/float(e0*er); #area of dielectric needed in m**2\n",
"Vb = E0*d; #breakdown voltage in m\n",
"\n",
"#result\n",
"print'area = %3.2f'%A,'m**2';\n",
"print' breakdown voltage=%3.1e'%Vb,'V';"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6.18,Page No:6.33"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"dielectric loss=5684.1 watts\n"
]
}
],
"source": [
"import math\n",
"\n",
"#variable declaration\n",
"C = 0.035*10**-6; #capacitance in F\n",
"tangent = 5*10**-4; #power factor \n",
"f = 25*10**3; #frequency in Hz\n",
"I = 250; #current in A\n",
" \n",
" \n",
"#calculation\n",
"V = I/float(2*math.pi*f*C) #voltage across capacitor in volts\n",
"P = V*I*tangent; #dielectric loss in watts\n",
"\n",
"#result\n",
"print'dielectric loss=%3.1f'%P,'watts';\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6.19,Page No:6.33"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"area=1.129433e-02 m**2\n"
]
}
],
"source": [
"import math\n",
"\n",
"#variable declaration\n",
"Q = 20*10**-6; #charge of electron in coulomb\n",
"V = 10*10**3; #potential in V\n",
"e0 = 8.854*10**-12; #absolute permitivity\n",
"d = 5*10**-4; #separation between plates in m\n",
"er = 10; #dielectric constant\n",
"\n",
"#formula\n",
"#Q=CV\n",
"#C=er*e0*A/d\n",
"C = Q/float(V);\n",
"A = (C*d)/float(er*e0); #area in m**2\n",
" \n",
"#result\n",
"print'area=%1e'%A,'m**2';"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6.20,Page No:6.35"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"electrial conductivity=2.53e+07 (Ω-m)**-1\n",
"lorentz number = 185.33 W/mK\n"
]
}
],
"source": [
"import math\n",
"\n",
"#variable declaration\n",
"n = 3.0*10**28; #number of electrons per m**3\n",
"t = 3*10**-14; #time in s\n",
"m = 9.1*10**-31; #mass of electron in kg\n",
"L = 2.44*10**-8; #lorentz number in ohm W/K**2\n",
"T = 300; #temperature in kelvin \n",
"e = 1.6*10**-19; #charge of electron in coulomb\n",
"\n",
"\n",
"#calculation\n",
"sigma = (n*(e**2)*t)/float(m); #electrical conductivity in (ohm-m)**-1\n",
"K = sigma*T*L;\n",
" \n",
"#result\n",
"print'electrial conductivity=%3.2e'%sigma,'(Ω-m)**-1';\n",
"print'lorentz number = %3.2f'%K,'W/mK';\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|