summaryrefslogtreecommitdiff
path: root/Diffusion:_Mass_Transfer_In_Fluid_Systems_by_E._L._Cussler/ch8.ipynb
blob: a8862d13f64fef24c1bb7453d451790e69412c08 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
{
 "metadata": {
  "name": "",
  "signature": "sha256:4ffdecca56cbb9d6e776ad1a01e4fde638db5748af91a54702b1bfe198648852"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 8 : Fundamentals of Mass Transfer"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.1.1 pg : 238"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\n",
      "#initiliazation of variables\n",
      "Vap = (0.05/22.4)*23.8/760 \t# Vapour concentration\n",
      "V = 18.4*10**3 \t# Air Volume in cc\n",
      "A = 150.    \t# Liquid Area in Cm**2\n",
      "t1 = 180.   \t# Time in sec\n",
      "N1 = (Vap*V)/(A*t1)\n",
      "k = 3.4*10**-2 \t# cm/sec\n",
      "C = 0.9\n",
      "\n",
      "#Calculations\n",
      "t = (-V/(k*A))*math.log(1 - C)\n",
      "thr = t/3600\n",
      "\n",
      "#Results\n",
      "print \"the time taken to reach 90 percent saturation is %.1f hr\"%(thr)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "the time taken to reach 90 percent saturation is 2.3 hr\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.1.2 pg : 240"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\n",
      "\t\n",
      "#initialization of variables\n",
      "Vo = 5. \t# cm/sec\n",
      "a = 23. \t#cm**2/cm**3\n",
      "z = 100. \t#cm\n",
      "Crat = 0.62 \t# Ratio of c/Csat\n",
      "\t\n",
      "#Calculations\n",
      "k = -(Vo/(a*z))*math.log(1-Crat)\n",
      "\t\n",
      "#Results\n",
      "print \"the mass transfer co efficient is %.1e cm/sec\"%(k)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "the mass transfer co efficient is 2.1e-03 cm/sec\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.1.3 pg : 241"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\n",
      "\t\n",
      "#initialization of variables\n",
      "t = 3.*60 \t# seconds\n",
      "crat = 0.5 \t# Ratio of c and csat\n",
      "\t\n",
      "#Calculations\n",
      "ka = -(1/t)*math.log(1-crat)\n",
      "\t\n",
      "#Results\n",
      "print \"the mass transfer co efficient along the product with a is %.1e sec**-1\"%(ka)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "the mass transfer co efficient along the product with a is 3.9e-03 sec**-1\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.1.4 pg : 242"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\n",
      "#initialiazation of variables\n",
      "rin = 0.05   \t# initial radius of oxygen bubble in cm\n",
      "rf = 0.027  \t#final radius of oxygen bubble in cm\n",
      "tin = 0     \t# initial time in seconds\n",
      "tf = 420.   \t# final time in seconds\n",
      "c1 = 1/22.4 \t# oxygen concentration in the bubble in mol/litres\n",
      "c1sat = 1.5*10**-3 \t# oxygen concentration outside which is saturated in mol/litres\n",
      "\t\n",
      "#Calculations\n",
      "k = -((rf-rin)/(tf-tin))*(c1/c1sat)\n",
      "\t\n",
      "#Results\n",
      "print \"The mass transfer co efficient is %.1e cm/sec\"%(k)\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The mass transfer co efficient is 1.6e-03 cm/sec\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.2.1 pg : 246"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\t\n",
      "#initialization of variables\n",
      "kc = 3.3*10**-3 \t# M.T.C in cm/sec\n",
      "d = 1.          \t# density of oxygen in g/cm**3\n",
      "M = 18.         \t# Mol wt of water in g/mol\n",
      "Hatm = 4.4*10**4 \t# Henrys consmath.tant in atm\n",
      "HmmHg = Hatm*760 \t# Henrys consmath.tant in mm Hg\n",
      "\t\n",
      "#Calculations\n",
      "ratio = d/(M*HmmHg)\t# Ratio of concentration and pressure of oxygen\n",
      "kp = kc*ratio \t    # M.T.O=C in x*10**12mol/cm**2-sec-mm Hg \n",
      "\t\n",
      "#Results\n",
      "print \"the M.T.C in given units is %.1e\"%(kp )\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "the M.T.C in given units is 5.5e-12\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.2.2 pg : 247"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\n",
      "\t\n",
      "#initialization of variables\n",
      "k1 = 1.18 \t# M.T.C in lb-mol NH3/hr-ft**2\n",
      "k2 =  1.09 \t# M.T.C in lb-mol NH3/hr-ft**2\n",
      "M2 = 18. \t# Mol wt of NH3 in lb/mol\n",
      "d = 62.4 \t#  Density of NH3 in lb/ft**3\n",
      "c1 = 30.5 \t# Conversion factor from ft to cm\n",
      "c2 = 1./3600 \t# Conversion factor from seconds to hour\n",
      "R = 1.314 \t# Gas consmath.tant in atm-ft**3/lb-mol-K\n",
      "T = 298. \t# Temperature in Kelvin scale\n",
      "\t\n",
      "#Calculations\n",
      "kf1 = (M2/d)*k1*c1*c2 \t# M.T.C in cm/sec\n",
      "kf2 = R*T*k2*c1*c2   \t# M.T.C in cm/sec\n",
      "\t\n",
      "#Results\n",
      "print \"the M.T.C for liquid is %.1e cm/sec\"%(kf1)\n",
      "print \" the M.T.C for gas is %.1f cm/sec\"%(kf2)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "the M.T.C for liquid is 2.9e-03 cm/sec\n",
        " the M.T.C for gas is 3.6 cm/sec\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.3.1 pg : 253"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\t\n",
      "#initialization of variables\n",
      "l = 0.07 \t    # flim thickness in cm \n",
      "v = 3.       \t# water flow in cm/sec\n",
      "D = 1.8*10**-5 \t# diffusion coefficient in cm**2/sec\n",
      "crat = 0.1 \t    # Ratio of c1 and c1(sat)\n",
      "\t\n",
      "#Calculations\n",
      "z = (((l**2)*v)/(1.38*D))*((math.log(1-crat))**2) \t#Column length\n",
      "\t\n",
      "#Results\n",
      "print \"the column length needed is %.1f cm\"%(z)\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "the column length needed is 6.6 cm\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.3.2 pg : 256"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\t\n",
      "#initialization of variables\n",
      "Dw = 1.*10**-5 \t# Diffusion co efficient in cm**2/sec\n",
      "omeg = 20.*2*math.pi/60 \t# disc rotation in /sec\n",
      "Nuw = 0.01 \t# Kinematic viscousity in water in cm**2/sec\n",
      "Da = 0.233 \t# Diffusion co efficient in cm**2/sec\n",
      "Nua = 0.15 \t# Kinematic viscousity in air in cm**2/sec\n",
      "c1satw = 0.003         \t# Solubility of benzoic acid in water in gm/cm**3\n",
      "p1sat = 0.30 \t         # Equilibrium Vapor pressure in mm Hg\n",
      "ratP = 0.3/760 \t        # Ratio of pressures\n",
      "c1 = 1./(22.4*10**3) \t# Moles per volume\n",
      "c2 = 273./298    \t    # Ratio of temperatures\n",
      "c3 = 122.    \t        # Grams per mole\n",
      "\t\n",
      "#Calculations\n",
      "kw = 0.62*Dw*((omeg/Nuw)**0.5)*((Nuw/Dw)**(1./3))\t# cm/sec\n",
      "Nw = kw*c1satw       \t# mass flux in x*10**-6 in g/cm**2-sec\n",
      "ka = 0.62*Da*((omeg/Nua)**0.5)*((Nua/Da)**(1./3))\t#cm/sec\n",
      "c1sata = ratP*c1*c2*c3\t# Solubility of benzoic acid in air in gm/cm**3\n",
      "Na = ka*c1sata          \t# mass flux in x*10**-6 in g/cm**2-sec\n",
      "\t\n",
      "#Results\n",
      "print  \"the mass flux in water is %.1e  g/cm**2-sec\"%(Nw)\n",
      "print \" the mass flux in air is %.e g/cm**2-sec\"%(Na)\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "the mass flux in water is 2.7e-06  g/cm**2-sec\n",
        " the mass flux in air is 9e-07 g/cm**2-sec\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.5.1 pg : 266"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\t\n",
      "#initialization of variables\n",
      "Dl=2.1*10**-5\t# Diffusion co efficient for Oxygen in air in cm**2/sec\n",
      "Dg = 0.23   \t#Diffusion co efficient for Oxygen in water in cm**2/sec\n",
      "R = 82.     \t# Gas consmath.tant in cm**3-atm/g-mol-K\n",
      "T = 298.    \t#Temperature in Kelvin\n",
      "l1 = 0.01   \t# film thickness in liquids in cm\n",
      "l2 = 0.1    \t# film thickness in gases in cm\n",
      "H1 = 4.3*10**4 \t# Henrys consmath.tant in atm\n",
      "c = 1./18    \t# concentration of water in g-mol/cm**3\n",
      "\t\n",
      "#Calculations\n",
      "kl = (Dl/l1)*c \t# m.t.c in liquid phase in mol/cm**2/sec\n",
      "kp = (Dg/l2)/(R*T)\t# m.t.c in gas phase in gmol/cm**2-sec-atm\n",
      "KL = 1/((1/kl)+(1/(kp*H1)))\t# Overall m.t.c in mol/cm**2-sec liquid phase\n",
      "\t\n",
      "#Results\n",
      "print \"The overall m.t.c in liquid side is %.1e mol/cm**2-sec\"%(KL)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The overall m.t.c in liquid side is 1.2e-04 mol/cm**2-sec\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.5.2 pg : 267"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\t\n",
      "#initialization of variables\n",
      "Dl=1.9*10**-5\t# Diffusion co efficient for liquid phase in cm**2/sec\n",
      "Dg = 0.090   \t#Diffusion co efficient for gas phase in cm**2/sec\n",
      "R = 82.     \t# Gas consmath.tant in cm**3-atm/g-mol-K\n",
      "T = 363.     \t#Temperature in Kelvin\n",
      "H1 = 0.70    \t# Henrys consmath.tant in atm\n",
      "c = 1./97 \t    # concentration of water in g-mol/cm**3\n",
      "\t\n",
      "#Calculations\n",
      "kl = (Dl/0.01)*c \t# m.t.c in liquid phase in mol/cm**2/sec\n",
      "kp = (Dg/0.1)/(R*T)\t# m.t.c in gas phase in gmol/cm**2-sec-atm\n",
      "KL = 1/((1/kl)+(1/(kp*H1)))       \t# Overall m.t.c in x*10**-5 mol/cm**2-secliquid phase\n",
      "\t\n",
      "#Results\n",
      "print \"The overall m.t.c in liquid side is %.2e mol/cm**2-sec\"%(KL)\t\n",
      "\n",
      "# note :  answer wrong in textbook"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The overall m.t.c in liquid side is 1.02e-05 mol/cm**2-sec\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.5.3 pg : 267"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "#initialization of variables\n",
      "k1 = 3.0*10**-4 \t# m.t.c in benzene in cm/sec\n",
      "k2 = 2.4*10**-3 \t# m.t.c in water in cm/sec\n",
      "ratio = 150. \t# Solubility ratio in benzene to water\n",
      "\t\n",
      "#Calculations\n",
      "K1 = (1/((1/k1)+(ratio/k2)))      \t# Overall m.t.c through benzene phase in x*10**-5 cm/sec\n",
      "\t\n",
      "#Results\n",
      "print \"The overall M.T.C through benzene phase is %.1e cm/sec\"%(K1)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The overall M.T.C through benzene phase is 1.5e-05 cm/sec\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.5.4 pg : 268"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math \n",
      "\t\n",
      "#initialization of variables\n",
      "H1 = 75.    \t# henrys consmath.tant for ammonia in atm\n",
      "H2 = 41000. \t# henrys consmath.tant for methane in atm\n",
      "p = 2.2 \t    # pressure in atm\n",
      "kya = 18.   \t# product of m.t.c and packing area per tower volume in lb-mol/hr-ft**3\n",
      "kxa = 530.  \t#product of m.t.c and packing area per tower volume in lb-mol/hr-ft**3\n",
      "\n",
      "#calcuations\n",
      "Kya1 = 1/((1/kya) + (H1/p)/kxa) \t#The overall coefficient for ammonia in lb-mol/hr-ft**3\n",
      "Kya2 = 1/((1/kya) + (H2/p)/kxa) \t#The overall coefficient for methane in lb-mol/hr-ft**3\n",
      "\t\n",
      "#Results\n",
      "print \"The overall coefficient for ammonia is %.1f lb-mol/hr-ft**3\"%(Kya1)\n",
      "print \" The overall coefficient for methane is %.2f lb-mol/hr-ft**3\"%(Kya2)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The overall coefficient for ammonia is 8.3 lb-mol/hr-ft**3\n",
        " The overall coefficient for methane is 0.03 lb-mol/hr-ft**3\n"
       ]
      }
     ],
     "prompt_number": 18
    }
   ],
   "metadata": {}
  }
 ]
}